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Abstract. Consider a continuous time process {Yt = ZNt , t ≥ 0}, where {Zn} is a supercritical Galton–
Watson process and {Nt} is a renewal process which is independent of {Zn}. Firstly, we study the asymptotic
properties of the harmonic moments E(Y−r

t ) of order r > 0 as t → ∞. Then, we obtain the large deviations
of the Lotka-Negaev estimator of offspring mean.

1. Introduction

Classical Galton-Watson process (GW) {Zn} has been naturally extended to branching process in random
environments (BPRE) starting in 1970’s, see [2], etc. In recent years, researchers focus on the study of large
deviation results for GW and BPRE, see [1]and [3] for example.

Let {Nt} be a Poisson process and be independent of {Zn}. {Yt = ZNt , t ≥ 0} is said to be a Poisson
randomly indexed branching process(PRIBP). PRIBP has been firstly used to study the evolution of stock
prices in [6] and its statistical investigation has been done in [5]. It was pointed out in [5] that the discrete
observations {Y1,Y2, · · · } is a BPRE.

For a PRIBP with offspring distribution {pi}, we distinguish between the Shröder case and the Böttcher
case depending on whether p0 + p1 > 0 or p0 + p1 = 0.

Recently, PRIBP has been brought to attention in the following two directions.
In applied direction, a formula for the fair price of an European call option was derived in [13]. Later

on, [14] obtained a formula for the fair price of an up-and-out call option.
On more theoretical side, [16] indicated that Rt := ZNt+1Z−1

Nt
is a reasonable estimator of the offspring mean

m, which is a naturally extension of the classical Lotka-Nagaev estimator, see [1] and [15]. They consider
the supercritical PRIBP and obtained the exponential rate of decay for the large deviation probability
P(|Rt −m| ≥ x) under the conditions that the offspring distribution {pi} has finite exponential moments and
belongs to the Shröder case. On the other hand, [11] showed that (λt)−1 log Yt is an estimator of log m and
derived the consistency, asymptotic normality, large deviation and moderate deviation of the estimator
when the PRIBP belongs to the Böttcher case. In [7], we gave the error bound in asymptotic normality. The
large deviations in the Shröder case were given in [8], where the rate function I(x) is deferent from the

2010 Mathematics Subject Classification. Primary 60J80; Secondary 60F10
Keywords. Branching process; renewal process; large deviations; harmonic moments
Received: 05 February 2018; Accepted: 07 October 2018
Communicated by Miljana Jovanović
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Böttcher case for small positive x. Similar results for branching process indexed by a renewal process were
done in [9] and [10].

In this paper, we consider the rates of large deviation probability P(|Rt − m| ≥ x) when the indexed
process is a renewal process and the offspring distribution belongs to the Shröder case.

Let F be the distribution of interarrival time X of renewal process. Throughout the paper, we assume
the following condition:

A1: p0 = 0, m = E(Z1) ∈ (1,∞), σ2 = E(Z1 −m)2
∈ (0,∞), Z0 = 1.

A2: F(0) = 0, there exists θ0 > 0, ∀θ < θ0,M(θ) := E(exp(θX)) < ∞ and M(θ) is differentiable when
θ < θ0.

Our first result is the asymptotic properties of harmonic moments E(Y−r
t ) of order r > 0 as n→∞.

Theorem 1.1. Under condition A1 and A2, for any r > 0, t−1 logE(Y−r
t )→ A(r), where

A(r) =

−M−1(p−1
1 ), p1mr

≥ 1;
−M−1(mr), p1mr < 1

(1)

and M−1 is the inverse function of M.

Basic properties for M−1 are needed in following proofs. By condition A2,
(1) M(θ) is strictly increasing, then M−1 exists.
(2) M(θ) is differentiable when θ < θ0, then M−1 is continuous and differentiable in the range of M.

Furthermore, if y = M(θ), then
(M−1)′(y) = (M′(θ))−1.

We divided our results on large deviation probability P(|Rt − m| ≥ x) into two parts depending on
whether the offspring distribution satisfies the Cramér’s condition or not.

Theorem 1.2 (Shröder case with light tails). Assume that there exists a constant α > 0 such thatE(exp(αZ1)) <
∞ and p1 ∈ (0, 1), under conditions A1 and A2,

lim
t→∞

1
t

logP(|Rt −m| ≥ x) = −M−1(p−1
1 ).

Remark 1.3. Cramér’s condition E(exp(αZ1)) < ∞ can be weakened to E(Z2r+δ
1 ) < ∞ for some positive constants δ

and r such that p1mr > 1, see [1].

Remark 1.4. If {Nt} is a Poisson process with parameter λ > 0, then

M(θ) =
λ

λ − θ
, θ < λ; M−1(p−1

1 ) = λ(1 − p1).

The following Theorem 1.5 shows that there is a “ phase transition ” in large deviation rates of conver-
gence from Rt to m when the supercritical branching process indexed by a renewal process belongs to the
Shröder case and the offspring distribution has Pareto type tails(Cramér’s condition fails).

Theorem 1.5 (Shröder case with heavy tails). Assume that p0 = 0, p1 ∈ (0, 1) and there exists a constant r > 0
such that

log(P(Z1 ≥ x))/ log x→ −(r + 1),

as x→∞. Then

lim
t→∞

1
t

logP(|Rt −m| ≥ x) = A(r),

where A(r) is defined in (1).
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2. Harmonic Moments

In this section, we deal with the following asymptotic properties of harmonic moments E(Y−r
t ) of order

r > 0 as t→∞. We need several lemmas to prove Theorem 1.1. Lemma 2.1 comes from [9].

Lemma 2.1. Under condition A2, for any θ ∈ R,

lim
t→∞

1
t

logE
(
mθNt

)
= −M−1(m−θ),

where M−1 is the inverse function of M.

Lemma 2.2. Under condition A2,

lim
t→∞

1
t

logE
(
NtpNt

1

)
= −M−1(p−1

1 ).

Proof. For any 1 − p1 > ε > 0, there exists n0 such that for all n ≥ n0, one has

n ≤ (1 + ε/p1)n.

Note that

E
(
NtpNt

1

)
= E

(
NtpNt

1 I{Nt ≥ n0}
)

+ E
(
NtpNt

1 I{Nt < n0}
)

≤ E
(
(p1 + ε)Nt I{Nt ≥ n0}

)
+ E

(
n0pNt

1 I{Nt < n0}
)

≤ E
(
(p1 + ε)Nt

)
+ E

(
n0pNt

1

)
,

where I{A} is the indictor function of set A. According to Lemma 2.1 and Lemma 1.2.15 of [4], we have

lim sup
t→∞

1
t

logE
(
NtpNt

1

)
≤ lim sup

t→∞

1
t

log
{
E

(
(p1 + ε)Nt

)
+ E

(
n0pNt

1

)}
= max

{
lim sup

t→∞

1
t

logE
(
(p1 + ε)Nt

)
, lim sup

t→∞

1
t

logE
(
n0pNt

1

)}
= max{−M−1((p1 + ε)−1), −M−1(p−1

1 )}

= −M−1((p1 + ε)−1).

By condition A2, M−1 is continuous. According to the arbitrariness of ε, one has

lim sup
t→∞

1
t

logE
(
NtpNt

1

)
= −M−1(p−1

1 ).

On the other hand
E

(
NtpNt

1

)
≥ E

(
pNt

1

)
,

by Lemma 2.1, we have

lim inf
t→∞

1
t

logE
(
NtpNt

1

)
= −M−1(p−1

1 ).

We complete the proof of Lemma 2.2.

The following Lemma 2.3 belongs to [15], which characterizes the asymptotic properties of harmonic
moments of a classical supercritical Galton–Watson process.
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Lemma 2.3. Under condition A1, An(r)E(Z−r
n )→ C(r), where

An(r) =


p−n

1 , if p1mr > 1;
(npn

1)−1, if p1mr = 1;
(mr)n, if p1mr < 1

and

C(r) =


1

Γ(r)

∫
∞

0 Q(e−v)vr−1dv, if p1mr > 1;
1

Γ(r)

∫ m

0 Q(φ(v))vr−1dv, if p1mr = 1;
1

Γ(r)

∫
∞

0 φ(v)vr−1dv, if p1mr < 1,

where φ(v) = limn E(e−vZn/mn
) and Q(s) is the unique solution of the functional equation{

Q( f (s)) = p1Q(s), 0 ≤ s < 1;
Q(0) = 0,

where f (s) is the generating function of the offspring distribution {pi}. Furthermore, {C(r), r > 0} are positive and
finite.

The proof of Theorem 1.1.
Let us see that by the total probability formula,

E(Y−r
t ) =

∞∑
n=0

E(Z−r
n )P(Nt = n)

=

∞∑
n=0

C(r)(An(r))−1P(Nt = n) +

∞∑
n=0

(E(Z−r
n ) − C(r)(An(r))−1)P(Nt = n)

= I1 + I2, (2)

where I2 =
∑
∞

n=0(E(Z−r
n ) − C(r)(An(r))−1)P(Nt = n) and

I1 =

∞∑
n=0

C(r)(An(r))−1P(Nt = n)

=


C(r)E(pNt

1 ), if p1mr > 1;
C(r)E(NtpNt

1 ), if p1mr = 1;
C(r)E(m−rNt ), if p1mr < 1.

(3)

According to Lemma 2.3, for any ε > 0, there exists a constant M = M(ε, r) such that for any n ≥M,

E(Z−r
n ) ∈ [(C(r) − ε)(An(r))−1, (C(r) + ε)(An(r))−1].

Then

|I2| ≤

+∞∑
n=0

ε(An(r))−1P(Nt = n) +

M∑
n=0

|E(Z−r
n ) − C(r)(An(r))−1)|P(Nt = n)

≤ εI1/C(r) + L(r)P(Nt ≤M), (4)

where
L(r) = max

1≤n≤M
{|E(Z−r

n ) − C(r)(An(r))−1)|} < ∞.

By (2)-(4),

E(Y−r
t ) ≥ (C(r) − ε)


E(pNt

1 ), if p1mr > 1;
E(NtpNt

1 ), if p1mr = 1;
E(m−rNt ), if p1mr < 1

− L(r)P(Nt ≤M)
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and

E(Y−r
t ) ≤ (C(r) + ε)


E(pNt

1 ), if p1mr > 1;
E(NtpNt

1 ), if p1mr = 1;
E(m−rNt ), if p1mr < 1

+ L(r)P(Nt ≤M).

According to the large deviations for renewal process, see [12], one has

1
t

log(P(Nt ≤M))→ −∞.

Note that ε is arbitrary, Theorem 1.1 follows from Lemma 2.1 and Lemma 2.2.

3. Large Deviation Probability

In this section, we deal with Theorem 1.2. The proof is dependent on the following lemma which
belongs to [1].

Lemma 3.1. Assume that Z0 = 1, p0 = 0, p1 ∈ (0, 1) and there there exists a constant α > 0 such thatE(exp(αZ1)) <
∞, then for any x > 0,

lim
n→∞

1
pn

1
P

(∣∣∣∣∣Zn+1

Zn
−m

∣∣∣∣∣ ≥ x
)

= V(x) ∈ (0,∞).

The proof of Theorem 1.2.
Write ψ(x) = P(|Zn+1/Zn −m| ≥ x). First, let us note that

P(|Rt −m| ≥ x) =

∞∑
n=0

P(|Zn+1/Zn −m| ≥ x)P(Nt = n)

=

∞∑
n=0

V(x)pn
1P(Nt = n) +

∞∑
n=0

(ψ(x) − V(x)pn
1)P(Nt = n)

=: U1 + U2, (5)

where U1 = V(x)E(pNt
1 ). On the other hand, by Lemma 3.1, for any ε > 0, there exists n0, if n ≥ n0, then

ψ(x) ∈ ((V(x) − ε)pn
1 , (V(x) + ε)pn

1). Thus,

|U2| ≤

+∞∑
n=0

εpn
1P(Nt = n) +

n0∑
n=0

|ψ(x) − V(x)pn
1 |P(Nt = n)

≤ εE(pNt
1 ) + G(x)P(Nt ≤ n0), (6)

where
G(x) = max

1≤n≤n0

{|ψ(x) − V(x)pn
1 |} < ∞.

By (5)-(6),

ψ(x) ≥ (V(x) − ε)E(pNt
1 ) − G(x)P(Nt ≤ n0)

and

ψ(x) ≥ (V(x) + ε)E(pNt
1 ) + G(x)P(Nt ≤ n0)

According to the large deviations for renewal process, see [12], one has

1
t

log(P(Nt ≤ n0))→ −∞.

Note that 0 < V(x) < ∞ for x ∈ (0,+∞) and ε is arbitrary, Theorem 1.2 follows from Lemma 2.1.
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The proof of Theorem 1.5.
The proof is similar to that of Theorem 1.1. The only change is that Lemma 2.3 is substitute by the

following lemma which belongs to [15].

Lemma 3.2. Assume that p0 = 0, p1 ∈ (0, 1) and there exists a constant r > 0 such that

log(P(Z1 ≥ x))/ log x→ −(r + 1),

as x→∞. Then

lim
t→∞

An(r)P
(∣∣∣∣∣Zn+1

Zn
−m

∣∣∣∣∣ ≥ a
)

= U(a) ∈ (0,∞),

where An(r) is defined in Lemma 2.3.
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