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Abstract. We investigate biprojectivity and biflatness of generalized module extension Banach algebra
A Z B, in which A and B are Banach algebras and B is an algebraic Banach A−bimodule, with multiplication:
(a, b) · (a′ , b′ ) = (aa′ , ab′ + ba′ + bb′ ).

1. Introduction

Let A and B be Banach algebras and let B be a Banach A−bimodule. Then, we will say that B is an
algebraic Banach A−bimodule if for all a ∈ A and b, b′ ∈ B

a(bb
′

) = (ab)b
′

, (bb
′

)a = b(b
′

a) , (ba)b
′

= b(ab
′

) .

The Cartesian product A × B with the multiplication

(a, b) · (a
′

, b
′

) = (aa
′

, ab
′

+ ba
′

+ bb
′

) ,

and with the norm ||(a, b)|| = ||a|| + ||b||, becomes a Banach algebra, which is called
the

′′generalized module extension Banach algebra88, and it is denoted by A Z B. Also A � A × {0} is a
closed subalgebra, while B � {0} × B is a closed ideal of A Z B, and A Z B/B � A. The authors in [11]
have studied some properties of this kind of algebra, such as bounded approximate identity, spectrum,
topological centers and n−weak amenability. This algebra can be a generalization of the following known
algebras:

(a) Let A × B be the direct product of two Banach algebras A and B, with multiplication

(a, b) · (a
′

, b
′

) = (aa
′

, bb
′

) .

If we define the A−bimodule actions on B by ab = ba = 0, for a ∈ A and b ∈ B, then A × B = A Z B.
(b) Let A ⊕ X be the module extension Banach algebra, in which X is a Banach A−bimodule, with

multiplication

(a, x) · (a
′

, x
′

) = (aa
′

, ax
′

+ xa
′

) .

If we define the multiplication on X by xx′ = 0, then A ⊕ X = A Z X.
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(c) Let A ×θ B be the θ−Lau product of two Banach algebras A and B with θ ∈ 4(A) and the following
multiplication

(a, b) · (a
′

, b
′

) = (aa
′

, θ(a)b
′

+ θ(a
′

)b + bb
′

) .

These kinds of products have been investigated in two prior studies [7, 13]. If we define the
A−bimodule actions on B by ab = ba =: θ(a)b, for a ∈ A and b ∈ B, then A ×θ B = A Z B.

(d) Let A ×T B be the T−Lau product of two Banach algebras A and B with algebra homomorphism
T : A→ B with ||T|| ≤ 1, and with multiplication

(a, b) · (a
′

, b
′

) = (aa
′

,T(a)b
′

+ bT(a
′

) + bb
′

) .

These kinds of products were introduced by Lau [7], and studied by many authors
such as [2, 5, 13]. If we define the A−bimodule actions on B by ab =: T(a)b , ba =: bT(a), for
a ∈ A and b ∈ B, then A ×T B = A Z B.

(e) Let A Zθ I be the amalgamation of A with B along I with respect to θ, in which A and B are Banach
algebras, I is a closed ideal in B, θ : A→ B is a continuous Banach algebra homomorphism, and with
the following multiplication

(a, i)(a
′

, i
′

) = (aa
′

, θ(a)i
′

+ iθ(a
′

) + ii
′

) ,

for a, a′ ∈ A and i, i′ ∈ I. These kinds of Banach algebras have been studied in some other studies [9,
10]. Now if we define the A−bimodule actions on I by ai =: θ(a)i and ia = iθ(a), for a ∈ A and i ∈ I,
then A Zθ I = A Z I.

Homological properties of Banach algebras have been studied by several authors. We refer to [4] as a
standard reference in this field. The properties biprojectivity and biflatness have been studied: for θ−Lau
product A ×θ B in [6], and for T−Lau product A ×T B in [1]. In this paper we will study biprojectivity and
biflatness of L = A Z B, in two separate sections 3 and 4. We will show that if L = A Z B is biprojective
[biflat], then A is biprojective [biflat], but for biprojectivity [biflatness] of B, we need some conditions. Also
it will be shown that if A and B are biprojective [biflat], then under a mild condition on B, we conclude the
biprojectivity [biflatness] of L = A Z B. In section 5 our results will be applied in some examples.

2. Preliminaries

Throughout this paper, A and B are Banach algebras, B is an algebraic Banach A−bimodule, and
L = A Z B denotes the generalized module extension Banach algebra. Consider the A−bimodule and also
B−bimodule actions on L = A Z B bya′ · (a, b) := (a′ , 0) · (a, b) ,

(a, b) · a′ := (a, b) · (0, a′ ) ,
and

b′ · (a, b) = (0, b′ ) · (a, b) ,
(a, b) · b′ = (a, b) · (0, b′ ) ,

for all (a, b) ∈ L, a′ ∈ A and b′ ∈ B. Following [4], we say that A is biprojective if there exists a bounded
A−bimodule map ρA : A→ A⊗̂A such that πAoρA = idA, in which πA : A⊗̂A→ A denotes the product map
with πA(a ⊗ a′ ) = aa′ . Also A is called biflat if there is a bounded A−bimodule map λA : (A⊗̂A)∗ → A∗, such
that λAoπ∗A = idA∗ . For the basic properties of biprojectivity and biflatness, see [3, 12].
Finally, the following maps will be introduced and then used in our results. Let
pA : L = A Z B→ A and pB : L = A Z B→ B be the projections defined by pA

(
(a, b)

)
= a and pB

(
(a, b)

)
= b for

all (a, b) ∈ L. Also let qA : A→ L = A Z B and qB : B→ L = A Z B be the injections, defined by qA(a) = (a, 0)
and qB(b) = (0, b), for all a ∈ A and b ∈ B. Besides, suppose that B is unital with unit eB, and define the
following bounded linear maps

rB : L = A Z B→ B by rB(a, b) = aeB + b ,
sA : A→ L = A Z B by sA(a) = (a,−aeB) .
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Note that, the mappings pA, qA are bounded A−bimodule maps, and qB is a bounded B−bimodule map. We
have the following lemma about relations between bimodule structures for rB and sA.

Lemma 2.1. Let A and B be Banach algebras, and let B be an algebraic Banach A−bimodule with unit eB, such that
aeB = eBa for all a ∈ A. Then the mappings rB and sA are B−bimodule map and A−bimodule map, respectively.

Proof. Let a, a′ ∈ A and b, b′ ∈ B. By using the assumptions, we have

rB

(
b
′

· (a, b)
)

= rB

(
(0, b

′

) · (a, b)
)

= rB(0, b
′

a + b
′

b)
= b

′

a + b
′

b
= b

′

eBa + b
′

b
= b

′

aeB + b
′

b
= b

′

· (aeB + b)
= b

′

· rB(a, b) .

Similarly, we have rB

(
(a, b) · b′

)
= rB

(
(a, b)

)
· b′ , and we conclude that rB is a B−bimodule map. Also we have

sA(aa
′

) = (aa
′

,−aa
′

eB)
= (a, 0) · (a

′

,−a
′

eB)
= a · (a

′

,−a
′

eB)
= a · sA(a

′

) ,

and similarly, by the assumptions

sA(aa
′

) = (aa
′

,−aa
′

eB)
= (aa

′

,−aeBa
′

)
= (a,−aeB) · (a

′

, 0)
= (a,−aeB) · a

′

= sA(a) · a
′

,

and so sA is an A−bimodule map.

3. Results on Biprojectivity

This section deals with relations between biprojectivity of L = A Z B and biprojectivity of A and B.

Theorem 3.1. Let A and B be Banach algebras, and let B be an algebraic Banach A−bimodule.

(i) If L = A Z B is biprojective, then A is biprojective.
(ii) Suppose that B has unit eB, such that for all a ∈ A, aeB = eBa. If L = A Z B is biprojective, then B is biprojective.

Proof. By the hypothesis, there exist a bounded L−bimodule map ρL : L→ L⊗̂L, such that πLoρL = idL.
(i) Define ρA : A→ A⊗̂A by ρA =: (pA ⊗ pA)oρLoqA. Clearly ρA is bounded. Since ρL is L−bimodule map, for
a, a′ ∈ A and b ∈ B we have

ρL

(
a
′

· (a, b)
)

= ρ
(
(a
′

, 0) · (a, b)
)

= (a
′

, 0)ρL

(
(a, b)

)
= a

′

· ρL

(
(a, b)

)
.
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Similarly, we have ρL

(
(a, b) · a′

)
= ρL

(
(a, b)

)
· a′ . We conclude that ρL is A−bimodule map. Then ρA is a

bounded A−bimodule map. Also for (a, b) ⊗ (a′ , b′ ) ∈ L⊗̂L(
πAo(pA ⊗ pA)

)(
(a, b) ⊗ (a

′

, b
′

)
)

= πA(a ⊗ a
′

) = aa
′

,

(pAoπL)
(
(a, b) ⊗ (a

′

, b
′

)
)

= pA

(
(a, b) · (a

′

, b
′

)
)

= aa
′

,

this shows the identity πAo(pA ⊗ pA) = pAoπL. Now one can have the following

πAoρA = πAo(pA ⊗ pA)oρLoqA

= pAoπLoρLoqA

= pAoidLoqA = idA .

This shows that A is biprojective.
(ii) Define ρB =: (rB ⊗ rB)oρLoqB. Since ρL, qB and rB are bounded B−bimodule maps, then ρB is bounded
B−bimodule map. Also for (a, b) and (a′ , b′ ) in L we have(

πBo(rB ⊗ rB)
)(

(a, b) ⊗ (a
′

, b
′

)
)

= πB

(
(aeB + b) ⊗ (a

′

eB + b
′

)
)

= (aeB + b) · (a
′

eB + b
′

)
= aeBa

′

eB + aeBb
′

+ ba
′

eB + bb
′

= aa
′

eB + ab
′

+ ba
′

+ bb
′

= rB

(
aa
′

, ab
′

+ ba
′

+ bb
′
)

= rB

(
(a, b) · (a

′

, b
′

)
)

= (rBoπL)
(
(a, b) ⊗ (a

′

, b
′

)
)
.

We conclude that πBo(rB ⊗ rB) = rBoπL. Moreover it is easy to check that rBoqB = idB. Then

πBoρB = πBo(rB ⊗ rB)oρLoqB

= rBoπLoρLoqB

= rBoidLoqB

= rBoqB

= idB ,

and this shows the biprojectivity of B.

Theorem 3.2. Let A and B be Banach algebras, and let B be an algebraic Banach A−bimodule with unit eB such that
for all a ∈ A, aeB = eBa. If A and B are biprojective, then L = A Z B is biprojective.

Proof. By the hypothesis, there exist bounded A−bimodule map ρA : A→ A⊗̂A, and bounded B−bimodule
map ρB : B → B⊗̂B, such that πAoρA = idA and πBoρB = idB. For
(a ⊗ a′ ) ∈ A⊗̂A we have(

πLo(sA ⊗ sA)
)
(a ⊗ a

′

) = πL

(
(a,−aeB) ⊗ (a

′

,−a
′

eB)
)

= (a,−aeB) · (a
′

,−a
′

eB)
= (aa

′

,−aa
′

eB − aeBa
′

+ aeBa
′

eB)
= (aa

′

,−aa
′

eB − aa
′

eB + aa
′

eB)
= (aa

′

,−aa
′

eB)
= sA(aa

′

)
= (sAoπA)(a ⊗ a

′

) ,
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and we conclude that πLo(sA ⊗ sA) = sAoπA. Also, it is easy to check that
πLo(qB ⊗ qB) = qBoπB. Now define ρL : L→ L⊗̂L by

ρL

(
(a, b)

)
=:

(
(sA ⊗ sA)oρAopA

)
(a, b) + (a, b) ·

(
(qB ⊗ qB)

(
ρB(eB)

))
.

Clearly ρL is bounded, we first show that ρL is a left−L−module map. For all
(a, b), (c, d) ∈ L, we have

ρL

(
(a, b) · (c, d)

)
=

(
(sA ⊗ sA)oρAopA

)
(ac, ad + bc + bd) +

(
(a, b) · (c, d)

)
·

(
(qB ⊗ qB)

(
ρB(eB)

))
= (sA ⊗ sA)

(
ρA(ac)

)
+

(
(a, b) · (c, d)

)
·

(
(qB ⊗ qB)

(
ρB(eB)

))
= (a, 0) · (sA ⊗ sA)

(
ρA(c)

)
+

(
(a, b) · (c, d)

)
·

(
(qB ⊗ qB)

(
ρB(eB)

))
= (a, b) ·

[
(sA ⊗ sA)

(
ρA(c)

)
+ (c, d) · (qB ⊗ qB)

(
ρB(eB)

)]
− (0, b) ·

(
(sA ⊗ sA)

(
ρA(c)

))
= (a, b) · ρL(c, d) − (0, b) ·

(
(sA ⊗ sA)

(
ρA(c)

))
,

but (0, b) · (sA ⊗ sA)
(
ρA(c)

)
= 0, because for all (a′ ⊗ a′′ ) ∈ A⊗̂A, we can write

(0, b) ·
(
(sA ⊗ sA)(a

′

⊗ a
′′

)
)

= (0, b) ·
(
sA(a

′

) ⊗ sA(a
′′

)
)

= (0, b) ·
(
(a
′

,−a
′

eB) ⊗ (a
′′

,−a
′′

eB)
)

=
(
(0, b) · (a

′

,−a
′

eB)
)
⊗ (a

′′

,−a
′′

eB)

=
(
0, ba

′

− ba
′

eB

)
⊗ (a

′′

,−a
′′

eB)

= (0, ba
′

− beBa
′

) ⊗ (a
′′

,−a
′′

eB)
)

= (0, 0) ⊗ (a
′′

,−a
′

eB)
= 0 ,

and we conclude that (0, b) · (sA ⊗ sA)
(
ρA(c)

)
= 0 for ρA(c) =

∞∑
i=1

a
′

i ⊗ a
′′

i , in which (a′i), (a′′i ) are some sequences

in A with
∞∑

i=1

||a
′

i ||||a
′′

i || < ∞.

Thus ρL

(
(a, b) · (c, d)

)
= (a, b) ·ρL

(
(c, d)

)
, and so ρL is left−L−module map. To show that ρL is right−L−module

map, we note that for all (b′ ⊗ b′′ ) ∈ B⊗̂B

(a, b) ·
(
(qB ⊗ qB)(b

′

⊗ b
′′

)
)

= (qB ⊗ qB)
(
(b + aeB) · (b

′

⊗ b
′′

)
)
,(

(qB ⊗ qB)(b
′

⊗ b
′′

)
)
· (a, b) = (qB ⊗ qB)

(
(b
′

⊗ b
′′

) · (b + aeB)
)
.

Hence

(a, b) ·
(
(qB ⊗ qB)

(
ρB(eB)

))
= (qB ⊗ qB)

(
(b + aeB) · ρB(eB)

)
= (qB ⊗ qB)

(
ρB(eB) · (b + aeB)

)
=

(
(qB ⊗ qB)

(
ρ(eB)

))
· (a, b) .



M. Ettefagh / Filomat 32:17 (2018), 5895–5905 5900

It follows that (qB ⊗ qB)
(
ρB(eB)

)
commutes with the members of L. Consequently,

ρL

(
(c, d) · (a, b)

)
=

(
(sA ⊗ sA)oρAopA

)(
(c, d) · (a, b)

)
+

(
(c, d) · (a, b)

)(
(qB ⊗ qB)

(
ρB(eB)

))
= (sA ⊗ sA)

(
ρA(ca)

)
+

(
(c, d) · (a, b)

)(
(qB ⊗ qB)

(
ρB(eB)

))
=

(
(sA ⊗ sA)

(
ρA(c)

))
· (a, 0) + (c, d) ·

(
(qB ⊗ qB)

(
ρB(eB)

))
· (a, b)

=
[
(sA ⊗ sA)

(
ρA(c)

)
+ (c, d) ·

(
(qB ⊗ qB)

(
ρB(eB)

))]
· (a, b)

−

(
(sA ⊗ sA)

(
ρA(c)

))
· (0, b)

= ρL

(
(c, d)

)
· (a, b) −

(
(sA ⊗ sA)

(
ρA(c)

))
· (0, b) ,

but with similar reasoning for (0, b) ·
(
(sA ⊗ sA)

(
ρA(c)

))
= 0 we have the identity(

(sA ⊗ sA)
(
ρA(c)

))
· (a, b) = 0. Thus ρL

(
(c, d) · (a, b)

)
= ρL

(
(c, d)

)
· (a, b), and so ρL is a right−L−module

map. Finally, we have(
πLoρL

)
(a, b) =

(
πLo(sA ⊗ sA)oρAopA

)
(a, b) + (a, b) · πL

(
(qB ⊗ qB)

(
ρB(eB)

))
=

(
sAoπAoρAopA

)
(a, b) + (a, b) ·

((
qBoπBoρB

)
(eB)

)
= (sAopA)(a, b) + (a, b) ·

(
qB(eB)

)
= sA(a) + (a, b) · (0, eB)
= (a,−aeB) + (0, aeB + b)
= (a, b) ,

therefore πLoρL = idL, and hence L = A Z B is biprojective.

4. Results on Biflatness

This section is devoted to the relations between biflatness of L = A Z B and biflatness of A and B.

Theorem 4.1. Let A and B be Banach algebras, and let B be an algebraic Banach A−bimodule.

(i) If L = A Z B is biflat, then A is biflat.
(ii) Suppose that B has unit eB, such that for all a ∈ A, aeB = eBa. If L = A Z B is biflat, then B is biflat.

Proof. By the hypothesis, there exist a bounded L−bimodule map λL : (L⊗̂L)∗ → L∗, such that λLoπ∗L = idL∗ .
The following identities have been shown in the proof of theorem (3.1)

πAo(pA ⊗ pA) = pAoπL ,

πBo(rB ⊗ rB) = rBoπL .

(i) Define λA : (A⊗̂A)∗ → A∗ by λA =: q∗AoλLo(pA ⊗ pA)∗, which is a bounded A−bimodule map and

λAoπ∗A = q∗AoλLo(pA ⊗ pA)∗oπ∗A
= q∗AoλLo

(
πAo(pA ⊗ pA)

)∗
= q∗AoλLo(pAoπL)∗

= q∗AoλLoπ∗Lop∗A
= q∗AoidL∗op∗A
= (pAoqA)∗

= (idA)∗

= idA∗ .
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Hence A is biflat.
(ii) Define λB : (B⊗̂B)∗ → B∗ by λB =: q∗BoλLo(rB ⊗ rB)∗. Since B is unital and
aeB = eBa (a ∈ A), then rB and hence λB are bounded B−bimodule maps, and we have

λBoπ∗B = q∗BoλLo(rB ⊗ rB)∗oπ∗B
= q∗BoλLo

(
πBo(rB ⊗ rB)

)∗
= q∗BoλLo(rBoπL)∗

= q∗BoλLoπ∗Lor∗B
= q∗BoidL∗or∗B
= (rBoqB)∗

= (idB)∗

= idB∗ .

This proves the biflatness of B.

For the converse of theorem (4.1) we should determine the L−bimodule structures on
L∗ = (A Z B)∗. We recall that the dual space A∗ of A is a Banach A−bimodule by module operations

〈 f · a, b〉 = 〈 f , ab〉 and 〈a · f , b〉 = 〈 f , ba〉 ,

for a, b ∈ A and f ∈ A∗. We remark that the dual space L∗ = (A Z B)∗ can be identified with A∗ × B∗ by the
following bounded linear map

θ : A∗ × B∗ → (A Z B)∗ = L∗ ,
(
〈θ( f , 1), (a, b)〉 = f (a) + 1(b)

)
.

Now suppose that B has unit eB such that for all a ∈ A, aeB = eBa. Define ϕ : A → B by ϕ(a) = eBa. For
(a, b), (a′ , b′ ) ∈ L = A Z B and ( f , 1) ∈ L∗ we have(

( f , 1) · (a, b)
)
(a
′

, b
′

) = ( f , 1)
(
(a, b) · (a

′

, b
′

)
)

= ( f , 1)(aa
′

, ab
′

+ ba
′

+ bb
′

)
= f (aa

′

) + 1(ab
′

) + 1(ba
′

) + 1(bb
′

)
= ( f · a)(a

′

) + 1(aeBb
′

) + 1(beBa
′

) + (1 · b)(b
′

)

= ( f · a)(a
′

) + (1 · (aeB))b
′

+
(
(1 · b)oϕ

)
(a
′

) + (1 · b)(b
′

)

=
(

f · a + (1 · b)oϕ
)
(a
′

) +
(
1 · (aeB) + 1 · b

)
(b
′

)

=
(

f · a + (1 · b)oϕ , 1 · (aeB) + 1 · b
)
(a
′

, b
′

) ,

therefore

( f , 1) · (a, b) =
(

f · a + (1 · b)oϕ , 1 · (aeB) + 1 · b
)
,

and similarly

(a, b) · ( f , 1) =
(
a · f + (b · 1)oϕ , (eBa) · 1 + b · 1

)
.

Theorem 4.2. Let A and B be Banach algebras, and let B be an algebraic Banach A−bimodule with unit eB such that
for all a ∈ A, aeB = eBa. If A and B are biflat, then L = A Z B is biflat.
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Proof. By the hypothesis, there exist a bounded A−bimodule map λA : (A⊗̂A)∗ → A∗ and a bounded
B−bimodule map λB : (B⊗̂B)∗ → B∗, such that λAoπ∗A = idA∗ and λBoπ∗B = idB∗ . Define λL : (L⊗̂L)∗ → L∗ �
A∗ × B∗ by

λL(h) =:
((
λAo(sA ⊗ sA)∗

)
(h) +

(
ϕ∗oλBo(qB ⊗ qB)∗

)
(h),

(
λBo(qB ⊗ qB)∗

)
(h)

)
,

for h ∈ (L⊗̂L)∗ and ϕ : A → B (ϕ(a) = aeB). Clearly λL is a bounded map. To see that λL is a L−bimodule
map we need the following identities for h ∈ (L⊗̂L)∗ and (a, b) ∈ L

(1) (qB ⊗ qB)∗
(
h · (a, b)

)
= (qB ⊗ qB)∗(h) · (aeB + b) ,

(2) (qB ⊗ qB)∗
(
(a, b) · h

)
= (aeB + b) · (qB ⊗ qB)∗(h) ,

(3) (sA ⊗ sA)∗
(
h · (a, b)

)
= (sA ⊗ sA)∗(h) · a ,

(4) (sA ⊗ sA)∗
(
(a, b) · h

)
= a · (sA ⊗ sA)∗(h) .

To prove the equality (1), for (b′ ⊗ b′′ ) ∈ B⊗̂B we can write(
(qB ⊗ qB)∗

(
h · (a, b)

))
(b
′

⊗ b
′′

) =
(
h · (a, b)

)(
(qB ⊗ qB)(b

′

⊗ b
′′

)
)

=
(
h · (a, b)

)(
(0, b

′

) ⊗ (0, b
′′

)
)

= h
(
(a, b) · (0, b

′

) ⊗ (0, b
′′

)
)

= h
(
(0, ab

′

+ bb
′

) ⊗ (0, b
′′

)
)

= h
(
(0, aeBb

′

+ bb
′

) ⊗ (0, b
′′

)
)

= h
(
(0, (aeB + b) · b

′

) ⊗ (0, b
′′

)
)

= h
(
(qB ⊗ qB)

(
(aeB + b)b

′

⊗ b
′′
))

=
(
(qB ⊗ qB)∗(h)

)(
(aeB + b)(b

′

⊗ b
′′

)
)

=
(
(qB ⊗ qB)∗(h) · (aeB + b)

)
(b
′

⊗ b
′′

) .

This proves the identity (1). Similarly, we can prove the identity in (2). To investigate the equality (3), for
(a′ ⊗ a′′ ) ∈ A⊗̂A we can write(

(sA ⊗ sA)∗
(
h · (a, b)

))
(a
′

⊗ a”) =
(
h · (a, b)

)(
(sA ⊗ sA)(a

′

⊗ a
′′

)
)

=
(
h · (a, b)

)(
(a
′

,−a
′

eB) ⊗ (a
′′

,−a
′′

eB)
)

= h
(
(a, b) · (a

′

,−a
′

eB) ⊗ (a
′′

,−a
′′

eB)
)

= h
(
(aa

′

,−aa
′

eB + ba
′

− ba
′

eB) ⊗ (a
′′

,−a
′′

eB)
)

= h
(
(aa

′

,−aa
′

eB) ⊗ (a
′′

,−a
′′

eB)
)

= h
(
(sA ⊗ sA)(aa

′

⊗ a
′′

)
)

=
(
(sA ⊗ sA)∗(h)

)(
a · (a

′

⊗ a
′′

)
)

=
((

(sA ⊗ sA)∗(h)
)
· a

)
(a
′

⊗ a
′′

) ,

this proves the identity in (3), and similarly one can proves the identity in (4). Now, using the identities
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(1-4) we have

λL

(
h · (a, b)

)
=

((
λAo(sA ⊗ sA)∗

)(
h · (a, b)

)
+

(
ϕ∗oλBo(qB ⊗ qB)∗

)(
h · (a, b)

)
,

(
λBo(qB ⊗ qB)∗

)(
h · (a, b)

))
=

(
λA

(
(sA ⊗ sA)∗(h) · a

)
+

(
ϕ∗oλB

)(
(qB ⊗ qB)∗(h) · (aeB + b)

)
, λB

(
(qB ⊗ qB)∗(h) · (aeB + b)

))
=

(
λA

(
(sA ⊗ sA)∗(h)

)
· a +

(
ϕ∗oλB

)(
(qB ⊗ qB)∗(h) · aeB

)
+

(
ϕ∗oλB)

(
(qB ⊗ qB)∗(h) · b

)
, λB

(
(qB ⊗ qB)∗(h) · aeB

)
+ λB

(
(qB ⊗ qB)∗(h) · b

))
=

((
λAo(sA ⊗ sA)∗(h) · a +

(
λB

(
(qB ⊗ qB)∗(h) · aeB

))
oϕ

+
(
λBo(qB ⊗ qB)∗(h)

)
· b

)
oϕ

,
(
λBo(qB ⊗ qB)∗(h)

)
· aeB +

(
λBo(qB ⊗ qB)∗(h)

)
· b

)
=

((
λAo(sA ⊗ sA)∗(h) · a +

(
ϕ∗

(
λBo(qB ⊗ qB)∗(h)

))
· a

+
((
λBo(qB ⊗ qB)∗(h)

)
· b

)
oϕ

,
(
λBo(qB ⊗ qB)∗(h)

)
· aeB +

(
λBo(qB ⊗ qB)∗(h)

)
· b

)
=

((
(λAo(sA ⊗ sA)∗

)
(h) +

(
ϕ∗oλBo(qB ⊗ qB)∗

)
(h)

, (λBo(qB ⊗ qB)∗
)
(h)

)
· (a, b)

= λL(h) · (a, b) ,

this shows that λL is right−L−module map, where we have used the fact that(
1 ·aeB

)
oϕ =

(
ϕ∗(1)

)
·a, for 1 ∈ B∗ and a ∈ A. With similar arguments, we can obtain that λL is left−L−module

map, and consequently λL is bounded L−bimodule map. Finally, by using the following identities, in proof
of the theorem (3.2)

πLo(sA ⊗ sA) = sAoπA ,

πLo(qB ⊗ qB) = qBoπB ,

and for ( f , 1) ∈ L∗ we have

(λLoπ∗L)( f , 1) = λL(π∗L( f , 1))

=
(
(λAo(sA ⊗ sA)∗oπ∗L)( f , 1) + (ϕ∗oλBo(qB ⊗ qB)∗oπ∗L)( f , 1)

, (λBo(qB ⊗ qB)∗oπ∗L)( f , 1)
)

=
(
(λAoπ∗Aos∗A)( f , 1) + (ϕ∗oλBoπ∗Boq∗B)( f , 1), (λBoπ∗Boq∗B)( f , 1)

)
=

(
s∗A( f , 1) + (ϕ∗oq∗B)( f , 1), q∗B( f , 1)

)
= ( f , 1) ,

this proves that λLoπ∗L = idL∗ , and the proof is completed.

5. Examples

This section includes some illustrative examples.
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Example 5.1. Let L = A×θ B be the θ−Lau product of Banach algebras A and B with θ ∈ ∆(A). If B is unital
with unit eB such that eBa = aeB for all a ∈ A, then A ×θ B is biprojective [biflat] if and only if A and B are
biprojective [biflat].

Example 5.2. Let L = A×T B be the T−Lau product of Banach algebras A and B with algebra homomorphism
T : A → B (||T|| ≤ 1). If B is unital with unit eB, then for all a ∈ A we have eBT(a) = T(a)eB = T(a). Hence
A ×T B is biprojective [biflat] if and only if A and B are biprojective [biflat].

Example 5.3. Let L = A Zθ I be the amalgamation of Banach algebras A and B along the closed ideal I
in B, with respect to continuous Banach algebra homomorphism θ : A → B. If I has unit eI such that
θ(a)eI = eIθ(a), for all a ∈ A, then A Zθ I is biprojective [biflat] if and only if A and I are biprojective [biflat].

Example 5.4. Let G be a locally compact group and let L1(G) and M(G) be its group algebra and measure
algebra, respectively. It is known that L1(G) is unital if and only if G is descrete, and L1(G) is biprojective if
and only if G is compact [4, 12]. Also, L1(G) is biflat if and only if G is amenable [4]. Therefore we have the
following results

i) If L1(G) Z L1(G) is biprojective, then G is compact.
ii) If L1(G) Z L1(G) is biflat, then G is amenable.

iii) If G is descrete group, then l1(G) Z l1(G) is biprojective if and only if G is finite, and l1(G) Z l1(G) is
biflat if and only if G is amenable.

iv) M(G) Z M(G) is biprojective [biflat] if and only if M(G) is biprojrctive [biflat].
v) If M(G) Z L1(G) is biprojective [biflat], then M(G) is biprojective [biflat].

vi) Suppose that G be descrete, and A be a Banach algebra, such that l1(G) be an algebraic Banach
A−bimodule.
If A Z l1(G) is biprojective, then l1(G) and A are biprojective, and G is finite.
If A Z l1(G) is biflat, then l1(G) and A are biflat, and G is amenable.
If G is finite and A is biprojective, then A Z l1(G) is biprojective.
If G is amenable and A is biflat, then A Z l1(G) is biflat.

vii) If C0(G) Z M(G) is biprojective [biflat], then C0(G) and M(G) are biprojective [biflat].
viii) If G is finite, then C0(G) and C0(G) Z M(G) are biprojective.

Example 5.5. Let A′′

be the second dual of a Banach algebra A with first Arens
product �. Then A′′

can be an A−bimodule by aF =: â�F and Fa =: F�â, for all a ∈ A and F ∈ A′′

,
and with natural embeding of A into A′′

(a 7→ â). Also it is known that if A is Arens regular, then A′′

is
unital if and only if A has bounded approximate identity, [3]. By theorems (3.1) and (4.1), if L = A Z A′′

is biprojective [biflat], then A is biprojective [biflat]. Also we can apply part (ii) of theorems (3.1) and (4.1)
and theorems (3.2) and (4.2) for Arens regular Banach algebras A with bounded approximate identity and
for L = A Z A′′

.

On the other hand, by using the results in [8], if A is Arens regular with bounded opproximate identity,
then L = A Z A′′

is biflat if and only if A′′

is biflat. Besides if A C A′′

, then L = A Z A′′

is biprojective if and
only if A′′

is biprojective.
One can use this example for a c∗−algebra, which is Arens regular and has bounded approximate identity.
Also, for A = L1(G), in which G is compact, we will have L1(G) C L1(G)

′′

.
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