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Abstract. In this study, we introduce a new class of pseudo f -structure, called hyperbolic f -structure.
We give some classifications of this new structure. Further, we extend the notion of

(
κ, µ, ν

)
-nullity

distribution to hyperbolic almost Kenmotsu f -manifolds. Finally, we construct some non-trivial examples
of such manifolds.

1. Introduction

The notion of f -structure was introduced which satisfies

f 3 + f = 0 (1)

by Yano in 1961 [14]. This is a generalization of some structure defined on different type differentiable
manifolds. Almost complex structure J and almost contact structure

(
ϕ, ξ, η

)
are well-known f -structure.

By virtue of the definitions of these structures, it is clear that they satisfies (1). While almost complex
structure was defined by Weil in 1947 [13] as almost contact structure was introduced by Sasaki in 1960 [11].
Later, many author continued to study on f -structure. Goldberg and Yano defined and studied globally
framed metric f -structure on (2n + s)-dimensional differentiable manifolds [6]. A globally framed metric
f -structure is a generalization of an almost complex structure and an almost contact structure if s = 0 and
s = 1, respectively, where s denotes the dimension of orthogonal distribution on globally framed metric
f -manifolds. Then, Blair gave some classes of globally framed metric f -manifolds in 1970 [3]. Recently,
Falcitelli and Pastore defined almost Kenmotsu f -manifold in [5] and Öztürk et al. introduced almost
α-cosymplectic f -manifold in [8], which are new classes of globally framed metric f -manifolds.

In a similar way, Matsumoto introduced a pseudo f -structure satisfying

f 3
− f = 0 (2)

which generalizes some different types of structures [7]. Many authors focused on this structure and made
some different classifications (for instance, see [9], [10], [12]).
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By motivated these studies, in this paper first, we give some fundamental notations and we compute
the normality condition of hyperbolic metric f -structure. Then we prove the existence of hyperbolic
metric f -structure on a special hrpersurface of a pseudo almost complex manifold. Next, we focus on
a special class of this new structure of Kenmotsu type. Then we compute some Riemannian curvature
properties of hyperbolic almost Kenmotsu f -manifolds. Also, we obtain some conditions for hyperbolic
almost Kenmotsu f -manifolds to be flat. Moreover, we extend the notion of

(
κ, µ, ν

)
-nullity distribution to

hyperbolic almost Kenmotsu f -manifolds and we get its sectional curvature as 1 contrary to Kenmotsu case.
Finally, we construct some non-trivial examples satisfying characteristic equations of this new structure.

2. Globally Framed Hyperbolic Metric f -Structure

Let M be a (2n + s)-dimensional manifold and ϕ is a non-null (1, 1) tensor field on M. If ϕ satisfies

ϕ3
− ϕ = 0, (3)

then ϕ is called a pseudo f -structure and M is called f -manifold. If rankϕ = 2n, namely s = 0, ϕ is called
almost pseudo complex structure and if rankϕ = 2n + 1, namely s = 1, then ϕ reduces an almost pseudo
contact structure. rankϕ is always constant [7].

On an pseudo f -manifold M, P1 and P2 operators are defined by

P1 = ϕ2, P2 = −ϕ2 + I, (4)

which satisfy

P1 + P2 = I, P2
1 = P1, P2

2 = P2, ϕP1 = P1ϕ = ϕ, P2ϕ = ϕP2 = 0. (5)

These properties show that P1 and P2 are complementary projection operators. There are D and D⊥

distributions with respect to P1 and P2 operators, respectively. Also, dim (D) = 2n and dim (D⊥) = s [1].
Now, we give the definition of hyperbolic metric f -structure.

Definition 2.1. Let M be a (2n + s)-dimensional f -manifold and ϕ is a (1, 1) tensor field, ξi is vector field and ηi is
1-form for each 1 ≤ i ≤ s on M, respectively. If

(
ϕ, ξi, ηi

)
satisfy

η j (ξi) = −δ j
i , (6)

ϕ2 = I +

s∑
i=1

ηi
⊗ ξi, (7)

then
(
ϕ, ξi, ηi

)
is called globally framed hyperbolic f -structure or simply framed hyperbolic f -structure and M is

called globally framed hyperbolic f -manifold or simply framed hyperbolic f -manifold.

For a framed hyperbolic f -manifold M, the following properties are satisfied :

ϕξi = 0, (8)

ηi
◦ ϕ = 0. (9)

Definition 2.2. If on a framed hyperbolic f -manifold M, there exists a Riemannian metric which satisfies

ηi (X) = 1 (X, ξi) , (10)



Y.S. Balkan et al. / Filomat 32:17 (2018), 5919–5929 5921

and

1
(
ϕX, ϕY

)
= −1 (X, Y) −

s∑
i=1

ηi (X) ηi (Y) , (11)

for all vector fields X, Y on M, then M is called framed hyperbolic metric f -manifold. On a framed hyperbolic metric
f -manifold, fundamental 2-form Φ defined by

Φ (X, Y) = 1
(
X, ϕY

)
, (12)

for all vector fields X, Y ∈ χ (M).

On a globally framed hyperbolic metric f -manifold the (1 1) tensor field ϕ is anti-symmetric, that is

1
(
X, ϕY

)
= −1

(
ϕX, Y

)
. (13)

Now, we compute the normality condition for globally framed hyperbolic metric f -manifolds. In a
similar way of previous studies for globally framed metric f -manifold, after easy calculations then we have
four tensors N(1) N(2), N(3) and N(4) defined by

N(1) (X, Y) =
[
ϕ, ϕ

]
(X, Y) + 2

s∑
k=1

dηk (X, Y) ξk, N(2) (X, Y) =

s∑
k=1

{(
LϕXη

k
)

(Y) −
(
LϕYη

k
)

(X)
}
,

N(3) (X) =

s∑
k=1

(
Lξkϕ

)
X, N(4) (X) =

s∑
k=1

(
Lξkη

k
)

X,

where
(
LϕXηk

)
(Y) = ϕXηk (Y) − ηk ([ϕX, Y

])
for each 1 ≤ k ≤ s. A globally framed hyperbolic metric f -

manifold is normal if and only if these four tensors vanish. But we see that the vanishing of N(1) implies
the vanishing of the other tensors. Thus the normality condition for globally framed hyperbolic metric
f -manifold is

[
ϕ, ϕ

]
(X, Y) + 2

s∑
k=1

dηk (X, Y) ξk = 0. (14)

For a globally framed hyperbolic metric f -structure
(
ϕ, ξi, ηi, 1

)
the covariant derivative of ϕ is given by

21
((
∇Xϕ

)
Y, Z

)
= 3dΦ

(
X, ϕY, ϕZ

)
− 3dΦ (X, Y, Z) − 1

(
N(1) (Y, Z) , ϕX

)
−N(2) (Y, Z)

s∑
k=1

ηk (X)

− 2
s∑

k=1

dηk (ϕY, X
)
ηk (Z) + 2

s∑
k=1

dηk (ϕZ, X
)
ηk (X) . (15)

Now, we define a (1, 1) tensor field hi for each 1 ≤ i ≤ s which plays an important role on the normality of
a globally framed hyperbolic f -manifold as follows

hi =
1
2
Lξiϕ =

1
2

N(3), (16)

where L denotes the Lie differentiation. If for each 1 ≤ i ≤ s, h′i s vanish identically zero, then the globally
framed hyperbolic f -manifold is normal.

Proposition 2.3. The tensor field hi for each 1 ≤ i ≤ s is a symmetric operator and satisfies
(i) hiξ j = 0,

(ii) hi ◦ ϕ = −ϕ ◦ hi,
(iii) trhi = 0,
(iv) trϕhi = 0.

Proof. The proof can be easily derived in a similar way of [3], thus we omit it.
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3. Existence of Globally Framed Hyperbolic Metric f -Structure

Let
(
N, J, 1

)
be a pseudo Kähler manifold and let M be a hypersurface of N with dimension 2n + s. It is

well-known that the almost complex structure J on N satisfies

J2 = I, (17)

where I denotes the identity map. Furthermore, since M is a hypersurface of N, we have

JX = ϕX +

s∑
k=1

ηk (X) N, N = −

s∑
k=1

J (ξk) , (18)

for any vector field X on M. Now, by applying ϕ on both sides of (18) and using (17), we obtain

ϕ2X = X +

s∑
k=1

ηk (X) ξk, (19)

which means that
(
ϕ, ξk, ηk

)
is a globally framed hyperbolic f -structure. Now for any vector fields X,Y on

M, we have

1 (JX, JY) = 1

ϕX +

s∑
k=1

ηk (X) N, ϕY +

s∑
k=1

ηk (Y) N

 . (20)

By using (17) in (20) and since N is an orthonormal vector field, then we derive

−1 (X, Y) = 1
(
ϕX, ϕY

)
+

s∑
k=1

ηk (X) ηk (Y) (21)

and for any ξi, we obtain

1 (X, ξi) = ηi (X) . (22)

From (21) and (22), it is clear that
(
ϕ, ξk, ηk, 1

)
is an f -structure.

4. Hyperbolic Almost Kenmotsu f -Manifolds

Definition 4.1. Let M be a globally framed hyperbolic metric f -manifold with hyperbolic f -structure
(
ϕ, ξk, ηk, 1

)
.

If for each k = 1, . . . , s the 1-forms are closed, that is dηk = 0 and dΦ = 2η ∧Φ where η =
∑s

k=1 η
k, then M is called

hyperbolic almost Kenmotsu f -manifold. Furthermore, if M is normal then it is a hyperbolic Kenmotsu f -manifold.

Theorem 4.2. On a hyperbolic almost Kenmotsu f -manifold M the following characteristic equations hold

(
∇Xϕ

)
(Y) =

s∑
k=1

{
1
(
ϕX + hkX, Y

)
ξk − η

k (Y)
(
ϕX + hkX

)}
, (23)

∇Xξi = ϕ2X + ϕhiX, (24)(
∇ξiϕ

)
X = 0 (25)

and

∇ξiξ j = 0 (26)

for any X, Y on M.
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Proof. By using (16) in (15) and since M is a hyperbolic almost Kenmotsu f -manifold, then we get (23). For
the second part, by taking Y = ξi and using (7), it yields the desired result. (25) and (26) can be easily seen
from (23) and (25), respectively.

Lemma 4.3. Let M be a hyperbolic almost Kenmotsu f -manifold. Then for each i, j, k ∈ {1, . . . , s}, we have(
∇ξi h j

)
X = ϕR (ξi, X) ξ j − ϕX −

(
hi + h j

)
X +

(
ϕ ◦ hi ◦ h j

)
X, (27)

(
∇ξi hi

)
X = ϕR (ξi, X) ξi − ϕX − 2hiX +

(
ϕ ◦ h2

i

)
X, (28)

ϕR
(
ξi, ϕX

)
ξ j + R (ξi, X) ξ j = 2

(
ϕ2
− hi ◦ h j

)
X, (29)

ϕR
(
ξi, ϕX

)
ξi + R (ξi, X) ξi = 2

(
ϕ2
− h2

i

)
X, (30)

ηk
(
R (ξi, X) ξ j

)
= 0, (31)

R (ξi, ξk) ξ j = 0, (32)

for any vector field X on M.

Proof. For any vector field X on M, we have

R (ξi, X) ξ j = ∇ξi∇Xξ j − ∇X∇ξiξ j − ∇[ξi, X]ξ j. (33)

By using (24) and (26) in (33), we derive

R (ξi, X) ξ j = ϕ
((
∇ξi h j

)
X
)

+ ϕ2X +
(
ϕ ◦ hi

)
X +

(
ϕ ◦ h j

)
X −

(
hi ◦ h j

)
X. (34)

Applying ϕ on both sides of (34) and by virtue of (3), we find (27) and considering i = j in (27) we get (28).
Applying ϕ both sides of (34) and replacing X by ϕX in (34), we obtain

ϕR
(
ξi, ϕX

)
ξ j = −ϕ

((
∇ξi h j

)
X
)

+ ϕ2X −
(
ϕ ◦ hi

)
X −

(
ϕ ◦ h j

)
X −

(
hi ◦ h j

)
X. (35)

By taking summation (34) and (35) side by side, we get (29). From (29) we have (30). The last two identities
of the lemma are clear.

Corollary 4.4. If a hyperbolic almost Kenmotsu f -manifold is flat then we have

hi ◦ h j = ϕ2

for each i, j ∈ {1, . . . , s} .

Corollary 4.5. For a hyperbolic almost Kenmotsu f -manifold, if R (ξi, X) ξi = 0 for i ∈ {1, . . . , s} and X ∈ Γ (D),
then it follows that

h2
i = ϕ2.
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Lemma 4.6. Let M be a hyperbolic almost Kenmotsu f -manifold. Then the Riemannian curvature satisfies

1 (R (ξi, X) Y, Z) =

s∑
k=1

ηk (Y) 1
(
ϕ2Z +

(
ϕ ◦ hk

)
Z, X

)
−

s∑
k=1

ηk (Z) 1
(
ϕ2Y +

(
ϕ ◦ hk

)2 Y, X
)

+ 1
((
∇Y

(
ϕ ◦ hi

))
Z −

(
∇Z

(
ϕ ◦ hi

))
Y, X

)
(36)

and

1 (R (ξi, X) Y, Z) + 1
(
R (ξi, X)ϕY, ϕZ

)
− 1

(
R

(
ξi, ϕX

)
Y, ϕZ

)
− 1

(
R

(
ξi, ϕX

)
ϕY, Z

)
= 2

s∑
j=1

{
η j (Z) 1

(
hiX + ϕX, ϕY

)
− η j (Y) 1

(
hiX + ϕX, ϕZ

)}
(37)

for any X, Y, Z ∈ Γ (TM)

Proof. For any X, Y, Z ∈ Γ (TM) we have

1 (R (ξi, X) Y, Z) = 1 (R (Y, Z) ξi, X) = ∇Y∇Zξi − ∇Z∇Yξi − ∇[Y, Z]ξi. (38)

By using (24) in (38), we find (36). For the second part of the lemma, let us introduce the operators A and
Bi, i ∈ {1, ..., s} defined by

A(X, Y, Z) := 2
s∑

j=1

{
η j (Z) 1

(
ϕX, ϕY

)
− η j (Y) 1

(
ϕX, ϕZ

)}
(39)

and

Bi(X, Y, Z) := − 1
(
ϕX,

(
∇Y

(
ϕ ◦ hi

))
ϕZ

)
− 1

(
ϕX,

(
∇ϕY

(
ϕ ◦ hi

))
Z
)

+ 1
(
X,

(
∇Y

(
ϕ ◦ hi

))
Z
)

+ 1
(
X,

(
∇ϕY

(
ϕ ◦ hi

))
ϕZ

)
(40)

for each X, Y, Z ∈ Γ (TM). By a direct computation and using (36) we obtain that the left hand side of (37)
is equal to A(X, Y, Z) + Bi(X, Y, Z) − Bi(X, Z, Y). Since

η j

((
∇ϕYhi

)
Z
)

= η j

(
∇ϕY (hiZ)

)
we can write

Bi(X,Y,Z) = 1
(
X, ∇Y

((
ϕ ◦ hi

)
Z
))
− 1

(
X,

(
ϕ ◦ hi

)
∇YZ

)
+ 1

(
X, ∇ϕY

((
ϕ ◦ hi ◦ ϕ

)
Z
))

− 1
(
X,

(
ϕ ◦ hi

) (
∇ϕYϕZ

))
− 1

(
ϕX, ∇Y

((
ϕ ◦ hi ◦ ϕ

)
Z
))

+ 1
(
ϕX,

(
ϕ ◦ hi

) (
∇YϕZ

))
− 1

(
ϕX, ∇ϕY

((
ϕ ◦ hi

)
Z
))

+ 1
(
ϕX,

(
ϕ ◦ hi

) (
∇ϕYZ

))
= 1

(
X,

(
∇Yϕ

)
hiZ

)
− 1

(
X, hi

((
∇Yϕ

)
Z
))

+ 1
(
X,

(
hi ◦ ϕ

) ((
∇ϕYϕ

)
Z
))

+ 1
(
X, ϕ

((
∇ϕYϕ

)
hiZ

))
+

s∑
k=1

ηk
((
∇ϕYhi

)
Z
)
ηk (X) . (41)

Moreover, from (23), (24) and Proposition 2.3 it follows that

(
ϕ ◦

(
∇ϕXϕ

))
Y =

(
∇ϕXϕ

2
)

Y −
(
∇ϕXϕ

) (
ϕY

)
=

s∑
j=1

((
∇ϕXη j

)
Yξ j

)
+

s∑
j=1

(
η j (Y)∇ϕXξ j

)
or
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−

(
∇ϕXϕ

) (
ϕY

)
=

s∑
j=1

∇ϕX

(
1
(
ξ j, Y

))
ξ − 1

(
∇ϕXY, ξ j

)
ξ j) +

s∑
j=1

η j (Y)
(
ϕX − h jX

)
−

s∑
j=1

{
η j (Y)

[
h jX + ϕX

]
− 21

(
X, ϕY

)
ξ j

}
−

(
∇Xϕ

)
Y.

Hence, we find

(
ϕ ◦

(
∇ϕXϕ

))
Y = −3

s∑
j=1

1
(
X, ϕY

)
ξ j +

s∑
j=1

1
(
Y, h jX

)
ξ j + 2

s∑
j=1

η j (Y)ϕX −
(
∇Xϕ

)
Y.

Taking into account of (23), then for each i, j ∈ {1, · · · , s}we have

ηi

((
∇ϕYh j

)
Z
)

= ηi

(
∇ϕY

(
h jZ

))
=

(
∇ϕYηi

) (
h jZ

)
= −1

(
h jZ, ∇ϕYξi

)
= 1

(
h jZ, − hiY + ϕY

)
. (42)

By virtue of (41) and (42), we deduce that

Bi(X, Y, Z) = 1
(
X,

(
∇Yϕ

)
hiZ

)
− 1

(
X, hi

((
∇Yϕ

)
Z
))

+ 2
s∑

j=1

η j (Z) 1
(
hiX, ϕY

)
+ 1

(
hiX,

(
∇Yϕ

)
Z
)

− 3
s∑

j=1

η j (X) 1
(
Y, ϕhiZ

)
−

s∑
j=1

η j (X) 1
(
hiZ, h jY

)
+

s∑
j=1

η j (X) 1 (hkZ, hiY)

+

s∑
j=1

η j (X) 1
(
ϕY, h jZ

)
− 1

(
X,

(
∇Yϕ

)
hiZ

)
= 2

s∑
j=1

(
η j (Z) 1

(
hiX, ϕY

)
+ 2η j (X) 1

(
ϕY, hiZ

))
.

Therefore, we obtain

A(X, Y, Z) + Bi(X, Y, Z) − Bi(X, Z, Y) = 2
s∑

j=1

{
η j (Z) 1

(
hiX + ϕX, ϕY

)
− 2η j (Y) 1

(
hiX + ϕX, ϕZ

)}
,

which gives (37).

5. Hyperbolic Almost Kenmotsu f-Manifolds with
(
κ, µ, ν

)
-Nullity Distribution

In this section we generalize the
(
κ, µ

)
-nullity distribution introduced by Blair et al. [4] for the hyperbolic

almost Kenmotsu f-manifolds.

Definition 5.1. Let M be a hyperbolic almost Kenmotsu f -manifold and κ, µ and ν are real constants. If for each
1 ≤ i ≤ s and for any X, Y ∈ Γ (TM), the characteristic vector fields ξ′i s satisfy

R (X, Y) ξi = κ
{
η (X)ϕ2 (Y) − η (Y)ϕ2 (X)

}
+ µ

{
η (Y) hi (X) − η (X) hi (Y)

}
+ ν

{
η (Y)

(
ϕ ◦ hi

)
(X) − η (X)

(
ϕ ◦ hi

)
(Y)

}
. (43)

then M verifies the
(
κ, µ, ν

)
-nullity condition.
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Theorem 5.2. Let M be a hyperbolic almost Kenmotsu f -manifold satisfying the
(
κ, µ, ν

)
-nullity condition. For

each 1 ≤ i, j ≤ s, we have

(i) hi ◦ h j = h j ◦ hi,
(ii) κ ≤ 1,

(iii) if κ ≤ 1, then hi has eigenvalues 0 or ±
√

1 − κ.

Proof. From (43), it follows that

ϕR
(
ξi, ϕX

)
ξ j + R (ξi, X) ξ j = 2κϕ2X. (44)

By virtue of (29) and (44), we obtain(
hi ◦ h j

)
X = (1 − κ)ϕ2X =

(
h j ◦ hi

)
X (45)

which implies (i) . Taking into account of (45), for any X ∈ Γ (D) , where D is
(
κ, µ, ν

)
-nullity distribution.

Then, we derive

h2
i X = (1 − κ) X (46)

In view of Proposition 2.3 and (46), it is clear that the eigenvalues of h2
i are 0 or (1 − κ) . Furthermore, hi

is symmetric and ‖hi (X)‖2 = (1 − κ) ‖X‖2 . Thus κ ≤ 1. Additionally, let t be a real eigenvalue of hi and let
X be eigenvector corresponding to t. Then it follows that t2

‖X‖2 = (1 − κ) ‖X‖2 and t = ±
√

1 − κ. From
Proposition 2.3 and the above fact, we arrive at (iii) .

Theorem 5.3. Let M be a hyperbolic almost Kenmotsu f -manifold satisfying the
(
κ, µ, ν

)
-nullity condition. Then

the following holds

h1 = . . . = hs. (47)

Proof. If κ = 1, then by virtue of (46), we have h1 = . . . = hs = 0. Now we assume that κ ≤ 1. For any p ∈ M
and 1 ≤ i ≤ s, we can write

Dp = (D+)p ⊕ (D−)p ,

where (D+)p is the eigenspace of hi corresponding p to the eigenvalue λ =
√

1 − κ and (D−)p denotes the
eigenspace of hi corresponding p to the eigenvalue −λ. If X ∈ Dp, we have

X = X+ + X−,

where X+ and X− denote the components of X in the eigenspaces (D+)p and (D−)p, respectively. Hence we
deduce

hi (X) = λ (X+ + X−) .

On the other hand, for i , j

h j (X) = h j (X+ + X−) = h j

( 1
λ

hi (X+) −
1
λ

hi (X−)
)

=
1
λ

(
hi ◦ h j

)
(X+ + X−) = λ (X+ + X−) = hi (X)

which implies (47).

Corollary 5.4. Let M be a hyperbolic Kenmotsu f -manifold satisfying the
(
κ, µ, ν

)
-nullity condition. Then its

sectional curvature κ = 1. In other words, Kenmotsu f -manifold is a manifold of positive curvature.
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Remark 5.5. Throughout this paper whenever (43), we put h = h1 = . . . = hs and therefore (43) takes the
form

R (X, Y) ξi = κ
{
η (X)ϕ2 (Y) − η (Y)ϕ2 (X)

}
+ µ

{
η (Y) h (X) − η (X) h (Y)

}
+ ν

{
η (Y)

(
ϕ ◦ h

)
(X) − η (X)

(
ϕ ◦ h

)
(Y)

}
. (48)

By using (48) and the symmetric properties of the curvature tensor, ϕ2 and h, we conclude that

R (ξi, X) Y = κ
{
η (Y)ϕ2X − 1

(
X, ϕ2Y

)
ξ
}

+ µ
{
1 (hX, Y) ξ − η (Y) hX

}
+ ν

{
1
((
ϕ ◦ h

)
X, Y

)
ξ − η (Y)

(
ϕ ◦ h

)
X
}

(49)

where ξ =
∑s

k=1 ξk.

Remark 5.6. Let M be a hyperbolic almost Kenmotsu f -manifold satisfying the
(
κ, µ, ν

)
-nullity condi-

tion. Let us denote by D+ and D− the n-dimensional distributions of the eigenspaces of λ =
√

1 − κ and
−λ, respectively. We can easily see that D+ and D− are mutually orthogonal. Furthermore, since ϕ anti-
commuts with h, we derive ϕ (D+) = D− and ϕ (D−) = D+. In other words, D+ is a Legendrian distribution
and D− is the conjugate Legendrian distribution of D+.

Proposition 5.7. Let M be a hyperbolic almost Kenmotsu f -manifold satisfying the
(
κ, µ, ν

)
-nullity condition.

Then M is a hyperbolic Kenmotsu f -manifold if and only if κ = 1.

Proof. The result follows from (46) and by virtue of the definition of (1, 1) tension field h.

Remark 5.8. Under the above proposition, we can consider a hyperbolic Kenmotsu f -manifold as a class of
(
1, µ, ν

)
-

space.

Remark 5.9. Let M be a hyperbolic almost Kenmotsu f -manifold satisfying the
(
κ, µ, ν

)
-nullity condition. Then,

we have

R (ξi, X) ξ j = κϕ2X − µhX − ν
(
ϕ ◦ h

)
X (50)

for any vector field X on M.

Proposition 5.10. Let M be a hyperbolic almost Kenmotsu f -manifold verifying the
(
κ, µ, ν

)
-nullity distribution.

Then we have

∇ξi hX = −µ
(
ϕ ◦ h

)
X − (ν + 2) hX, (51)

R
(
ξi, ϕX

)
ξ j − ϕR (ξi, X) ξ j = 2µ

(
ϕ ◦ h

)
X + 2νhX, (52)

R
(
ξi, ϕX

)
ξ j + ϕR (ξi, X) ξ j = 2κϕX, (53)

Qξi = 2nκξ. (54)

Proof. From (28) and (50), we get (51). By using (50), we derive (52) and (53). The last part can be proved
in a similar fashion of [2].
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6. Examples

In this section, we construct non-trivial examples of hyperbolic Kenmotsu f -manifolds.

Example 6.1. Let N be a 6-dimensional pseudo Kähler manifold and let V be a 2-dimensional non-
degenerate vector space with the signature (−, −) . Denoting f the positive differentiable function, let
us consider the warped product M = N × f V with the warping function f . Since N is a pseudo Kähler
manifold, M satisfies (8)-(11), (23) and (24). Then we find a (6 + 2)-dimensional hyperbolic Kenmotsu
f -manifold.

Example 6.2. Let us consider (4 + 2)-dimensional manifold M = {
(
x1, x2, y1, y2, z1, z2

)
:

(x1, x2, y1, y2, z1, z2) , (0, 0, 0, 0, 0, 0)}, where
(
x1, x2, y1, y2, z1, z2

)
are the standart coordinates in R6.

The vector fields

e1 = z1
∂
∂x1

, e2 = z2
∂
∂x2

, e3 = −z1
∂
∂y1

,

e4 = −z2
∂
∂y2

, e5 = −z1
∂
∂z1

e6 = −z2
∂
∂z2

,

are linearly independent at each point of M. Let 1 be the nondegenerate semi-Riemannian metric defined
by

1
(
ei, e j

)
= 0, i, j = 1, 2, 3, 4, 5, 6; i , j

1 (ek, ek) = 1, k = 1, 2, 3, 4
1 (el, el) = −1, l = 5, 6

Let η1 and η2 be 1 forms defined by η1 (Z) = 1 (Z, e5) and η2 (Z) = 1 (Z, e6) for each vector field Z ∈ χ (M) .
Let ϕ be the (1, 1) tensor field defined by

ϕe1 = −e3, ϕe2 = −e4, ϕe5 = 0, ϕe6 = 0.

By using the linearity of ϕ and 1, we obtain

η1 (e5) = −1, η2 (e6) = −1, ϕ2Z = Z + η1 (Z) e5 + η2 (Z) e6

1
(
ϕZ, ϕW

)
= −1 (Z, W) −

{
η1 (Z) η1 (W) + η2 (Z) η2 (W)

}
for any Z, W ∈ χ (M) . Thus

(
ϕ, ξi, ηi, 1

)
defines a globally framed hyperbolic f -structure on M. Let ∇ be

the Levi-Civita connection with respect to the metric 1. Then we have

[e1, e3] = [e2, e4] = 0, [e1, e5] = e1, [e1, e4] = 0,
[e2, e6] = e2, [e2, e5] = 0, [e4, e6] = e4, [e5, e6] = 0,
[e3, e5] = e3, [e2, e3] = 0, [e1, e6] = [e1, e2] = 0,
[e3, e4] = 0, [e4, e5] = 0, [e3, e6] = 0.

By using the Koszul’s formula, we deduce

∇Xξi = ϕ2X, i = 1, 2

for any X on M, which implies that M is a hyperbolic Kenmotsu f -manifold.
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