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Abstract. In this paper, we propose a new transformation of circular random variables based on circular
distribution functions, which we shall call inverse distribution function (id f ) transformation. We show that
Möbius transformation is a special case of our id f transformation. Very general results are provided for the
properties of the proposed family of id f transformations, including their trigonometric moments, maximum
entropy, random variate generation, finite mixture and modality properties. In particular, we shall focus
our attention on a subfamily of the general family when id f transformation is based on the cardioid circular
distribution function. Modality and shape properties are investigated for this subfamily. In addition, we
obtain further statistical properties for the resulting distribution by applying the id f transformation to a
random variable following a von Mises distribution. In fact, we shall introduce the Cardioid-von Mises
(CvM) distribution and estimate its parameters by the maximum likelihood method. Finally, an application
of CvM family and its inferential methods are illustrated using a real data set containing times of gun crimes
in Pittsburgh, Pennsylvania.

1. Introduction

There are various general methods that can be used to produce circular distributions. One popular
way is based on families defined on the real line, i.e., linear distributions such as normal, Cauchy and
etc. Examples of such methods are the projection (or offsetting), conditioning, wrapping and (inverse)
stereographic projection (see Mardia and Jupp [16] and Jammalamadaka and SenGupta [10] for more
details).

Other methods of obtaining circular models are based on circular families. A first general method
of this type is perturbation. In this approach, the density of an existing circular density is multiplied
by some function chosen to ensure that their product is also a circular density; e.g., cardioid density is
obtained by cosine perturbation of the continuous circular uniform density. Extending this idea, Umbach
and Jammalamadaka [22] adapted the perturbation approach of Azzalini [5] to the circular context. One
of the special cases of this general approach is the sine-skewed family of distributions studied by Abe
and Pewsey [1]. Also, Abe and Pewsey [2] using duplication and cosine perturbation proposed models
with two diametrically opposed modes. A second method is to apply transformation of argument to some
existing density, f (θ), replacing its argument θ by some function of θ. This method was first applied by
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Email addresses: m.hatami.v@gmail.com (Hatami Mojtaba), alamatho@sci.ui.ac.ir (Alamatsaz Mohammad Hossein)



H. Mojtaba, A. M. Hossein / Filomat 32:17 (2018), 5931–5947 5932

Papakonstantinou [17] and Batschelet [6] and was studied further by Abe et al. [4], Pewsey et al.[19] and
Jones and Pewsey [11]. General properties of distributions derived using two particular forms of change of
argument are given in Abe et al. [3]. A further type of transformation that can be applied to a distribution
defined on the unit circle is the so-called Möbius transformation. Kato and Jones [12] built, via a Möbius
transformation, a new four-parameter family of circular distributions.

Another method is based on non-negative trigonometric sums (NNTS) proposed by Fernández-Durán
[7]. NNTS densities are finite Fourier series constrained to be non-negative. Finally, some new circular
distributions can be derived by extensions of classic circular distributions; for instance, Gatto and Jammala-
madaka [8] and Kim and SenGupta [14] presented extensions of the von Mises distribution and also Kato
and Jones [13] proposed an extension of the wrapped Cauchy.

In this paper, we intend to introduce a new transformation of circular random variables in order to
construct new and more flexible circular models. In this method, proper choices of circular distribution
functions provide various models which can be symmetric, asymmetric and skew-symmetric. We, then,
produce a special class of distributions using cardioid distribution function. The resulting distribution can
be used to model both symmetric and asymmetric, unimodal or bimodal data with a very wide range of
skewness and kurtosis.

The paper is organized as follows. In Sec. 2, we first define our idf transformation. Then, we shall
provide very general results concerning modality and moments of the resulting new models. We shall also
present a random variate generation method and investigate maximum entropy and finite mixtures of the
proposed families of id f transformation. We also show that Möbius transformation is a special case of id f
transformation. In Sec. 3, we consider cardioid distribution function as a special case and introduce a new
class of circular distributions and provide very general results for their structural properties. In Sec. 4,
applying the new transformation, Cardioid-von Mises (CvM) circular distribution is introduced. We also
study properties and moments estimation of its symmetric Cardioid-von Mise (SCvM) subclass. Then,
inferences are made concerning parameters of certain members of the family by the maximum likelihood
method. A simulation study is also presented to assess the performance of the estimators. Application of
the proposed model is considered in Sec. 5 for the times of gun crimes in Pittsburgh, Pennsylvania data.

2. General Method

A circular distribution is usually described in terms of a circular density, which is a function f (θ) defined
on angle θ, satisfying the conditions

1. f (θ) ≥ 0 f or −∞ < θ < ∞,
2. f (θ + 2kπ) = f (θ) f or k ∈ Z,−∞ < θ < ∞,

3.
∫ π
−π

f (θ)dθ = 1.

Let F(θ) =
∫ θ
−π

f (w)dw. A circular distribution function (d.f.) is defined by F restricted on [−π, π], i.e.,

P(−π < Θ ≤ θ) = F(θ), −π ≤ θ ≤ π, (1)

and

F(θ + 2π) − F(θ) = 1, −∞ < θ < ∞. (2)

Eq. (1) is a circular analogue of the usual definition of a distribution function for a random variable (r.v.)
observed on the real line (linear r.v.). Eq. (2) is an extra condition imposed to reflect the periodicity of
a circular distribution, i.e., probability of obtaining a point on the unit circle within any arc of length 2π
radians equals 1. As we observe, the circular d.f. F defined above differs from a linear d.f. in having the
following mathematical properties:

lim
θ→−∞

F(θ) = −∞, lim
θ→∞

F(θ) = ∞ (3)
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Further, we have ∫ ψ

ω
f (θ)dθ = F(ψ) − F(ω), ω ≤ ψ ≤ ω + 2π, ω ∈ R.

By definition, F(−π) = 0, F(π) = 1 (Mardia and Jupp [16], Pewsey et al. [20]).
A method for constructing new distributions on the real line is using transformation of r.v.s, such as

Box-Cox, Yeo-Johnson, g-and-h, sinh-arcsinh transformations. Any function of linear random variable is a
linear r.v. For example, in the easiest case, let X be a continuous linear r.v. with probability density function
fX(x) and, let Y = u(X), where u is a monotone function and u−1 is continuous and differentiable. Then,

the probability density function of Y is fY(y) =
∣∣∣∣ d

dy u−1(y)
∣∣∣∣ fX(u−1(y)). But any function of a circular random

variable does not necessarily lead to a circular r.v.. In the following theorem, we present certain conditions
under which this will happen.

Theorem 2.1. Let T : R → R be a continuous function whose first derivative of T−1 is continuous and Ψ be a
continuous circular r.v.. Then, Θ = T(Ψ) has a circular distribution if

1. T : [−π, π)→ [t1, t2) such that t2 − t1 = 2π,
2. T is monotone on [−π, π],
3. T−1(θ + 2kπ) = T−1(θ) or T−1(θ + 2kπ) = 2kπ + T−1(θ), for −∞ < θ < ∞ and k ∈ Z,

Proof. The density function of the r.v. Θ = T(Ψ) is

fΘ(θ) =

∣∣∣∣∣ d
dθ

T−1(θ)
∣∣∣∣∣ fΨ(T−1(θ)).

Thus, it clearly follows that fΘ(θ+2kπ) = fΘ(θ) for k ∈ Z. Therefore, Θ = T(Ψ) has a circular distribution.

Now, consider the function T such that T−1(θ) = 2πF(θ − ξ) − π, where F is the circular d.f. associated
with circular density f and −π ≤ ξ ≤ π. Obviously, the function T satisfies conditions of Theorem 2.1.
Thus, Θ = T(Ψ) is a circular r.v..

Corollary 2.2. Suppose that the circular r.v. Ψ has density function 1(ψ), ψ ∈ [−π, π). Then, the resulting circular
density function of transformation, Θ = T(Ψ), defined above is

f ∗(θ) = 2π1(2πF(θ − ξ) − π) f (θ − ξ), θ ∈ [−π, π). (4)

For simplicity, we assume that ξ = 0 except when otherwise stated. We shall refer to the method (4) of
constructing a circular distribution as the inverse distribution function (id f ) transformation and call it a
circular F1 distribution. F, in F1, represents the circular d.f. used in the id f transformation and 1 represents
the base density function of circular r.v. Ψ.

If F in the id f transformation is the continuous circular uniform distribution function, then Θ and Ψ are
identically distributed and if Ψ is the circular uniform r.v., then Θ is a circular r.v. with d.f. F.

The id f transformation method can generally be used to obtain new skew-symmetric circular distribu-
tions from base symmetric circular distributions. It is interesting to note that our circular F1 distribution
may be viewed as the conditional distribution of Wehrly and Johnson [23]. However, here our results and
study goes beyond their arguments.

2.1. General properties of circular F1 distributions
In this section, we consider certain basic properties of any F1 distribution with density (4). Specifically,

we provide their distribution function, trigonometric moments and a random variate generation method.
We also provide a result for finite mixtures and conditions for maximum entropy of the distribution.

Clearly, the distribution function of the density (4) is given by

F∗(Θ) = p(Θ ≤ θ) = p(Ψ ≤ T−1(θ)) = G(2πF(θ) − π), (5)
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where G denotes the d.f. of 1. Trigonometric moments of f ∗ can be expressed in terms of expected values of
1. That is, we have E {h(Θ)} = E1

{
h
(
F−1

(
Ψ+π

2π

))}
where F−1(θ) = inf {u : F(u) ≥ θ}. Thus, E(h(2πF(Θ) − π)) =

E1(h(Ψ)). In particular, we have E {− cos(2πF(Θ))} = E1 {cos(Ψ)} and E {− sin(2πF(Θ))} = E1 {sin(Ψ)}.
Consider the density of a mixture p f ∗1 (θ) + (1 − p) f ∗2 (θ) of two F1 distributions with densities f ∗1 and f ∗2

in which f1 = f2 = f , where 0 ≤ p ≤ 1 is the mixing probability. Then, we have

p f ∗1 (θ) + (1 − p) f ∗2 (θ) = 2π
{
p11(2πF(θ) − π) f (θ) + (1 − p)12(2πF(θ) − π) f (θ)

}
,

= 2π
{
p11(2πF(θ) − π) + (1 − p)12(2πF(θ) − π)

}
f (θ).

Thus, the resulting mixture is also a F1 distribution where 1 is a mixture of 11 and 12.
A basic algorithm for random variate generation of a F1 distribution is immediate using the distribution

function (5): generate U from the uniform distribution and set Θ = F−1((G−1(U) + π)/2π) (mod 2π).

2.2. Maximum entropy

The concept of entropy arose in Shannon [21] when attempting to create a theoretical model for the
transmission of information. The entropy of a circular distribution with density f (θ) > 0 over[−π, π) is
given by −

∫ π
−π

lo1( f (θ)) f (θ)dθ.Distributions maximizing the entropy often have important properties. The
following theorem gives conditions for recognizing certain families of maximum entropy distributions.

Theorem 2.3. Let f and 1 be circular densities and there exist 2π-periodic functions wi(θ); i = 1, ...,n; and
e j(θ), j = 1, ...,m; and constants c1i; i = 1, ...,n; and c2 j; j = 1, ...,m; such that

a)
∫ π
−π

wi(F−1(θ))1(θ − π)dθ = c1i; i = 1, ...,n,

b)
∫ π
−π

e j(θ)1(θ − π)dθ = c2 j; j = 1, ...,m.

Then, the entropy is maximized when the circular density is of the form f ∗(θ) = 2π1(2πF(θ) − π) f (θ), where

f (θ) = e
n∑

i=1
λ1iwi(θ)

and 1(θ) = e
c0+

m∑
j=1
λ2 je j(θ)

, (6)

provided that there exist c0, λ11, λ12, ...., λ1n and λ21, λ22, ..., λ2m such that a) and b) hold.

Proof. Theorem 3.1 in Mardia [15] states that a circular distribution which maximizes the entropy subject to∫ π
−π

wi(θ) f (θ)dθ = ci, i = 1, ...,n, is of the form f (θ) = e
c0+

n∑
i=1
λiwi(θ)

. Thus, the circular density

f ∗(θ) = e
c0+

n∑
i=1
λ1iwi(θ)+

m∑
j=1
λ2 je j(F(θ))

maximizes the entropy subject to a) and b).

2.3. Möbius transformation as a special case of the id f transformation

Möbius transformation maps the unit circle onto itself. The general form of a Möbius transformation
from circle |z| = 1 to circle |z′| = 1 is given by z′ = a z+b

1+zb̄ , where |a| = 1 , |b| < 1 and b̄ is the conjugate of b.
That is, the Möbius transformation from, say, Ψ→ Θ is given by

eiΘ = eiµ eiΨ + reiν

reiΨ−iν + 1
or Θ = T(Ψ) = ν + µ + 2 arctan

[1 − r
1 + r

tan
(
Ψ − ν

2

)]
,

where 0 ≤ µ, ν < 2π and 0 ≤ r < 1. Since,

T−1(Θ) = ν + 2 arctan
[

1 + r
1 − r

tan
(
Θ − γ

2

)]
, γ = ν + µ,
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the function T satisfies conditions of Theorem 2.1 and so the corresponding density of Θ = T(Ψ) is given by

fΘ(θ) = fΨ(T−1(θ))
1 − r2

1 + r2 − 2r cos(θ − γ)
.

This is exactly equivalent to the id f transformation when we consider T−1(θ) = 2πF(θ − γ) + ν − π and F
is the circular distribution function of the wrapped Cauchy distribution. Thus, Möbius transformation is a
special case of the id f transformation.

2.4. Modality property
Since there are no restrictions in choosing F and 1 in Corollary 2.2, we can not make a general comment

on the modality of a F1 distribution. However, in the next theorem, we shall discuss the modality property
of F1 distributions under certain conditions.

Theorem 2.4. Let f and 1 be symmetric and unimodal circular densities at θ = 0 and their first derivatives exist
and are continuous. Then, f ∗(θ) = 2π1(2πF(θ) − π) f (θ) is also symmetric and unimodal at θ = 0, where F is the
d.f. of f .

Proof. f ∗ is symmetric, because

f ∗(−θ) = 2π1(2πF(−θ) − π) f (−θ)
= 2π1(2π(1 − F(θ)) − π) f (θ) = 2π1(π − 2πF(θ)) f (θ) = f ∗(θ).

Differentiating the density f ∗ with respect to θ, one obtains

f ∗
′

(θ) = 2π
{
2π f 2(θ)1′(2πF(θ) − π) + f ′(θ)1(2πF(θ) − π)

}
. (7)

Since f and 1 are symmetric and unimodal at θ = 0, they have antimodes at θ = −π. Thus, we have
f ′(0) = f ′(−π) = 0 and 1′(0) = 1′(−π) = 0. Hence, f ∗′ (θ) = 0 at θ = 0 and θ = −π. Since F(0) = 1/2, we have
F(θ) < 1/2, for −π < θ < 0, or 2πF(θ) − π < 0. Hence, 1′(2πF(θ) − π) > 0 and f ′(θ) > 0 for −π < θ < 0.
Consequently, it follows that f ∗′ (θ) > 0. Similarly, we obtain f ∗′ (θ) < 0 for 0 < θ < π. Hence, f ∗(θ) has a
mode at θ = 0 and an antimode at θ = −π. As required.

3. An Alternative Special Case

Different choices of F and 1 provide wide classes of F1 models with various structural properties.
To achieve mathematical tractability of F1 densities, we use another closed-form circular d.f. F for the id f
transformation. That is, we consider the cardioid distribution function, i.e., F(θ) = (π+θ+λ sin(θ))/2π, θ ∈
[−π, π) and λ ∈ [0, 1] as F in the id f transformation. The cardioid density function is f (θ) = 1

2π (1 +λ cos(θ)),
where θ ∈ [−π, π). Consequently, we produce a class of distributions by the id f transformation whose
densities are given by

f ∗(θ) = (1 + λ cos(θ))1(θ + λ sin(θ)), θ ∈ [−π, π). (8)

Clearly, choosing λ = 0 leads to the original distribution 1. In the following, we consider that 1(θ) is a
symmetric and unimodal circular density so that for a function 10 it can be written as 1(θ) = 10(cos(θ −
τ)), θ ∈ [−π, π), where −π ≤ τ ≤ π is a location parameter. Notice that this is not a major restriction.
Indeed, this is the case in many known circular distributions such as cardioid, power-of-cosine, wrapped
Cauchy, von Mises and Jones-Pewsey circular distributions. Thus, we obtain

f ∗(θ) = (1 + λ cos(θ))10(cos(θ + λ sin(θ) − τ)). (9)

Note that, here, −π < τ ≤ π is not a location parameter of f ∗. Detailed results are presented below for the
modality and shape properties of the circular densities (9).
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3.1. Modality
Now assume that the first derivative of 1(θ), 1′(θ), exists and is continuous so that 1′(τ) = 0. Then, 1(θ)

has a mode at θ = τ and an antimode at θ = τ − π. Clearly, the function

1λ(θ) = 1(θ + λ sin(θ)) = 10(cos(θ + λ sin(θ) − τ)) (10)

is symmetric about τ if λ = 0. Further, trivially the function

Hλ(θ) = θ + λ sin(θ) : [−π, π]→ [−π, π] (11)

is monotonically increasing for different values of λ ∈ [0, 1] (see, Fig. 1). Thus, H−1
λ (θ) is defined uniquely

and we have the following results.

Figure 1: Function Hλ(θ) for λ = 0 (solid curve); λ = 0.5 (dash−dotted curve); λ = 1 (dashed curve).

Lemma 3.1. The function (10) is unimodal with a mode at θ = H−1
λ (τ) and an antimode at θ = H−1

λ (τ − π). The
value of the function at the mode equals 1(0).

Proof. The derivative of 1(Hλ(θ)) with respect to θ is

1′λ(θ) = − sin(Hλ(θ) − τ)(1 + λ cos(θ))1′0(cos(Hλ(θ) − τ)).

Since 1(θ) is unimodal, it follows that we must have 1′0(cos(θ)) > 0,∀θ. Thus, 1′λ(θ) = 0 if either sin(Hλ(θ)−
τ) = 0 or 1+λ cos(θ) = 0. Since sin(Hλ(θ)−τ) is 0 at θ = H−1

λ (τ−π) and θ = H−1
λ (τ), it follows that 1′(Hλ(θ)) is

non-zero for all θ , H−1
λ (τ−π) and θ , H−1

λ (τ). Therefore, as 1λ(H−1
λ (τ−π)) < 1λ(H−1

λ (τ)), 1λ(θ) is unimodal
with a mode at Mλ = H−1

λ (τ) and an antimode at M∗λ = H−1
λ (τ − π). The value of the function at the mode is

1λ(Mλ) = 1(0).

Theorem 3.2. For the density (9) we have:

a) If τ = 0, then f ∗ is symmetric and unimodal at θ = 0,
b) If 0 < |τ| < π, then f ∗ is either unimodal or bimodal,
c) If τ = π, then f ∗ is symmetric and unimodal with a mode and an antimode at either θ = −π and θ = 0 or f ∗ is

symmetric and bimodal with two diametrically opposed modes.

Proof. a) When τ = 0, 1 is also symmetric and unimodal. Thus, according to Theorem 2.4, f ∗(θ) is symmetric
and unimodal at θ = 0.

b) First, we suppose 0 < τ < π. Differentiating the density (9) with respect to θ, one obtains

f ∗
′

(θ) = −λ sin(θ)10(cos(Hλ(θ) − τ)) − sin(Hλ(θ) − τ)(1 + λ cos(θ))21′0(cos(Hλ(θ) − τ)). (12)
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The number of solutions of f ∗′ (θ) = 0 equals to the points of intersection of the functions

γ(θ) = −
1′0(cos(Hλ(θ) − τ))
10(cos(Hλ(θ) − τ))

, (13)

and

k(θ) =
λsin(θ)

(1 + λcos(θ))2 sin(Hλ(θ) − τ)
.

Since 10(cos(θ)) is symmetric and unimodal with mode at θ = 0 and antimode at θ = −π, we have
1′0(cos(θ)) > 0. Since 10(y) > 0 and 1′0(y) > 0 for −1 ≤ y ≤ 1, therefore, 1′′0 (y) is always negative, always
positive or always zero for −1 ≤ y ≤ 1. Thus, 1′′0 (cos(θ)),∀θ, is always negative, always positive or always
zero. When 1′′0 (cos(θ)) > 0(< 0), 1′0(cos(θ)) is a unimodal function with mode at θ = 0(−π) and antimode at
θ = −π(0). When 1′′0 (cos(θ)) = 0, 1′0(cos(θ)) is a constant function. Thus, by lemma 3.1, 1′0(cos(Hλ(θ) − τ))
has a mode at θ∗1 = H−1

λ (τ − π) or θ∗2 = H−1
λ (τ). Consequently, function γ(θ) has a mode and an antimode at

either θ∗1 or θ∗2 and it is negative. k(θ) has two vertical asymptotes at θ∗1 and θ∗2, i.e.,

lim
θ→θ∗+2

k(θ) = lim
θ→θ∗+1

k(θ) = +∞,

lim
θ→θ∗−2

k(θ) = lim
θ→θ∗−1

k(θ) = −∞.

Also, k(θ) < 0 for θ ∈ (−π, θ∗1) ∪ (0, θ∗2) and k(θ) > 0 for θ ∈ (θ∗1, 0) ∪ (θ∗2, π). Since γ(θ) < 0, it is sufficient to
find the points of intersection k(θ) and γ(θ) in the interval (−π, θ∗2). To do this, we need to find extremum
points of k(θ) in (−π, θ∗2).

The number of roots of k′(θ) = 0 equals to the number of solutions of

−
λcos(θ)2

−cos(θ) − 2λ

sin(θ)(1 + λcos(θ))2 =
cos(Hλ(θ) − τ)
sin(Hλ(θ) − τ)

.

But, cot(Hλ(θ) − τ) is zero at z1 = H−1(τ − π/2) and z2 = H−1(τ + π/2) and has two vertical asymptotes at θ∗1
and θ∗2, i.e.,

lim
θ→θ∗−2

cot(Hλ(θ) − τ) = lim
θ→θ∗+1

cot(Hλ(θ) − τ) = +∞,

lim
θ→θ∗+2

cot(Hλ(θ) − τ) = lim
θ→θ∗−1

cot(Hλ(θ) − τ) = −∞.

On the other hand, function

ϕ(θ) = −
λcos(θ)2

−cos(θ) − 2λ

sin(θ)(1 + λcos(θ))2 ,

has two real roots at θ1 = −π + arccos
(
−1+
√

8λ2+1
2λ

)
and θ2 = −θ1 ∈ [π/2, π]. Also, ϕ(θ) has three vertical

asymptotes at −π, 0 and π, i.e.,

lim
θ→0−

ϕ(θ) = lim
θ→π−

ϕ(θ) = −∞,

lim
θ→0+

ϕ(θ) = lim
θ→−π+

ϕ(θ) = +∞.

Since θ1 < z1, ϕ(θ) and cot(Hλ(θ) − τ) do not intersect in [θ∗1, θ
∗

2]. Hence, k′(θ) < 0 and thus k(θ) strictly
decreases in [θ∗1, θ

∗

2]. Therefore, f ∗′ (θ) = 0 has only one root in [θ∗1, θ
∗

2]. We observe that ϕ(θ) is either
strictly decreasing or has 2 extremum points in the interval (θ1, 0). When ϕ(θ) is strictly decreasing in
(θ1, 0), k′(θ) < 0. Therefore, f ∗′ (θ) = 0 has only one root in (θ1, θ∗1) and two roots in [θ1, θ∗2]. Consequently,
f ∗(θ) is unimodal.
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Now, let us assume ϕ(θ) has a minimum and a maximum in the interval (θ1, 0). Since, cot(Hλ(θ) − τ) is
strictly decreasing, ϕ(θ) and cot(Hλ(θ) − τ) have two points of intersection and therefore there are two
solutions for k′(θ) = 0 in (θ1, θ∗1). Thus, k(θ) has a minimum and a maximum in (θ1, θ∗1). Since k(−π) = 0,
k(θ) and γ(θ) have three points of intersection in (θ1, θ∗1), f ∗′ (θ) has four roots in [θ1, θ∗2]. Consequently,
f ∗(θ) is bimodal.
Hence, f ∗(θ) is either unimodal or bimodal for 0 < τ < π and since f ∗(−θ;λ, τ) = f ∗(θ;λ,−τ), f ∗(θ) is either
unimodal or bimodal for −π < τ < 0.

c) For τ = π, f ∗(θ) is symmetric about θ = 0 and thus, θ = 0 is a mode or an antimode. From (13), we
also have that γ(θ) is symmetric about θ = 0 and unimodal at θ = −π or θ = 0. Further, at τ = π, k(θ) is also
symmetric about θ = 0 and k′(θ) is positive in (−π, 0), i.e., k(θ) is strictly increasing in (−π, 0). Thus, γ(θ)
and k(θ) have maximum one point of intersection in (−π, 0). When γ(θ) and k(θ) do not intersect, f ∗(θ) is
unimodal. When γ(θ) and k(θ) have one point of intersection, f ∗(θ) is bimodal with diametrically opposed
modes.

When τ = 0, the density (8) is symmetric and unimodal at θ = 0. When τ = π, f ∗(θ) = (1 +
λ cos(θ))10(− cos(θ + λ sin(θ))) is symmetric about zero and it is unimodal at θ = −π or θ = 0 and bimodal
with two diametrically opposed modes. While, for example, if τ = ±π/2, we have cos(θ+ λ sin(θ)∓π/2) =
± sin(θ + λ sin(θ)) and, thus, the density function f ∗(θ) is asymmetric. Hence, for λ , 0 in cases τ , π
and τ , 0 the ensuing distributions are asymmetric. It is important to note that if λ = 0, ξ and τ are
non-identifiable.

3.2. Shape properties

In addition to the assumptions of Sec. 2.4, here we further assume that the second derivative of
1(θ), 1′′(θ), exists and is continuous. The following theorem contains useful conditions under which the
peakedness of the density (8) can be controlled.

Theorem 3.3. For λ1 < λ2 in the density (9), we have:

a) f ∗λ1
(0) < f ∗λ2

(0) and f ∗λ1
(−π) > f ∗λ2

(−π), if τ = 0,

b) f ∗′′λ1
(0) > f ∗′′λ2

(0) and f ∗′′λ1
(−π) > f ∗′′λ2

(−π), if τ = 0,
c) f ∗λ1

(Mλ1 ) < f ∗λ2
(Mλ2 ), if |τ| ∈ (0, π/2],

where Mλi ’s are the modes (the major mode in the bimodal case) corresponding to density functions f ∗λi
, i = 1, 2.

Proof. a) The assertion follows because

f ∗λ1
(0) = (1 + λ1)1(0) < (1 + λ2)1(0) = f ∗λ2

(0)

and
f ∗λ1

(−π) = (1 − λ1)1(−π) > (1 − λ2)1(−π) = f ∗λ2
(−π).

b) Since for τ = 0, 1(θ) is symmetric and unimodal at θ = 0, we have 1′(0) = 0 and 1′′(0) < 0. Now,

f ∗
′′

λ (θ) = (1 + λ cos(θ))31′′(Hλ(θ)) − 3λ sin(θ)(1 + λ cos(θ))1′(Hλ(θ)) − λ cos(θ)1(Hλ(θ)).

Thus, we have
f ∗
′′

λ1
(0) = 1′′(0)(1 + λ1)3

− λ11(0) > 1′′(0)(1 + λ2)3
− λ21(0) = f ∗

′′

λ2
(0).

Similarly, it follows that f ∗′′λ1
(−π) > f ∗′′λ2

(−π).
c) First, we suppose τ ∈ (0, π/2]. Since the function 1λi (θ) has a mode at θ∗λi

= H−1
λi

(τ), where Hλi is
defined in (11) and θ∗λi

∈ (0, τ), i = 1, 2, for τ ∈ (0, π/2] and 1 +λi cos(θ) are decreasing on (0, π], we have the
(major) modes Mλi ∈ (0, θ∗λi

), i = 1, 2. We have θ∗λ2
< θ∗λ1

. Now, there are two following situations:
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(i) θ∗λ2
< Mλ1 < θ

∗

λ1
; in this case since τ ∈ (0, π/2] we have

f ∗λ1
(Mλ1 ) = (1 + λ1 cos(Mλ1 ))1λ1 (Mλ1 ) < (1 + λ2 cos(θ∗λ2

))1λ1 (Mλ1 )

< (1 + λ2 cos(θ∗λ2
))1λ1 (θ∗λ1

) = (1 + λ2 cos(θ∗λ2
))1λ2 (θ∗λ2

) = f ∗λ2
(θ∗λ2

)

< f ∗λ2
(Mλ2 ).

The second equality follows by lemma 3.1 because the values of the functions 1λi , i = 1, 2, at the modes are
the same, i.e., 1λ1 (θ∗λ1

) = 1λ2 (θ∗λ2
) = 1(τ).

(ii) Mλ1 < θ
∗

λ2
< θ∗λ1

; in this case

f ∗λ1
(Mλ1 ) = (1 + λ1 cos(Mλ1 ))1λ1 (Mλ1 ) < (1 + λ2 cos(Mλ1 ))1λ1 (Mλ1 )

< (1 + λ2 cos(Mλ1 ))1λ2 (Mλ1 ) = f ∗λ2
(Mλ1 ) < f ∗λ2

(Mλ2 ).

Note that, since Hλi (Mλi ) ∈ (0, τ); i = 1, 2; for τ ∈ (0, π/2] and Hλ1 (Mλ1 ) < Hλ2 (Mλ1 ), we have 1λ1 (Mλ1 ) =
1(Hλ1 (Mλ1 )) < 1(Hλ2 (Mλ1 )) = 1λ2 (Mλ1 ).

Thus, f ∗λ1
(Mλ1 ) < f ∗λ2

(Mλ2 ) forτ ∈ (0, π/2] and since f ∗(−θ;λ, τ) = f ∗(θ;λ,−τ), we have f ∗λ1
(Mλ1 ) < f ∗λ2

(Mλ2 )
for τ ∈ [−π/2, 0).

Theorem 3.3 clearly implies that in the unimodal case λ is a shape parameter which controls the
peakedness properties of the density f ∗.

Corollary 3.4. For τ = 0, f ∗λ2
is more sharply peaked than f ∗λ1

and also f ∗λ1
has heavier tails than f ∗λ2

.

Proof. The curvature of f ∗λ(θ) at θ equals
f ∗′′λ (θ)

(1+{ f ∗′λ (θ)}
2
)
3/2 . Since f ∗′λ (0) = 0, the curvature of f ∗λ(0) is equal to

f ∗′′λ (0). Thus, f ∗λ1
(0) is more sharply peaked than f ∗λ2

(0). Since f ∗λ1
(−π) > f ∗λ2

(−π), f ∗λ1
has heavier tails than

f ∗λ2
.

To illustrate the shape flexibility of the class of cardioid-1, we consider von Mises, wrapped Cauchy
and cardioid distributions as the 1 distribution and portray cardioid-von Mises, cardioid-wrapped Cauchy
and cardioid-cardioid densities in Fig. 2. The left-hand panels of Fig. 2 show the effect of the change of
the values of the parameter λ, with the other parameters kept constant when distributions are symmetric
and unimodal. Note how the peakedness of the distributions increase with the increase of the values of the
parameter λ. Also, in the bimodal case, values of the density at major modes increase with the increase of
the parameter λ. In comparing the cases τ = 0, τ = π/2 and τ = 2, it is observed how change of values of
parameter τ effects the skewness of the distribution. In the next section, we discuss some properties of the
cardioid-von Mises case.
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Figure 2: Densities of cardioid-von Mises (CvM) for κ = 1 (top row), cardioid-wrapped Cauchy (CwC) for ρ = 0.46
(middle row) and cardioid-cardioid (CC) for ρ = 0.38 (bottom row) distributions for various parameter values. In
the first column τ = 0, in the second column τ = π/2 and in the third column τ = 2. In each panel, λ = 0 (solid);
λ = 0.2(0.2)0.8 (dashed); λ = 1 (dotted).

4. Cardioid-von Mises Distribution and its Special Cases

In this section, we consider the von Mises distribution for the density 1, which is a unimodal symmetric
circular distribution and plays a central role in the analysis of circular data. The von Mises distribution has
density

fvM(θ) =
1

2πI0(κ)
eκ cos(θ−ξ), (14)
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Figure 3: The CvM densities for ξ = τ = π, κ = 2 and λ = 0 (solid); λ = 0.2(0.2)0.8 (dashed); λ = 1 (dotted).

where κ ≥ 0 is a concentration parameter and Ir(κ) is the modified Bessel function of the first kind of order
r, defined by

Ir(κ) =
1

2π

∫ 2π

0
cos(rθ)eκ cos(θ)dθ, r = 0,±1,±2, ... .

Substituting density (14) for 1 in (9), the density of the Cardioid-von Mises (CvM) distribution is given by

f ∗CvM(θ) =
1 + λ cos(θ − ξ)

2πI0(κ)
eκ cos(θ−ξ+λ sin(θ−ξ)−τ), −π ≤ θ < π, (15)

where 0 ≤ λ ≤ 1 and −π < τ ≤ π.
As Figures 3 and 2 show, the CvM distribution becomes symmetric and asymmetric for certain values

of the parameters τ: for τ = 0 it is symmetric and unimodal, for τ = ±π/2 it is asymmetric and unimodal or
bimodal and for τ = π it is symmetric and unimodal or bimodal with two diametrically opposed modes. We
shall refer to these submodels as symmetric cardioid-von Mises (SCvM), asymmetric cardioid-von Mises
(ACvM) and bipolar cardioid-von Mises (BCvM) distributions, respectively. Using these submodels we can
investigate the effect of the τ parameter on the model fitting in Sec. 5. The flexibility of such distributions
is illustrated in the first row of Fig. 2 and Fig. 3. In the unimodal case, the top row in Fig. 2 shows that
CvM distribution has more peakedness than vM distribution and Fig. 3 shows that CvM distribution has
more flatness than vM distribution. In Fig. 4, contour plots of the circular skewness and circular kurtosis
(see Sec. 4.1 for a general definition) are portrayed as functions of κ and λ, for the CvM family.
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Figure 4: Contour plots of (a) the circular kurtosis (τ = 0) and (b) the circular kurtosis (|τ| = π/2) and (c) the circular
skewness (|τ| = π/2) , as functions of κ and λ, for CvM family.

According to Theorem 3.2, the CvM distribution becomes bimodal for certain values of the parameters
κ, λ and τ. But, they cannot be found algebraically. A numerical solution is obtained by solving for the
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number of roots of the derivative of the density CvM. This work is well done with the rootSolve package
in R software. Fig. 5 shows a plot of the boundary region of λ and κ values for τ = π, |τ| = 1 and |τ| = 2. As
seen in Fig. 5, as the parameter |τ| decreases from τ = π, regions of the parameter space of λ and κwherein
the density CvM is unimodal increase. Finally, when τ = 0, CvM is unimodal for all the parameter space.

Figure 5: Plot of bimodal region for CvM distribution for τ = π, |τ| = 2 and |τ| = 1 from left to right, for some values of
λ and κ. (Black and white areas are unimodal and bimodal regions, respectively).

Kato and Jones [12] used the Möbius transformation of a r.v. following the von Mises distribution.
They built a new four-parameter family of circular distribution. As explained in Sec. 2.3, this new four-
parameter family is the same as the wrapped Cauchy-von Mises distribution, i.e., when F is the wrapped
Cauchy distribution and 1 is a von Mises density. We shall compare this distribution with CvM distribution
in Sec. 5 by fitting both to the same real data set.

4.1. Other properties of the SCvM distribution

The characteristic function of a circular r.v. Θ is φp = E
(
eipΘ

)
= αp + iβp, p = 0,±1,±2, ... where

αp = E
(
cos(pΘ)

)
and βp = E

(
sin(pΘ)

)
are referred to as the pth cosine and sine moments, respectively.

The pth trigonometric moments about the mean direction µ, i.e., µ = µ1 = arg
{
α1 + iβ1

}
, are defined

by ᾱp = E
(
cos p(Θ − µ)

)
and β̄p = E

(
sin p(Θ − µ)

)
. It follows that an alternative representation of φp is

φp = (ᾱp + iβ̄p)eiµp. Since the density of SCvM is symmetric about ξ, it follows that µ = ξ and β̄p = 0 , and
thus φp = ᾱpeiµp.

The pth central cosine moment is ᾱp = Cp(κ, λ) + λ
2

[
Cp−1(κ, λ) + Cp+1(κ, λ)

]
, where

Cp(κ, λ) =

∫ π

−π

cos(pθ)
2πI0(κ)

eκ cos(θ+λ sin(θ))dθ, p = 0, 1, ... .

Consequently, φp = (Cp(κ, λ) + λ
2

[
Cp−1(κ, λ) + Cp+1(κ, λ)

]
)eiµp, and the pth cosine and sine moments follow

as
αp = cos(pµ)(Cp(κ, λ) +

λ
2

[
Cp−1(κ, λ) + Cp+1(κ, λ)

]
),

βp = sin(pµ)(Cp(κ, λ) +
λ
2

[
Cp−1(κ, λ) + Cp+1(κ, λ)

]
).

The pth mean resultant length of a circular distribution is defined to be ρp =
√
α2

p + β2
p. Because of the

symmetric property of SCvM’s distribution, its pth mean resultant length is identical to the pth central
cosine moment, i.e., ρp = |ᾱp| and also µp = pµ. The circular variance and circular standard deviation are
then given by

ν = 1 − ρ =
1
2

[2 − λ(1 + C2(κ, λ)) + (λ2
− 2)C1(κ, λ)]

and
σ = (−2 ln(1 − ν))1/2 = (−2 ln 2(λ(1 + C2(κ, λ)) + (2 − λ2)C1(κ, λ)))1/2.
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Using these results, the circular skewness and kurtosis are given by s =
β̄2

(1−ρ)3/2 = 0 and k =
ᾱ2−ρ4

(1−ρ)2 .

4.2. Maximum Likelihood Estimation
In this section, we consider the maximum likelihood estimation for the vector parameter η = (ξ, κ, λ, τ)

of the density (15). Let θ1, ..., θn be a random sample of size n from the distribution CvM. Then, the
log-likelihood function for η is expressed as

l(η) = − n log(2πI0(κ))

+

n∑
i=1

log(1 + λ cos(θi − ξ)) + κ
n∑

i=1

cos(θi − ξ + λ sin(θi − ξ) − τ).
(16)

Taking partial derivatives from the log-likelihood function with respect to ξ, κ, λ and τ, respectively, and
equating the resulting expressions to zero yield likelihood equations. The score equations and observed
information matrices are provided in the Appendix. To solve these equations, it is usually more convenient
to use nonlinear optimization methods to numerically maximize l(η). Function optim in program R provides
the non-linear optimization routine for solving such problems. We make use of L-BFGS-B optimization
method in the following illustrative examples in Sec. 5. In the case of grouped data, suppose that there are
m class intervals (θ0, θ1) , ..., (θm−1, θm), where θ0 = −π and θm = π. Denoting the number of data values in
the jth class interval by n j and thus a total of n = n1 + n2 + ... + nm observations, the log-likelihood function
is given by

l(η) = − n log(2πI0(κ))

+

m∑
j=1

∫ θ j

θ j−1

log(1 + λ cos(θ − ξ)) + κ cos(θ − ξ + λ sin(θ − ξ) − τ)dθ.

In general, no closed-form expressions exist for the maximum likelihood estimates (MLEs) and so numerical
methods must be used to identify them. The maximization of this function can also be achieved using the
optimization options available in R referred to above.

4.3. Monte Carlo comparison
In this section, we study the performance and accuracy of the MLEs of the parameters of the CvM by

conducting various simulations for different sample sizes and different parameter values. To generate data
from CvM distribution, we can use the method mentioned in Sec. 2.1. In our Monte Carlo experiment,
for each combination of (ξ, κ, λ, τ), with n = 50, 100, 500, we have simulated 3000 samples of size n from
the density (15). CvM distribution with parameters (ξ, κ, λ, τ) = (0, 1, 0.9, 0.8), (0, 1, 0.5, 0.3), (0, 1, 0.9, 1.5) is
symmetric, skew and bimodal, respectively. In our simulation study, mean bias and mean square error of
the MLE of the parameters, defined below, are computed and discussed.

1. Mean bias (Bias) of the MLE of the parameter of interest ε (e.g., ξ, κ, λ or τ) is defined as:

Biasε(n) =
1
N

N∑
i=1

(ε̂i − ε).

2. Mean squared error (MSE) of the MLE of the parameter of interest ε is defined as:

MSEε(n) =
1
N

N∑
i=1

(ε̂i − ε)
2,

where ε̂i is the MLE of ε based on a sample of size n.

Table 1 illustrates Bias, and MSE values of (ξ, κ, λ, τ) for the different sample sizes. It can be concluded
that as the sample size n increases, the Bias and MSE decay towards zero.
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Table 1: Mean Bias (Bias) and Mean squared error (MSE) in parenthesis for the ML estimators calculated using 3000
samples of size n simulated from CvM distribution.

ξ κ λ τ n ξ̂ κ̂ λ̂ τ̂

0 1 0.9 0.8 50 -0.0155(0.037) 0.0461(0.089) 0.0093(0.009) 0.0124(0.097)
100 -0.0016(0.015) 0.0269(0.042) 0.0035(0.005) 0.0079(0.041)
500 -0.0002(0.002) 0.0076(0.008) 0.0009(0.0009) -0.0002(0.008)

0 1 0.5 0.3 50 0.0038(0.167) 0.1204(0.136) 0.0360(0.033) 0.0056(0.081)
100 0.0003(0.097) 0.0581(0.065) 0.0199(0.017) 0.0032(0.049)
500 -0.0001(0.017) 0.0100(0.012) 0.0035(0.003) 0.0007(0.010)

0 1 0.9 1.5 50 -0.0316(0.051) 0.0662(0.133) -0.0324(0.014) 0.0960(0.203)
100 -0.0083(0.038) 0.0373(0.055) -0.0002(0.014) 0.0241(0.129)
500 -0.0001(0.006) 0.0008(0.010) -0.00005(0.002) -0.0006(0.020)

0 1 0.7 2 50 -0.0208(0.166) 0.1157(0.147) 0.0221(0.037) 0.0168(0.283)
100 0.0078(0.089) 0.0527(0.063) 0.0101(0.019) -0.0212(0.185)
500 0.0023(0.010) 0.0083(0.011) 0.0012(0.003) -0.0028(0.021)

5. Application

We consider a grouped data set of size n = 15831, which consists of times of gun crimes committed in
Pittsburgh, Pennsylvania, recorded over the period 1987-1998 (Gill and Hangartner [9]). These data are
recorded at the hourly level on the 24-h clock.
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Figure 6: Histogram of the gun crimes data represented in radians, together with the densities of the maximum likelihood
fits for the cardioid-von Mises (solid curve), sine-skewed Jones-Pewsey (dotted curve) and asymmetric extended Jones-
Pewsey (dash−dotted curve) distributions.

In Fig. 6, a histogram of the data is illustrated. Similar to Kato and Jones [13], the data were converted
from 24 hours to angles in [−π, π); for clarity, −π corresponds to midday, 0 to midnight, etc. The data are
asymmetric and peaked around 22 to 1 hours. The test of Pewsey [18], with a p-value of 0.0000, rejects the
underlying distribution as being symmetric emphatically. In Table 2, we present the maximum likelihood
estimates, the values of the maximized log-likelihood (MLL), Akaike information criterion (AIC) and
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Bayesian information criterion (BIC) obtained by fitting the cardioid-von Mises (CvM), asymmetric cardioid-
von Mises (ACvM), sine-skewed Jones-Pewsey (SSJP) model of Abe and Pewsey [1], the asymmetric
extended Jones-Pewsey (AEJP) distribution of Abe et al. [3], Full model Kato-Jones (FKJ) of Kato and Jones
[13] and four-parameter Kato-Jones (KJ2010) model of Kato and Jones [12]. Because the fitted models are
very similar in the plot, we show just three fitted models on the histogram. The fitted skew-symmetric
densities are superimposed on the histogram of the data set in Fig. 6.

Table 2: Maximum likelihood estimates, the values of the maximized log-likelihood (MLL), Akaike information criterion
(AIC) and Bayesian information criterion (BIC) for the fits to the gun crime data of the cardioid-von Mises (CvM),
asymmetric cardioid-von Mises (ACvM), Full model Kato-Jones (FKJ), sine-skewed Jones-Pewsey (SSJP), Kato-Jones
(KJ2010) and asymmetric extended Jones-Pewsey (AEJP)models.

Model MLE AIC BIC

ξ̂ κ̂ λ̂ τ̂
CvM 1.33 1.56 0.54 -2.13 −44676.94 89361.87 89392.55

ξ̂ κ̂ λ̂ τ
ACvM 0.92 1.24 0.42 (-π/2) −44797.96 89601.92 89624.93

ξ̂ κ̂ ψ̂ λ̂
SSJP 0.23 1.07 -0.81 -0.65 −44731.86 89471.71 89502.39

ξ̂ κ̂ ψ̂ ν̂
AEJP -2.04 1.40 -0.17 -0.56 −44720.72 89449.45 89480.12

ξ̂ γ̂ α̂2 β̂2
FKJ 0.38 0.55 0.23 0.16 −44741.00 89490.00 89520.68

µ̂ κ̂ ν̂ r̂
KJ2010 0.89 1.40 1.90 0.29 −44730.24 89468.47 89499.15

From the results in Table 2, it can be seen that among all these three four-parameter distributions; the
cardioid-von Mises distribution has the highest MLL and lowest AIC and BIC values. Thus, the cardioid-
von Mises distribution provides a better fit to the data than the other three four-parameter skew models.
Considering the MLL values for the cardioid-von Mises and asymmetric cardioid-von Mises distributions,
the test statistic for the usual likelihood-ratio test is calculated to be 2(- 44676.9+44797.96 ) = 242.12 .
Comparing this value with the quantiles of the χ2

1 distribution, the p-value of the test is 0.000. Thus, the
cardioid-von Mises distribution provides a significant improvement comparing to the asymmetric cardioid-
von Mises distribution. Also, this reflects the effect of the τ parameter in the model. Despite these findings,
all models are rejected by chi-squared goodness-of-fit tests because of the very large sample size.

Nominally, 95% confidence intervals for the parameters ξ, κ, λ and τ of the CvM distribution are
calculated using standard errors computed from the observed information matrix evaluated at the ML
solution and the asymptotic normality of ML estimators. They are (1.28, 1.37), (1.51, 1.61), (0.52, 0.56)
and (-2.18,-2.08), respectively. But those calculated using profile log-likelihood function and standard chi-
squared theory are (1.29, 1.37), (1.51, 1.61), (0.52, 0.56) and (-2.18,-2.08). Clearly, both sets of intervals are
very similar and the fact that none of the intervals for τ contain the value τ = π/2 confirms the inadequacy
of the asymmetric cardioid-von Mises as a model for the data.

6. Conclusions

We proposed a new transformation of circular r.v.s based on circular distribution functions in order to
generate new circular distributions, called F1models. We first arrived at some general results for our new
models and then showed that the Möbius transformation is a special case of this transformation when F is the
wrapped Cauchy distribution. By employing the cardioid distribution as F, we introduced the Cardioid-1
class of circular distributions. Some general structural properties of our model such as modality, skewness
and shape were studied. As explained in the Sec. 3, our main motivation is to provide to densities that are
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mathematically tractable. We have also focused our attention primarily on the Cardioid-von Mises (CvM)
family and three of its submodels. As Fig. 2 and the results in Sec. 4 show, the resulting CvM family is
capable of modeling distributional forms ranging from symmetric to skew cases. The examples presented
illustrate the potential of Cardioid-von Mises distributions as models for real circular data.
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Appendix

Let Q(θi, ξ, λ, τ) = θi − ξ + λ sin (θi − ξ) − τ. The score equations are obtained by differentiating (16) as
below:
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∂l
∂ξ

=

n∑
i=1

λ sin (θi − ξ)
1 + λ cos (θi − ξ)

+ κ
n∑

i=1

(1 + λ cos (θi − ξ)) sin(Q(θi, ξ, λ, τ)) = 0,

∂l
∂λ

=

n∑
i=1

cos (θi − ξ)
1 + λ cos (θi − ξ)

− κ
n∑

i=1

sin (θi − ξ) sin(Q(θi, ξ, λ, τ)) = 0,

∂l
∂κ

= −n
I1(κ)
I0(κ)

+

n∑
i=1

cos(Q(θi, ξ, λ, τ)) = 0,

∂l
∂τ

= κ
n∑

i=1

sin(Q(θi, ξ, λ, τ)) = 0,

The maximum likelihood (ML) estimates satisfy the score equations. The elements of the observed infor-
mation matrix are the negative of the second partial derivatives of the log-likelihood of (16). Denoting them
by `ξξ, `ξλ, ..., `ττ, one obtains:

`ξξ =

n∑
i=1

−λ(cos (θi − ξ) + λ)

(1 + λ cos (θi − ξ))2

+ κ
n∑

i=1

(
λ sin (θi − ξ) sin(Q(θi, ξ, λ, τ)) − (1 + λ cos (θi − ξ))2 cos(Q(θi, ξ, λ, τ))

)
,

`ξλ =

n∑
i=1

sin (θi − ξ)

(1 + λ cos (θi − ξ))2

+ κ
n∑

i=1

(cos (θi − ξ) sin(Q(θi, ξ, λ, τ)) + sin (θi − ξ) (1 + λ cos (θi − ξ)) cos(Q(θi, ξ, λ, τ))),

`ξκ =

n∑
i=1

(1 + λ cos (θi − ξ)) sin(Q(θi, ξ, λ, τ)),

`ξτ = − κ
n∑

i=1

(1 + λ cos (θi − ξ)) cos(Q(θi, ξ, λ, τ)),

`λλ = −

n∑
i=1

cos (θi − ξ)2

(1 + λ cos (θi − ξ))2 − κ
n∑

i=1

sin (θi − ξ)2 cos(Q(θi, ξ, λ, τ)),

`λκ = −

n∑
i=1

sin (θi − ξ) sin(Q(θi, ξ, λ, τ)),

`λτ =κ
n∑

i=1

sin (θi − ξ) cos(Q(θi, ξ, λ, τ)),

`κκ =n
(

I1(κ)2

I0(κ)2 −
κI0(κ) − I1(κ)

κI0(κ)

)
,

`κτ =

n∑
i=1

sin(Q(θi, ξ, λ, τ)),

`ττ = − κ
n∑

i=1

cos(Q(θi, ξ, λ, τ)).


