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The Solvability of a Class of System of Nonlinear Integral
Equations via Measure of Noncompactness

Habibollah Nasiri?, Jamal Rezaei Roshan?
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Abstract. We propose a new notion of contraction mappings for two class of functions involving measure
of noncompactness in Banach space. In this regard we present some theory and results on the existence of
tripled fixed points and some basic Darbo’s type fixed points for a class of operators in Banach spaces. Also
as an application we discuss the existence of solutions for a general system of nonlinear functional integral
equations which satisfy in new certain conditions . Further we give an example to verify the effectiveness
and applicability of our results.

1. Introduction

Measures of noncompactness are very useful and powerful tools in functional analysis, for instance in
the theory of operator equations in Banach spaces and in metric fixed point theory. They are also used in the
studies of ordinary and partial differential equations, functional equations, integral and integro-differential
equations, fractional partial differential equations, optimal control theory, and in the characterizations of
compact operators between Banach spaces. In 1930, Kuratowski [24] introduce the first concept of measure
of noncompactness (MNC). Later on, in 1955, G. Darbo [16] proved a fixed point theorem via the concept
of Kuratowski MNC, which generalizes both the classical Schauder fixed point theorem and a special
variant of Banach contraction principle. In 1957, the other measures of noncompactness were introduced
by Goldenstein, Gohberg, and Markus [20], which was called the ball or Hausdorff MNC. There are some
other definitions of measure of noncompactness which the authors were trying to introduce this definition
in an axiomatic way. At first, it appeared in the paper of Sadovskii [30], but his axiomatics seems to be too
general. In 1980 Banas [11] was introduced another axiomatic measure of noncompactness which was very
useful in applications. Up to now several authors have presented some papers on the existence of solution
for nonlinear integral equations which involves the use of measure of noncompactness and many other
techniques, for instance see [1]-[6] and [7]-[31].

In this paper, we apply the method related to the technique of measures of noncompactness in order
to extend the Darbo’s fixed point theorem [16]. Our results are a generalization of the results of Roshan
[29] from two dimension in to a three dimension version and the results of the paper Karakaya et al. [16]
( with the approach that, the conditions of the related operators of integral equations are generalized. See
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Theorem 4.1) for proving some existence theorems of three dimension fixed points and tripled fixed points
for a class of operators in Banach spaces. Moreover, as an application of this theorems, we study the
problem of existence of solutions for the following class of system of nonlinear integral equations (which
satisfy in new certain conditions).

B tx(Ei @),y @), z(E (1),

x(H) =A1 () +h (t,x (& 1),y (& (1), z(E (1) + f1( (p(j(;ﬁl(t) 7 (65,1 (M (9), ¥ (m ), 2 (11 (5))) ds )
B ty(E2(),z(E 1), x(&2(1),

y(H) =Ax(t) +ha(t,y(E2(1),z(&2(D),x(E2(D) + f2 ( (P(foﬁz(t) 0 (65,1 (1)), 2 (12 (5)) , x (1 (5))) ds )
_ trZ (53 (t)) X ('53 (t)) s ]/ (53 (t)) s

0= 0+ 060 K 0y GO 5 o0 s )

2. Preliminaries

In this section, we recall notations, definitions and preliminary facts which are used throughout this
paper. Denote by R the set of real numbers and put R, = [0, +c0). Let (E, ||.||) be a real Banach space with
zero element 0, and B (x, r) denotes the closed ball in E centered at x with radius . The symbol B, stand for
the ball B(0,7). If X is a nonempty subset of E, we denote by X, ConvX the closure and the closed convex
hull of X respectively. Moreover, we denote by M the family of nonempty bounded subsets of E and by
NFE its subfamily consisting of all relatively compact subsets of E.

In this paper, we will use axiomatically defined measures of noncompactness as presented in the book
[11].

Definition 2.1. ([11]) A mapping u : Mg — [0, o) is said to be a measure of noncompactness in E if it satisfies the
following condition:

M, ) The family kerly = {X € Mg, u(X) = 0} is nonempty and kery C NE.
M, ) If X CY then pu(X) = p(Y).

Ms) u(X) = p(X).
My ) p(convX) = p(X).
Ms) yAX+A-A)Y)<AuX)+ A =A)u(Y) forany A €[0,1).

Mg ) If (Xy,) is a sequence of closed sets from Mg such that X,.1 € X, (n 2 1) and lim, e (X,) = 0, then the
intersection set Xeo = N | X, is nonempty.

The family kerp described in (M;) said to be the kernel of the measure of noncompactness u. Observe
that the intersection set X., from (M) is a member of the family keru. In fact, since p (Xo) < 1 (x,,) for any
n, we infer that y (X«) = 0. This yields that X, € kerp.

Now we present the definition of a tripled fixed point for a bivariate vector function which we need
in the proof of main results and a useful theorem in [11] related to the construction of a measure of
noncompactness on finite product space.

Definition 2.2. ([15]) An element (x,y,z) € X X X X X is called the tripled fixed point of mapping
T:XxXXxX—-Xif

T(x,y,z)=x

T(yxy)=y . 1)
T(z,y,x)=z
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Theorem 2.3. ([11]) Suppose that uy, Uy, ..., tin be the measures of noncompactness in the Banach spaces E1, E», ...., E,
respectively. Moreover, assume that the function F :[0, 00)" — [0, ) is convex and F (x1, X3, ..., X,) = 0 if and only
ifxi = 0for i =12,..,n Then p(X) = F(u1 (X), p2(X), ..., un (X)) define a measure of noncompactness at
Ey X Ex X ..., XE, where X; denotes the projection of X into E; for i =1,2, ..., n.

Theorem 2.4. Suppose that 1, 1z, 13 be the measures of noncompactness in the Banach spaces E1, E;, E3 respectively.
Moreover, assume that the function F :[0, oo)3 — [0, o0) is convex and F (x1,x2,x3) = 0 if and only if x; = 0 for
i=1,2,3. Then g (X) = F(u1(X), u2 (X), us (X)) define a measure of noncompactness on E; X E; X E3 where X;
denotes the projection of X into E; for i =1,2,3.

Example 2.5. Assume that u be a measure of noncompactness on a Banach space E, consider F (x,y,z) = x+y +z
for every (x,y,z) € [0, 00)3, then F is convex and if F(x,y,z) = x+y+2z = 0sincex = 0,y = 0,z > 0 thus
x=y=2z=0. Sop(X)=pX1)+pu(Xz)+ p (Xz) is a measures of noncompactness on E X E X E. Which X; denotes
the projection of X into E; for i =1,2,3.

Example 2.6. Assume that u be a measure of noncompactness on a Banach space E, consider F (x, y,z) = max {x, y, z}
for every (x,y,z) € [0, o0)>then F is convex and if F(x,y,z) = max{x,y,z} = 0 sincex > 0,y > 0,z > 0 thus
x =y =z = 0unto Theorem 2.3 11 (X) = max {u (X1), p (X2), u (X3)} is a measures of noncompactness on EX E X E.
Which X; denotes the projection of X into E; for i =1,2,3.

Theorem 2.7. (Schauder([3]) Let Q) be a closed and convex subset of a Banach space E. Then every compact,
continuous map T : QO — Q has at least one fixed point.

Theorem 2.8. (Darbo[8]) Let () be a nonempty, bounded, closed, and convex subset of a Banach space E and let T :
Q — Q be a continuous mapping. Assume that there exists a constant k € [0,1) such that u (T (X)) < ku (X) for any
X C Q. Then T has a fixed point.

3. Main Results

In this section, we give and prove some theorems for the existence of tripled fixed point to a special
class of operators. This basic result will be used in the next section.

First, we introduce the class W of all functions ¢ : Ry X Ry X Ry — R, which have the following
properties:

(k1) Y (1 + 1,81 + 80,71 +17) < Y (t1,81,11) + Y (ta,82,12)

(k) Y (t,s,1)=0 & t=r=5=0

(ks) 1 is alower semicontinuous function on R, X R, X IR, i.e, for every arbitrary sequences {a,}, {b,}, {c1}
we have

Y(lim infa,, lim infb,, lim infc,) < liminfi(a,, by, c,).
For example the functions ¢ (,s,7) = In(t + s + v + 1) and ¢, (t,s,7) = max {t, s, r} belong to V.

Theorem 3.1. Let Q be a nonempty, bounded, closed and convex subset of a Banach space E and let u be a measure
of noncompactness. Moreover, assume that T : Q2 x Q x Q0 — Q X Q X Q be a continuous function satisfying

¢ (T X)) < ¢ (X)) =¥ (1X), 1 (X), @ (X)) (2)
for any nonempty subset X of Q x Q x Q, where i is defined by

EX) =F(u1 (X)), g2 (X), p3 (X)),

and ¢ : Ry — Ry is a continuous mapping and € V. Then T has at least one fixed point in (2 X Q x Q.
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Proof. By induction we construct the sequence {Q, X Qy, X Q)7 such that Qy X Qg X Qp = QA x Q X Q and

O X O X Q= comvT (Qpy X Oyt X Qur) for n=1,2,3,
Now we have
T(QoXxQyxQ))=TAQAXxAXQ)CcOAXQXQ=0Q5x%xQyxQ,
and
Q1 X Q1 X Qy = convT (Qg X Qg X Q) C conv Qy X Qg X Qp = Qp X Qg X Q.
So
Qy X Qy X Qy = convT (Q1 X Q1 X Q1) C convT (Qy X Qp X Qp) = Q1 X Q1 X g
Thus by continuing this process, we obtain

e CQO X Xy C. Ty Xy Xy €O X Qg X O

If there exists an integer number N > 0 such that 1 (Qn X Qn X Q) = 0 then Qn x Qn X Qy is relatively
compact and since

T(QN X Qn X QN) C convT (QN X Qn X QN) = Qni1 X Qni1 X Qni1 € On X Qn X Qy,
therefore Theorem 2.7 implies that T has a fixed point. So we can assume that 11 (€, x Q, X Q,) > 0 for any

n 0.
By our assumption, we get

¢ (T[I (Qns1 X Qpir X Qyip1)) ¢ (T[I (convT (Qy, X 0y X (2y)))
¢ (1 (Qn X Qy X Qy))
¢ (0 (Qn X Qp X Qy))

_11b (H(Qn X Qn X Qn)rﬁ(gn X Qn X Qn)rﬁ(gn X Qn X Qn))

IA

Since the sequence 11 (Q, X Q, X Q) is nonincreasing and non-negative real numbers, thus there is an r > 0 so
that 1 (Qy X Qy X Q) = rasn — oo.
Now from (2) we have

¢ (r) = limsup (1 (Qns1 X Qi1 X Qpi1))

n—o0

< limsup¢ (1 (Q x Q, X Qy))

n—oo

— liminfy (g (Qy X Q, X Q) , @ (Qy X Qy X Q) , 1 (Qy X Qy X Q)
< limsupo (1 (Qy x Q, X Q)

n—oo

_y (lim I (Q X Oy X Q) Eminfll (Qy X Qp X Q) , im infT (Qp X Qp X Qn))
=) -yrr).

Consequently ¢ (r,r,¥) = 0 so r = 0. Therefore we deduce that (€, x Q, xQ,) — 0as n — oo. Since
Qi1 X Qi1 X Qi € Qpy X Qyy X Qyy, thus by axiom (Ms) of Definition 2.1 we derive that the set (oo X Qoo X Qoo =
N1 Qy X Qy X Qyy is a nonempty convex closed set, invariant under the operator T and belongs to Keru. Now by
Theorem 2.7 T has at least one fixed point in Qs X Qoo X Qoo and hence in Q x QA x Q. O
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Theorem 3.2. Let Q be a closed, bounded, convex and nonempty subset of Banach space E. Moreover, assume that
T:Q xQxQ — Qbea continuous function where satisfying at the following condition.

¢ (u(T (X1 X X3 X X3))) < %qﬁ (@ (X1) + p(X2) + u(X3)) — ¢ (u (X1), 4 (X2), 1 (X)) 3)

for every X1, X5, X3 € Q where ¢ : Ry — R, is a continuous and linear function and for every t,s € R, and
Y € V. Then T has a tripled fixed point.

Proof. First note that Example 2.5 show that 11 (X) = p (X1) + u (X2) + u (X3) is a measure of noncompactness in the
space E X E X E. Where X;, i =1,2,3 denoted the natural projections of X into E. Now define? on the QA x QA x Q by
the formula T (% y,2)=(Txyz),TWyzx),T(zxy)),forevery (x,y,z) € Q X QX Q. Since T is continuous
so T is continuous on Q X Q x Q. We claim that T satisfies all the condition of Theorem 3.1. To prove this, let
X € Qx Q% Q be a nonempty subset. Then by (My) and (3) we get

¢ (E( T (X)) <y (1 (T (X1 X Xa X Xa), T(Xa X X3 X X1), T(X3 X X1 X X))
= (U Xy X Xo X X3)+ pu(Xy X X3 % X1) + p (X3 x X1 X X))
= ¢ (u (T (X1 X X2 X X3))) + ¢ (1 (T(X2 X X3 X X1)))

+ ¢ (1 (T(X3 X X1 X X3)))

< 20 (X0 + 100 + 1 (069) — 1 (50), 1 (00), 11 ()
b2 (1 00) + 1 (Xa) + p (K3)) — (X)), 1 (50)

b2 (1 00) + 1 (Xa) + p (K30) — (%), 1 (50), 1 (X))

= gb(‘u XD)+uX)+u (X3))

_[ P (u(X1), 1 (X2), 1 (X)) + ¢ (u(X2), 1 (X3), 1 (X1)) ]
+ (u (X3), u(X1), 1 (X2))

<o (p(Xq) +u(Xa) + p(Xs))

—¢( p(X0) + p () + p (X), p (X) + p (X3) + p (Xa), )
b (Xs) + 1 (X1) + p(X2)

=) -y X)), uX),x(X).
So we get
¢(F(T () <p @) - @), EX),EX)
hence, by using Theorem 3.1 T has at least one tripled fixed point. [
Corollary 3.3. Let Q be a nonempty, closed, bounded and convex subset of Banach space E and u be a measure of
noncompactness. Moreover, assume that
T:Q xQXQ — Qis a continuous function such that there exist nonnegative constant k with 0 < k < 1. If
p(T(Xy X Xz X X3)) < kp (X X Xz X X3),
for every X1, X, X3 C Q. Then T has at least one tripled fixed point.

Proof. Taking ¢ (t) =t,t > 0and ¢ (t,s,r) = %‘ (s + t + r) in Theorem 3.2 we obtain the desired result. O
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Corollary 3.4. Let Q be a nonempty, closed, bounded and convex subset of Banach space E and u be an arbitrary
measure of noncompactness. Moreover, assume that

T:Q xQxQ — Qisa continuous function such that there exist nonnegative constants ki, ky, ks such that
k1 +k2+k3 < 1If

k k k.
(T X X X X3)) < 21 (X0) + 54 (Xa) + 20 (Xs)
for every X1, X, X3 CQ. Then T has at least one tripled fixed point.

Proof. Taking ¢ (t) =t,t>0and ¢ (t,s,r) = (1_%) t+ (%) s+ (%) r in Theorem 3.2 we conclude that T has at
least one tripled fixed point in QO x QA x Q. [

Corollary 3.5. Let Q) be a nonempty, closed, bounded and convex subset of Banach space E and u be a arbitrary
measure of noncompactness. Moreover, assume that
T:Q xQxQ — Qisa continuous function and there exists a nonnegative constant k with 0 < k < 1 such that

p(T(Xq X Xp x X3)) < kmax {u (Xq), u (X2), u (X3)}

for every X1, Xp, X3 € Q.
Then T has a tripled fixed point i.e.

T(x,y,z)=x
Tyxy)=y .
T(z,y,x)=z

Proof. Taking ¢ (t) =t ,t > 0and  (¢,s,7) = (1 — k) max {t,s, r} in Theorem 3.2 we conclude that T has at least one
tripled fixed point in 3 x Qx Q. O

Corollary 3.6. Let Q) be a nonempty, closed, bounded and convex subset of Banach space E and u be a arbitrary
measure of noncompactness. Moreover, assume that T : QO X Q x Q — Q is a continuous function such that there
exists a nonnegative constants ky, kp, ks such that ki + ky + ks < 1. If

p(T(X1 X Xp X X3)) < kqp (Xq) +kopt (X2) + kap (X3),
for every Xi1, X0, X3 € Q. Then T has at least a tripled fixed point.
Proof. It should be noted that

p (T (Xg X Xo X X3))

< kip (Xy) + kop (X2) + k3 (X3)

< kymax {u (Xq), 4 (X2), 1 (X3)} + ky max {u (X1), u (X2), p (X3)}
+ ks max {u (X1), 1 (X2), 1 (X3)}

= (k1 + ko + k3) max {u (X1), u (X2), 1 (X3)}

= kmax {u (X1), 1 (X2), u(X3)}

where k = ki + ko + ks < 1. Now from Corollary (3.5), T has at least one tripled fixed point. [

Corollary 3.7. Let Q) be a nonempty, closed, bounded and convex subset of Banach space E and u be an arbitrary
measure of noncompactness. Moreover, assume that
T:Q xQxQ — Qisa continuous function such that

p(Xy) + p(X2) + 1 (X3)
3

for every X1, X, X3 C Q. Then T has at least one tripled fixed point in 0 X Q x Q.

p (T (X1 X Xz X X3)) < =1In(u(Xq) + p(X2) + p(X3) + 1)
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Proof. Taking ¢ (t) =t,t > 0and (s, t,r) = In(s+t+r+1)and using Theorem 3.2 we conclude that T has one
tripled fixed point in QA x Qx Q. [

In this part of the paper we will introduce another class of functions and in this direction, we present
some tripled fixed point theorem.
First, we consider the usual order relation”<” on R, X R, X R, as follows :

(51,t1,71) < (s2,t2,12) &> 51 <55, t1 Sy, 11 <12

for every si,t1,11,52,t2, 12,53, 13,13 € R,
Now we denote by @, the class of all functions ¢ : R, X R, X R, — R, with the following properties:

@1) ¢ is continuous and nondecreasing function on R; X R; X R,.

@) ¢ (t,t,t) <t foreveryt>0.

(p3) % [(P (s1,t1,1m1) + (P (82, t2,12) + qﬁ (s3, t3,r3)] < (;b (S1+532+53’ t1+¢§+t3, r1+732+r3)

for every sy, t1,71,52,t2,12,53, 13,13 € R4

For example the functions ¢ (s, t,7) = In (1 + %ﬂ) and ¢ (s,t,7) = kit + kps + kv where ki, ko, k3 € R,
and ki + k; + k3 < 1 belong to .

Theorem 3.8. Let Q be a closed, bounded, convex and nonempty subset of Banach space E. Moreover, assume that
T: Q xQxQ — Q xQxQ bea continuous function where satisfying at the following condition

E(TX) <P EX), 1 (X), 1 (X))

for every nonempty subset X of Q x Q x Q and also pas g (X) = F(u(X1), p (X2), 1 (X3)) and ¢ € ®. Then T
has at least one fixed point in QO X QX Q.

Proof. By induction we construct the sequence {Q, X Q, X Q) such that Qy X Qp X Qp = QX Q X Q and
QX Qy X Qp = convT (Qp_q X Q1 X Q) forn=1,2,3,....
Similar to the proof of Theorem 3.1 we obtain

W CQy X QX QY. CQy X Oy xQy €O X O Xy,

If there exists an integer number N > 0 such that 11 (Qn X Qn X Q) = 0 then Qn x Qn X Qy is relatively
compact and since

...T(QN X QN X QN) C COT’ZVT(QN X QN X QN) = Oni1 X Qns1 X Qni1 € O X Qn X Qy,

therefore Theorem 2.7 implies that T has a fixed point. So we can assume that
1 (Qn x Qn x Q) > 0 for any n > 0. By our assumption, we get

ﬁ(Qn+1 X Q1 X Qn+1) = :J(coan (Qn X 0y X Qn))
=1 (Qy x QX Q)

o[ HOQu X X Q) , 1 (Q X QX ),
=¢ T (Qn X Qp X Q) :

Since the sequence 1 (Q, X Q, X Q) is nonincreasing and nonnegative real numbers, thus, there is an r > 0 so
that 11(Qy, X Qy X Q) — rasn — co. We claim that r = 0. On the contrary if r > 0
then we obtain
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r= limﬁ(Qn-#l X Qi1 X Qi)

< (im T (Qu X QX Q) i FF(Q X 0y X Q) T (Q X QX O,)
=¢((rrnr)<r

Which is a contradiction. Hence p (Q, X Q, x Q) = 0.
Then Q, X Q,, X Q,, is relatively compact. On the other hand, Q11 X Qi1 X Qui1 € Qp X Qp X Q) thus by
axiom (Ms) of Definition 2.1 we derive that the set Qe X Qoo X Qoo = N7 QX Q) X Qy, is a nonempty closed

convex set, invariant under the operator T and belongs to Kery. Now by Theorem 2.7 T has at least one fixed point in
Qoo X Qoo X Qoo and hence in QX QX Q. [

Theorem 3.9. Let Q be a closed, bounded, convex and nonempty subset of Banach space E and u be an arbitrary
measure of noncompactness. Moreover, assume that T;: Q x QxQ — ), i = 1,2, 3 are continuous functions where
satisfying at the following condition:

p (T (X1 x Xz X X3)) < ¢ (u(X1), 1 (X2), u(X3))
p(Tr (X2 x X3 X X1)) < ¢ (u(X2), u(Xz), u(X1))
p (T3 (X3 x X1 x X2)) < ¢ (u(X3), 14 (X1), u(X2))

forall X1, X5, X3 CQ, where ¢ € O. Then there exist x*, y*, z* such that
Tl (x*/ ]/*, Z*) x*

To(y', 25 x") =y .
T3z, xy) =2

Proof. First i (X) = p(Xq) + p (X2) + u (X3) is a measure of noncompactness in E X E X E which X;, i =1,2,3 is
natural projection of X into E. Now we define T :Q2 x Q x Q) — Q) x Q x Q with the following:

T (v,y,2) = (T1 (5, 4,2), T2(,2,%), T3 (%, y))

forevery (x,y,z) € QX QxQ.Itis easy to see that T is continuous on Q x Q x Q. We claim that T satisfying
in all condition of the Theorem 3.8. For this, assume that X C Q X Q X Q be a nonempty subset. Then the condition

(My) of Definition 2.1 and Theorem 3.8 imply that :
ﬁ(f (X)) S u(T1 (Xq x Xa X X3), To(Xa2 X X3 x X1), T3(X3 X X1 X X3))
= p (T (X1 X X X X3)) + (T2 (Xo X X3 X X7)) + p(T3(X3 X X1 X X3))
< ¢ (1“' (Xl) 7 [/l (XZ) s ‘Ll (X3)) + (P (”l (XZ) s ‘Ll (X3) ’ IJ (Xl))
+ ¢ (l’l (X3) M (Xl) M (XZ))
<30 pX) +p (X)) +p(Xa) p(Xa)+pXo)+p(Xa) p(X)+pXa) + p(Xs)
- 3 ’ 3 ’ 3 '
Now suffice we chose that i’ = 111, we get
7 (T0)<o(F 0,7 X)), T X).
Since @i’ is a measure of noncompactness, so by Theorem 3.8 T has at least a fixed point i.e. there exist (x*,y*,z") €
Q x Q x Q) such that
Tl (x*/ ]/*, Z*) = x*
Iy, 2z, x) =y .
T3z, x,y) =2
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Corollary 3.10. Let Q) be a nonempty, closed, bounded and convex subset of Banach space E, and p be an arbitrary
measure of noncompactness. Moreover, assume that T;: QO x QxQ — Q, i = 1,2, 3 are continuous functions where
satisfying at the following condition:

p(Ti(Xa X Xo x X3)) < kp(Xy) +kop (Xo) + kap (X3),

p(To(Xa x X3 x Xq)) < k(X)) +kop (X3) + kap (Xq),

p(T3(Xs x X1 x X2)) < kp(Xz) +kop(Xq) +kp(X2),

for each X1, X, X3 C Q, where ki, ko, ks are nonnegative constants such that ki +ky + ks < 1.
Then there exist (x*,y*,z*) € Q X Q X Q such that

*

Ti(x*, y",z") =x
To(y',z5,x") =y
T3z, x",y") =2z

*

Proof. Taking ¢ (s, t,1) = kit + kos + kar in Theorem 3.9, we obtain the desired conclusion. [

Corollary 3.11. Let ) be a nonempty, closed, bounded and convex subset of Banach space E, and p be a arbitrary
measure of noncompactness. Moreover, assume that T;: Q X QxQ — Q, i = 1,2, 3 are continuous functions where
satisfying at the following condition:

H(T(X1 X X X X3) < ln(l Ok u(;@) i u<x3>),
p(Ta(Xy xX3xXy)) < In (1 " p(Xq) + p (;fz) + H(X:J,)),
UG X X xX2) < In (1 LB+ (;(2) +u <x3>)_

for every X1, Xp, X3 € Q. Then there exist (x*,y*,z") € Qx Q X Q such that

Tl (x"/ ]/*, Z*) =x
Ty, z5x") =y
T3 (Z*/ X*/ ]/*) =z

Proof. Taking¢ (s, t,r) = In (1 + s’gﬁ) in Theorem 3.9, we obtain the desired conclusion. [

Now, we present a three-dimension version of Corollary 3.5 in Aghajani et al. [5]

Corollary 3.12. Let () bea nonempty, closed, bounded and convex subset of Banach space E and let F; : {3 XQxQ) —
E for i =1,2,3 are operators such that

||F1 (v, y,z)—F1 (u,v,w)“ < qb(||x—u||,'y—v ,||z—w||),
||F2 (y,z,x) - F, (v,w,u)” < qb(”y—v ,||z—w||,||x—u||),
”Fz (z,x,y)—F, (w,u,v)” < gb(llz—wll,llx—ull, y—v”).

Assume that G; : Q X Q x Q — E be continuous and compact operators and the operators
Ti: Q xQxQ— Qfori=1,2,3 defined as the following

||T1 (% y,2)—T1 (4,0, w)” < ”F1 (%, y,2) —F1(u,0, w)” + gl}(HGl (% y,2)—G1 (4,0, w)”)
||T2 (y,z,x) -T2 (v, w, u)” < ”Fz (y,z,x) — F2 (v, w, u)” + z,l}(“Gz (y,z,x) — G2 (v, w, u)”)
||T2 (z,x,y)— T2 (w,u, v)” < ”F2 (z,x,y) — Fa (w, u, v)” + 1,0(“G2 (z,x,v)— Gy (w,u, v)”)
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where ¢ € @ and 1 : Ry — R, is a continuous and nondecreasing function and 1 (0) = 0.
Then there exist (x*,y*,z*) € Q X Q X Q such that

%

Ti(x,y",z") =x
To(y',z°,x") =y
T3(Z*/ X*/ ]/*) = Z*

*

Proof. Assume that X, X5, X3 are the subset of Q). From the definition of Kuratowski measure of noncompactness for
every € > 0, conclusion that there exist A1, Ay, ..., Au,B1,Ba, ..., By and C1,Cy, ..., C, such that

X1 xXoxX3 C UZ:lAk

XoxXz3xX; C UZ:lBk

X3 x X1 xX, C Ul];l:l Cr
and

diam (Pl (Ak)) 24 (Fl (Xl X Xp X X3)) +€,

diam (G1 (Ax)) < ¢, 4)

IN

diam (Pz (Bk)) < «a (Pz (X1 X X5 X X3)) +€,
diam (G2 (By)) < €, (5)

diam (F5 (Ck)) < «a (F (X1 X Xp % X3)) + €,
diam (G3 (Cy)) < e (6)

Let k € {1,2,...n} be arbitrary. Then for every ay,a, € Ax,b1,bz € By and c1, ¢2 € Cy we have
1T (a1) — T1 (@)l IF1 (a1) = F1 @)l + ¢ (IIG1 (a1) — G1 (a2)l]),

T2 (b1) = T2 (L)l < |[F2(b1) = F2 (b2)ll + ¢ (IG2 (b1) — G2 (b)),
IT3(c1) =Tz ()l < IF3(c1) = F3(c)ll + ¥ (IG5 (c1) = Gz (c2)l),

therefore from the properties y we obtain

A

diam (T1 (Ax)) < diam (F1 (Ax)) + ¢ (diam (G1 (Ax))),

diam (T2 (Bx)) < diam (Fy (By)) + ¢ (diam (G2 (Bk))),

diam (T3 (Cy)) < diam (F3(Cy)) + ¢ (diam (G3 (Cy))) .
Hence from (4), (5) and (6)

diam (T1 (Ak)) < « (Fl (X1 X X5 X X3)) + €+ ll) (6) ,

diam (T2 (Bk)) < (Fz (Xz X X3 X Xl)) +€+ 1/1 (6) ,

diam (T (Cy)) < a(F3(X3x Xy xXp))+e+ Y (e).

Since € is arbitrary and ¢ is a continuous and nondecreasing function thus

a(Ti (X1 X Xo XxX3)) < a(F1 (X1 xX2XX3)),
a(T2 (X2 x X3 xX1)) < a(F2(X2xX3xX1)), @)
a(T3 (X3 x X1 xXp)) < a(F3(X3 X X1 X Xp)).

Now we show that F satisfying in the following condition

a(F1 (X1 xXoxX3)) < o(u(X1),uX2),u(Xsz),
a(F2(Xa X X3 X X1)) < ¢(p(Xa), p(Xs), 1 (X1)), (8)
a(F3 (X3 x X1 X Xp)) < ¢ (p(Xz),u(X1),p(X2).
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For this, let x,u € X1, y,v € Xp, z,w € X3 then we have

IFs (v, y,2) - Frwo,w)| < ¢ (I —ull, |ly = ||, llz - wll)

< ¢ (diam (Xq) ,diam (X3) , diam (X3)),
||F2(y,z,x)—F2(v,w,u)” < qb(”y—v ,||z—w||,||x—u||)

< ¢ (diam(Xp), diam (X3), diam (X4)),
||F3(z,x,y)—F3(w,u,v)|| < cp<||z—w||,||x—u||, y—v”)

< ¢ (diam (X3) , diam (X1) , diam (X5)),

and therefore

diam{F1 (X1 X Xo X X3)} < ¢ (diam (X1),diam (Xy) , diam (X3)),
diam{F, (X, X X3 x Xq)} < ¢ (diam (Xp) , diam (X3), diam (X1)),
diam (F3 (X3 X X1 X Xp)} < ¢ (diam (X3) , diam (X1) , diam (X)),

By definition of Kuratowski measure of noncompactness we have:

a(Fi (X1 X X3 X X3)) < ¢ (u(X),p(X2), 1(X3)),

a(F(X2xX3xX1)) < ¢(u(X2),u(Xs),u(X1)),

a(F3(X3 X X1 X X2)) < ¢ (u(Xs),u(X1), 1 (Xa)).
Now from (7) and (8)

a(Ti (X1 X X2 xX3)) < ¢(u(Xy),u(X2),u(Xs),

a(Ta(XaX X3 xX1)) < ¢ (p(X2),u(Xs), (X)),

a(T3(Xzsx X1 x X)) < ¢ (u(X3),u(X1),u(X2).

Since each T; is continuous operator fori = 1,2,3, so by the Theorem 3.9 the proof is complete. [

4. Applications and Examples

Now we are going to describe some measure of noncompactness in the function space BC (IR ;) discussed
previously. Let us briefly recall that BC (IR+) denotes the space of all real functions defined, continuous and
bounded on R, with the standard supremum norm, i.e.

|lx|l = sup {|x (#)| : t = O} .

We will use a measure of noncompactness in the space BC (R.). In order to define this measure let us
fix a nonempty bounded subset of BC (R,), this means that X € Mpc(r,). Fix numbers e > 0, T > 0 and a
function x € X. Let us define the following quantity denote by w (x, €) the modulus of continuity of x on
the interval [0, T], i.e.

ol (x,€) = sup {lx(t) —x(s)| : £,s € [0, T],|t —s| < €} .

Moreover, let us put v’ (X, €) = sup {wT (x,€):x € X} is the modulus of quantity of the set X. Since the
function e — T (X, €) is nondecreasing, we infer that there exists a finite limit linga)T (X, €) . We denote this
€

limit by w{ (X), i.e., we put

wg (X) = gg&aﬁ X e).
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Next, let us define the quantity wy (X) by putting wy (X) = %im a)g (X).If t is a fixed number from IR, let

us denote

X)) ={x@®):xeX}.

Notice that the quantity wg (X) is not a measure of noncompactness in the space BC (R.) . To show this
fact, let us take the set X={x, : n = 1,2, ...}, where x,, : R, — R s the function defined in the following way

) = sint(t+n—1) forte[n-1,n]
i) = 0 otherwise.

Obviously X € Mgcr,). Moreover, it is easily seen that wg (X) = 0, but X is not relatively compact in
BC(R,) since ||x, — x|l =1 form #n,n,m =1,2,... (See [10], page 6).
Finally, consider the function y defined on Mpcr,) by formula

1 (X) = wo (X) + lim supdiamX (¢) ©)

t—00

where
diamX () = sup {|x ® - y(t)( 1X, Y € X}

It is shown that the function u (X) defines a sublinear measure of noncompactness in the sense of
accepted Definition 2.1.

Now we present an application and an example and resolve the following system of nonlinear integral
equations:

_ (& ),y € 0),2(E ),
X(0)= A1 )+ I (6 E (), Y& (1),2(E O) + f ( P g 6o o ) 50,2 (s D) s

B Ly (&), z(Ea (1), x (&2 (1)),
Y () = Ax () + I (1, y (52 (1), 2 (&2 (D), X (&2 (B)) + fz( P g6y (e 9,2 a9 (g D) ) .
t/ 4 (53 (t)) X (53 (t)) 'Y (63 (t)) s )
(7" g5 (45,2 (13 9), x (13 5)) , y (13 (5))) s
(10)

2(8) = As () + s (6,2 (55 (B), (& (), y (& () + o (

For this consider the following assumptions:
(i) the functions A;(t) : R, — R are continuous and bounded with M; = sup {|A; (t)| : t € R,}.
(ii) the functions &;, B;, 1i : Ry — R, are continuous and &; (t) — oo ast — oo.
(iif) the function ¢ : Ry — R is continuous and there are positive constants a, 6 such that
lp () = @ (82)| < 511 = al*
for any t1,t, € Ry and moreover, ¢ (0) = 0.

(iv) the functions defined by t — ) £i(£,0,0,0, 0)| and t — |h; (t,0,0,0)| are bounded on R4, i.e.

M, sup (| (£,0,0,0,0)| ,t € R, } < oo,
M, sup{lh; (£,0,0,0)|,t € Ry} < oo.

1
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(v) the functions f; : Ry X RXRXRXR — R and #; : Ry X R X R X R — R are continuous and

there is a function ¢ € @, and there are three nondecreasing continuous functions 0; : R, — R
with 6; (0) = 0 such that

y—0

|h,- (t,x,y,2) - hi(t,u,v, w)| < %(p (lx -u, ,lz— wl)

and

|fi(t,x,y,z,p)—ﬂ(t,u,v,w,q)| < %q‘)(lx—ul,}y—v ,|z—w|)+ 6,-(|p—q|)

forany ¢t > 0,and forall x,y,z,u,v,w € R,.

(vi) the functions g; : Ry X Ry X R X R X R — R are continuous function such that

Bit)
lim | |9: (t,5,x (1)), y (1)), 2 (1 (5))) = g: (£,5,u (1 (5)), 0 (7 (5)), w (1 (5)))| ds = O (11)

t—00
uniformly with respect to x, y,z,u,v,w € BC (R;), where

Bit)

M;”=sup{’ - aitsx@E),y (1), 2 (1) ds ,tem,x,y,zeBC(M}-

(vii) there exists a positive solution p of the inequality

M; + i (r,1,1) + M; + M[ + 0; (5:M") < p. (12)

Theorem 4.1. Suppose that the conditions (i)-(vii) holds. Then E.q.(10) has at least one solution
in the space BC (Ry) X BC (R4) X BC (R4).

Proof. Consider the following three operators

_ t,x (El (t)) 'Y (él (t)) ,Z (61 (t)) ’
T (x,y,2) = A1 () +h (8, x (& (1), y (&1 (B), 2 (&a (f)))+f1( (p(j(“)ﬁl(t) 1 (65,3 (0 9), ¥ (11 (5)),2 (1 (5))) ds )
ty(E2(1),z (&2 (1), x (&2 (1), )

Gy 2) = A Oty (0,2 G O) GO ( o 92 (15,9 (1), 2( ), x (2 ())) ds

t/ Z (53 (t)) X (53 (t)) 'Y (53 (t)) ’ )

T5(x,y,2z) = As () +h3 (t,z (&3 (1), x (&3 (1), y (&3 (D) + f3 ( (p%ﬁs(t) g5 (15,2 (15 ), ¥ (1 9)) , ¥ (13 (5))) ds

Since the proof is similar for all of three operators T1, T, and T, so we present it for one of the operators e.g. T1.
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First, since Ay, f1, h1 are continuous. Then the operator Ty is continuous. Moreover for x,y,z € BC (R;)

Ar (D) + (8 x (&1 (D), y (&1 (D), z (&1 (1)
+f1( " t,x (&1 (), y (& @),z (1), )
o, g1 (ts,x(1 (), y(m (5)),2 (1 (5))) ds
<JAL )]+ |l (8, x (& (D), y (&1 1),z (E1 (1)) = B (£,0,0,0)
tx (&1 (), y (& ®),z(E 1),
*{f{q%ﬁ”%@aum@»ymumzmumwﬂ}‘ﬂ“aaam

+ 1l (£,0,0,0)| + |1 (£,0,0,0,0)|
<My + 56 (& )1y 63 @)

|T1 (x, y,z)| =

|

Nz (& ®))
+ 20 (W)L |y @ O] @ 0))

B1(t) ) ,
cor(lof [ sox @),y @),z n )+ 01

< My + My + M + (Il ||y]] 1zl

~—

B1(t) @
+61(q0( fo g1(t,s,x(m (), y(m(s)),z(m (S)))dS) )

< My + M, + M+ (Il Jy]], 12l + 01 (5:0])
<p.

Hence Tq (BP X BP X BP) C B, which implies that Ty is well defined.
Now we prove that Ty is continuous on BP X Bp X B. For this taking (x,v,z) € Bp X BP X Bp and € > 0 arbitrary.

Moreover, consider (u, v, w) € BP X Bp X BP with ||(x, v,z)— (u,v, w)”BC(]R IXBCRXBCR,) < 5.
Now we have

hy (8, x (&1 (1), y (&1 (1), 2 (&1 (1))
—hy (£, u (&1 (), 0 (&1 (£), w (&1 (1))

( tx (& (), y (&), z(E& 1), )
h

|T1 (x,y,2) = T1 (u,v, w)| <

. U gu (85, (m (1), y (m (9), 2 (1 (1)) s
—f ( t/ u (51 (t)) ;0 (él (t)) ;W (él (t)) s )
o g1 (5,0 (m (), 0 (m (), w (m (1)) ds
<

1¢(u@mnrwmaamJy@mm—v@Mﬂw)
Iz (&1 (D) — w (&1 (1))

2
1¢( Ix (&1 (B) —u (&1 (D), |y (&1 (D) — v (&1 (D)), )
2 Iz (&1 () —w (&1 (D))

o ([ 91 15,2 (m ©), 5 (1 9,2 6) )
o (£ 915,101 ), 001 0, 0 (1 () )
< ¢ (ke —ull, [ly - o], Ilz = wl)

f M(( ts,x(11()), y (1 9), 2 (m 5)) ))ds
o\ =g (b5, u(m ), 0(m ), w(m ()

+

+ 64

+61|6

[y

!
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In addition from (vi) , there exists L > O such that if t > L then

Al t,s,x(m1(5)), v (11 6)),2(m (5)) :
o [‘3 l (9( —g1 (5,10 ), 0 (0 6), 0 (11 5) ))d
forany x,y,z,u,v,w € BC (R;).

Now we consider two cases

1) Ift > L, then we get

||T1 (x/ %Z) - Tl (M,’U,ZU)H < (P(g/ gl g) + g = €.

Cy) Ift € [0, L], then by the arqument similar

to those given in

|T1(x v,z) =T (u,0, w)|<¢1(; ; ;)

0, [6 fﬁl(t) (91( t,s,x(m (s),y(m(s),z(m(s)) ))
0

—g1(t,s,u(m(s),0(m (), w(m (s)))
< g + 601 ((51 (‘B%a) (6))a) ’

a)
where

w(e):sup{ |g1(tsxy,z) gl(tsuvw)| tel0,L], se[Oﬁl] }

x,y,z,u,0,w € [-p,p], z) — (uvw)||<—

and Bt = sup {B1 (t) : t € [0, L]}

By using the continuity of g on [0, L] X [0, ﬁﬂ X [=p, p] x[-p, p] X [-p., p] we have w (€) — 0ase — 0 and
by continuity of 61 we get 61 (61 (ﬁ%a) (e))a) — 0ase — 0.

Hence Ty is continuous on BC (R,) X BC (R;) X BC (R;).

Now we only need to show that Ty satisfied the conditions of Theorem 3.9. To prove that let L,e € R, and
X1 X Xa X X3 be an arbitrary nonempty subset of B, and take t1,t, € [0, L], such that |t; — | < €.

Without loss of generality, we may assume that p1 (t1) < 1 (t2) and we assume that (x, y,z) € X1 X Xz X X3.

|T1 (x,y,2)(t2) — T2 (x,y,2) (t1)|
< |Aq (t2) — Ax (1)

|l (2, x (£ (1)), y (& (R2)), 2 (& (82))) = Ty (11, x (& (1)), ¥ (& (1)), 2 (& (1))
f (tz, x(E(R),y(E (), z(E (1), ¢ ( foﬁl(m g1 (t2,5,x(1(3)), y(n(s)),z(1(s))) dS))
(b x €@y EE) 2@, ([ 01 (s 21 6),y (16,206 ds))

+
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hy (t2, x (E(t2)), y (& (t2)), 2 (£ (t2)))
—h1 (t2, x (E(t)), y (E(t)),z(E(H)))

hy (t2, x (& (1)), y (E(t)),z(E(f)))
—h1 (t2, x (& (1)), y (£ (t)),z(E (1))

il 2@,y €D, 2E @) 0 (510252 (16, 5 (06) 2 () )
~fi (tz x(E(h),y(E(h),z(E(H)), (fﬁl(z 91(t2,8,x(1(5)), ¥ (1)), 2 (1 () ds
filtx @),y E @),z @) o (7 g1 (253 (16, ¥ (19,2 (09 )
~fi (h x(E(h),y(E(h),z(E(H), (fﬁl(z 91(t2,8,x(1(5)), ¥ (1 (), 2 (1 () ds
(b x €@ yE@) zE @ e (f gitsx00), y(019), () ds)
~fi (t1 x(E(h),y(E(h),z(E(H), (fﬁl(z 91(t,8,x(1(), ¥ (1), 2 (1 () ds
fif v @ @),y € @), € @) ([ 91 (25,5 (1), y (06, 210 )
-fi (tl,x (), y(E(t)),z(E(H)), (fﬁl(l 91 (t1,5,x(n(s)), ¥ (n(s)),z(n(s))) ds

<w' (A1) + §¢ (lx (&1 (t2) — x (&1 (W), 1y (&1 (k) —y (& (tl))| Nz (&1 (t) —z (&1 (k

<|Aq (t) = Ay (b)) +

+

~———

SN— S

~ —
S~~——

)))

+ @l (I, €) + %qﬁ (I (&1 (82)) = x (&1 (B, [y (1 (2)) = y (&1 (W))], 2 (&1 (12) = 2 (&1 (1))
B1(t2)
t 797 7 7 d

RV (I (5 652093 0102009 y

—p (6" 91 (1,53 (1 ),y (1 9,2 00 5))) )

B1(t2)

+ 01 ( jl; g1(t,s,x(n1(8)), y(m (8)),z(m (S)))’)
<" (A1,€) + @) (,€) + ¢ (0 (v, 0" (E1,6)), 0 (1,07 (£1,0)), 07 (2,07 (£1,€)))
+ @l (fi,6) + 01 ((Btwl (g1,€)) + 01 (ke (B1,0)) "),

where

@' (A1,€) = sup {|A1 (1) = A1 ()] : t1, 12 € [0, L], |ty — o] < €}

(h1 €) = sup {|h1 (t2,x,y,2) — 1 (11, x, y,z)| ittt €[0,L], |l —tl <e€,xy,z€[-p, p]},

o (&1,€) =sup & (h) — &1 ()| t, b €[0,L], | — k] <€},

o' (x,w (&1,€)) = sup{lx (b)) = x ()] : b, 2 € [0, L], Ity — ol < @ (&1, €)},
k=pL sup{|g1 (t,x,y,z)| :te[0,L],s€[0,BL],x y,z€[-p, p]},

“)Z,k (fie)= sup{ |f1 (t,x,y,2,p) — f1(t,x, y,z,p)| ittt €[0,L],x,y,z€ [-p,pl.p€E [—6k"‘1,6k“1]},
a); (g1,€) = sup {|gl (t1,5,%,y,2) — g1 (ta, 5, x, y,z)| ittt €[0,L], |t —tal <e€,5€[0,BL],x, v,z € [-p, p]},
@' (B1,€) = sup {|ﬁl (t) = p1 (t2)| tti, b €[0,L], |t —to] < 6}-

Since (x, y, z) is an arbitrary element of X3 X X, X X3, we obtain
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0" (T1 (X1 X X2 X X3),€) < 0 (A1, €) + w) (,€) + ¢ (0" (v, 0" (£1,)), 0" (y,0" (£1,6)), 0 (z,0" (£1,6)))

o

+ !l (fi,€)+ 0 ((Brwf (91,0) ) + 01 ((keo" (B1,€))"). (13)

Since f, g, and h are uniformly continuous on [0, L] X [—p, p] X [-p, p] X [-p, p] X [-0k?, 6k*], [0, L] X [O, ‘BL] X

[=p,p] X [=p, p] X [=p, p], , .

[0, L] X [-p, p] X [=p, p] X [—p, p] respectively, we obtain w’flk (f,€) — 0, w; (g,€) — 0, wy (h,€) — Oas
€ — 0.

Moreover, because the functions &1, 1 and Ay are uniformly continuous on [0, L], we have that wT (&1,€) — 0,
ol (B1,€) — 0, w! (A1,€) — 0ase — 0.

By the assumption (v), since O are nondecreasing continuous functions with 0 (0) = 0 and k is finite, therefore we
have

0 ((ﬁng (g, e))a) +6 ((ka)T (B, e))a) — 0

ase — 0.
Now taking the limit from (13), we derive that

wp (T1 (X1 X Xz X X3)) < ¢ (wph (X1), @5 (Xa), ) (X3)) (14)

ase — 0.
When letting T — oo in (14) we get

wo (T1 (X1 X X3 X X3)) < ¢ (wo (X1), wo (X2), wo (X3)). (15)

By the same method, one can show that

wo (T2 (X2 X X3 X X1)) < ¢ (wo(X2),w0(X3),wo(X1)),
wo (T3 (X3 X X1 X X2)) < ¢ (wo(X3),wo(X1),wo(X2))- (16)

On the other hand
|T1 (v, y,2)(H) = T1 (u,v,w) (t)|
< (60 (61 (0, /(61 (0,261 )~ (6, (E3 (), (61 (), 0 (&1 ()
At @O,y E 0,200 ([ 9151 0 ©), v 0n 6,2 0n ) ds)) |
At @ @), 0 00 E 00§ 9 Cs 0 6),0 0 )0 0m ©)ds)

+

<
+

NI N =

0 (b (&1 () = 1 (& O, |y (& ) = 0 & )] 261 ()~ w0 (& D)
O (b (€ (0) = u (& O, |y 6 )~ 0 & O] & ) -0 & 0))
o [ o (M 9105301 ),y (1 9,2 0 (1) ds) ]

(" 91 s 1 59,01 900 (1 )
< iam Xy (&1 (), diamXa (€1 (), diamXs (& (1)

B1(t)
fo (g1 (ts,x(m ),y (M (5),z(m () — g1 (t,5,u(m (5)), 0 (1 (5)), w (1 () ds

+ 64 (61 ) (17)
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Since (x, y,z), (u, v, w) and t are arbitrary in (17), we get
diamT (X1 X Xz X X3) < ¢ (diamXq (&1 (1)), diamX; (&1 (1)), diamX3 (&1 (1))
fﬁ“” bs,x(m©),ym6),zme) ).
o\ —ar s, u(m (), 0 (m (), w (i (5)))

Thus by (ii) and &1 (t) — oo as t — oo in the inequality (18), then using (11) we obtain

+ 64 (51 J (18)

lim supdiamT; (X1 X X X X3) < ¢ (lim supdiamX; (&1 (1)), lim supdiamX, (&1 (), lim supdiam X3 (& (t))) .

t—00 t—00 t—00 t— 00

(19)

By the same method, one can show that

lim supdiamT, (X, X X3 X X1) < ¢ (lim supdiamX; (&2 (1)), lim supdiamXs (&, (t)) , lim supdiamX; (&, (t))) ,

t— 00 t—00 t—00 t— 00

lim supdiamT3 (X3 X X1 X Xp) < ¢ (hm supdiamXs (&3 (1)), lim supdiamX; (&3 (1)), hm supdzasz (&1 (t)))
t— 00 t—00
(20)

t— 00

If we blending (15), (19) we conclude that

wo (Tl (X1 X Xp X X3)) + lim supdiamTl (X1 X Xp X Xg)

t— 00

< P (wo (X1), wo (X2), wo (X3)) + ¢ (hm supdiamXj (&1 (1)), lim supdiamX, (&1 (1)), lim supdiamX; (& (t)))

t—00 t— 00

t— 00 t—00 t—00

< 3¢

wo (X7) + im supdiamXy (t)  wo (Xp) + lim supdiamX, (t) wo(X3) + lim supdiamX;s (t)
3 ! 3 ! 3 ]

So

p(Xy) p(Xz) p(Xs)
37 3 7 3 ’

%[J(Tl (X1 XX2XX3)) < ¢(

Taking y' = 1u, we obtain
p (T (X1 X Xo X X3)) < ¢ (0 (X1), 1" (X2), ' (X3)).

Where u’ is the measure of noncompactness defined in (9).
By the same method, from (16) and (20) we can show that

(T (XoxXzxXq) < ¢ (Xo),u' (X3), 4 (X1)),
W (Ts(Xsx X1 xX3)) < ¢ (X3), 1 (X1), 1 (X2)

Thus by Theorem 3.9, E.q. (10) has at least one solution in the space BC (R;) X BC (R;) X BC (Ry). O

Example 4.2. Let the system of integral equation
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w= 3+ (50t (1 () 5 4 ) m (L o () (5 + st m (1 ()
B E“ n(1+ 5 @) In(1+ 3By O)In(1+ EO) +s(1+20))(1+ 2 (1) (1+22 (t)) }
n o ds

e (L+22 (1) (1+ 32 () (1 +22(1))

10+ +(5 -2 B0 €+ FO) 6+l ()
HHEH GIn(1+ VS [y @))In(1+ Bz @) In(1+ @) +s(1+2 ) (1+20)(1+2° (t)) ]

el +y31)A+22@1) (1 +x3()

+In(1+14)
20 = 3" + iy + (5 e I 220D + 5 In (L + 4k @) + (5 + 5) I (1+ 3]y 0))
o n(1+ 2 0)In(1+ V& (t)|)ln(1 + U2y @) + 2 (1+24 @) (1+ 4 0) (1 +y (t))
+Inf1+ [ et (1+z4 (1) (1+ x4 () (1+y* (t)
+In(1+ §)
(21)
Where

_t2 2
Ar(t) = fhl(txyz) —e +—1n(1+|x(t)|)+—1n(1+|y(t)) TS

In(1+z@®)),

Al xyz,p) = %e_ + 1 7 In(1 + |x ()] + ln(l + |y(t)|) + — ln 1+ 1z @)]) + ln(l + g)

ln(1+{/_|x(t)|)ln(l+{/_|y(t ()In(l+{/_|z(t )+s(1+x (t))(1+y (t))(1+z (t))

(b5, xy2) = (L2 (O) 1+ 2 0)(1+2 (1)
80 =m0 = Vg0 =Lo@=mn(1+ ) o@sn =1+ ) 00 = 1.
Also
" . o
Ay () = 2+t4 (%, y,2) = e-f + 5 I+ @)+ In(1+]y ()]
;2 Sin(1+ 20,

_ t2 e e
folt,x,y,2,p) = Ee ot m1n(1 O + = In(1+]y)]) + = In(+1z(®)

+1n(1+ g),

In(1+ VS e (®)l) In(1+ 5]y @) Wn(1+ BN +s (1+230)(1+°®)(1+2°®)
e (1+23 (1) (1+ 3 () (1 +2° (1)) ’

()= Vim0 =4620)= VLG50 =In(1+ Z25), 00 = 3

g2 (t,s,x,y,2) =

x|

px) = ln(l + 3)
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And so
£

1 _»
A3 (t) = §€ t,l’l3 (t,x,y,z) m

ln(1+2|x(t)|)+ —ln(l +4|y(®))

2

t
+ 4t2—ln(1 +3|Z(t)|),

2

3
frt,x,y,z,p) = v

+ ln(l + g),
In(1+ Y2 @)) In(1+ V3 [y @)]) In(1+ V2 @) +s2 (1+24 ) (1+y* (1) (1+2* 1))
e (1+ x4 (1) (1+ y* () (1 +2* (1)

t t
éa(t)=t,173(t)=f2,ﬁ3(t)=t2,qf>(t,s,r)=ln(1+ ””),e(t): @@ =1n (1+§)

5 In(1+2x () + < ln (1+4]y@)])+ (? + 1)1n(1 +3z(H))

g3(t,s,x,y,2) =

4

Now we show that all the condition of Theorem 4.1 are satisfied for E.q. (21).
(i) the function Ay (t) = % clearly continuous and bounded with My = sup {JA; (#)| : t e Ry} = %.

(ii) the functions & (t) = 2 1 (t) = Vi, B1(t) =t R, — R, are continuous and tlim &1 () = tlimt = oo

(iii) the function ¢ : Ry — Rwith ¢ (x) =1In (1 + 'x‘) is continuous

1+ 4 2+

=l
n 2+t

5)-m(1+5)
‘ln 1+ > In(1+ >

=i

|l (1) — ¢ (12)]

Ita]
1+ -5

[t1] = |t
= 1(1+ )sl 1+t —t]) <|th —t
n 21 n(l+ |ty — t]) < |t — 1o

with « = 0 = 1. For any t1,t, € Ry, and moreover, ¢ (0) =In(1) =0
(iv) the functions defined by t — (fl (¢,0,0,0, 0)) and t — |hy (¢,0,0,0)| are bounded on Ry, i.e.

—f
M, = suplf1(:0,0,0,0):teR)= 5= 2 <oo,
1 e—t 1
Ml = sup{hl(trororo):tZEIR+}:Zzz<00.

(v) the functions fi and hy are continuous.

Now assume that t € Ry and x,y,z,p, > |v|, and |z| = |w|.Then by using the

Mean Value Theorem for the function ¢ (x) = ln (1 + 'xl) and the fact that ¢(ts,r) = ( + ”5”) € O, we can get
following results:



Dy)
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| (8, %, y,2) = I (8, 1,0, )|
—t —2 —t
S+ S In(+ () + S In(1+]y®)]) + 3+4fz In(1 + [z (5))) ‘

—g oA+ ) - S In( + o (t)) L In (1 + Jw (1))

2

e— (In (1 +x (D) = In (1 + |u (t) (ln (1+|y®)])-n@+ (t)|))‘

2
' (In@+z®) —In(1 + |w (t)l))‘

3+ 4P
Cet| (1@t (10N 2
T ln(1+|u(t)|)‘+ 6 M\ Trpml ) T3 "

1+ z(t)
1+ fw ()

<3 '1 (1 v sz)(lt)l)‘ +5fm (1 : Iyitll |;I<Z;>(|t)|)l ‘3 |1“(1 ' 'ZY)EJ?Z>‘|”')|
ilna + x = ul) + —ln(l +ly-of)+ jiln(1+|z—w|)
S%IH(H|x—u|+|]/;v|+|z wl]:%qb( ~ w|).
So we have
| (8%, y,2) = Iy (1,1, 0,w)| < %qﬁ (be = ul, |y = |, 1z = wl). (22)
D»)

A (¢ x, y,z p)- fi(t
¥l 4 n (1 +x (t)|) + 5t In(1+ ]y (1))
+"—1n(1+|z(t))+ln(1+ Ipl)
B o In(+ ) + 5o In(1+ o (1))
B +"—1n(1+|w(t)|)+ln(1+ i ')
2
1+1¢#2

—2

+ 63 (In(1+z(®)) - In (1 +|w(t)

IN

(In(@+x(®) —In(1 + u(®)))| +

(ln (1+]y @) -In@ +o (t)l))’

2+
ln(1+|p|] In (1+|q}]
2 2

lel

1+ Jx (9) 1+|y ()| 1' (1+|z<t)|)‘ 1 (1+4)
S‘ln(1+|u(t)|)|+‘ln[1+|v(t)l)l+3 " eml) T2 (1-8)

ln(1+|x—u|)+}Iln(1+|y—v()+}Iln(l+|z—w|)+%|p—q|

¢ (1x -

<

< w|)+6(|p—q|).

N W] =
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So we have

wl)+ 0 ), (23)

|f1 (tx,y,2,p) - fi (t,u,v,w,q)| < %(p(

, and |w| > |z| can be done in the same manner for 22 and 23.

the case |u| > |x|, [v] >

(vi) Clearly, g is continuous, Moreover, for each t,s € Ry, and x, y,z,u,v,w € R we have

|g1 (t/ 5, %, ]//Z) ! (t,s,u,v, ZU))
In(1+ Y5lx()]) In(1+ Vs y(8)]) In(1+ 5lz(O)+s(1+22(H) (1+x2(H)) (1+12(1))
_ ef(L+a2(0) (1+12(1)) (1+22(1)
In(1+ 51u(®)) In(1+ Yslo(t)]) In(1+ Vo) )+s(1+12(1)) (1402 (1)) (1+w(£))
- I (T+2 () 1+ 2 () (1+w2 (D)

In(1+ sle(®)]) In(1+ Y5y (1)]) In(1+ 5l2()) 45
_ et (1+22()) (1+12(H) ) (1+22(1) et
- In(1+ Y5u(®)]) In(1+ sl@)]) In(1+ lwB)])
- e (1+12(0) A+02(B) 1 +w2(F)) T
2s
? .
Therefore

Jim f |91 (8,5, x (), y (1)), 2 (1)) = g1 (£,5,u((9) , 0 (1 $)),w (7 s))) ds

t
< lim —ds = lim - = 0,

t— 00 0 e f—o0

uniformly with respect to x,y,z,u,v,w € BC (R,).
Moreover, we have

B(t)
‘ fo 01 (65 2169,y (15)),2 () ds

IA

f 191 (65,2 (15)), ¥ (19)), 2 (7 (5))] ds

< f—ds—%

orany t,s e R,,and x, 1,z € R.
for any y
Thus

B(t)
M1 sup {‘j(; g1(t,s,x(1n()),y(n(s)),z(n(s))ds|:t,s € Ry, x,y,z € BC (]R+)}

IA

sup{é:t20}=r0<oo. (24)

(vii) By choosing M, = ro from (24) along with My = 3, M = 3, M, =}, and & = 1 in the inequality (12), we
obtain the inequality 2 +In (1 +7) + ro < r, which p = 3 is a solution. Consequently, all conditions of Theorem 4.1
are satisfied for the first equation in E.q. (21) and the rest of them, can be proven equivalently.

Accordingly, the system of integral equations of (21) has at least one solution in the space BC (R.) X BC (R,) x BC

Ry).
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