
Filomat 32:17 (2018), 5993–6000
https://doi.org/10.2298/FIL1817993D

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. It is known that the diameter of commuting graph of n-by-n matrices is bounded above
by six if the graph is connected. In the commuting graph of p2-by-p2 matrices over a sufficiently
large field which admits a cyclic Galois extension of degree p2 we construct two matrices at
distance at least five. This shows that five is the lower bound for its diameter. Our results are
applicable for all sufficiently large finite fields as well as for the field of rational numbers.

1. Introduction

The essence of commutativity relation on a given magma A (i.e., a nonempty set equipped
with an inner operation, written as product ab, which is also known as a grupoid) is captured
in its commuting graph Γ = Γ(A). By definition, this is a simple graph whose vertices are all
noncentral elements ofA and where two distinct vertices a, b are connected if they commute inA,
i.e., if ab = ba. As far as we know, the commuting graph was introduced in [4] in an early attempt
towards classification of simple finite groups, although one needs to mention that their graph also
contained the central elements.

Clearly, if A is abelian then Γ(A) is an empty graph (has no vertices). At the other extreme,
there are magmas where no two distinct elements commute. Their commuting graph is null,
i.e. it consists of disjoint vertices with no edges. Such examples exists even in the category of
semigroups. Consider, for example the semigroup on n elements {v1, . . . , vn} with the product
viv j = vi. In those two examples the commuting graph only captures the presence of a complete
commutativity or the complete lack of it.
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However, for important classes of magmas which contain just enough commuting pairs, the
commuting graph can be a powerful tool. Say, in the category of groups, the commuting graph
is able to characterize finite simple nonabelian groups [20]. Similarly, in the category of rings, the
commuting graph is able to distinguish a ring M2(F) of 2-by-2 matrices over a finite field F among
all finite unital rings [16, Corollary 5]. Recently, in [13] the author extended this result and showed
that the commuting graph can distinguish among algebras of bounded operators on a complex
Hilbert space — it can calculate the dimension of the underlying vector space.

On the other hand, every finite graph is an induced subgraph of a commuting graph of a finite
group, see [18]. Unaware of this result, the authors proved in [3] a similar statement, valid also for
countably infinite graphs by essentially the same technique, for induced subgraphs of commuting
graph of B(`2), the algebra of bounded operators on a complex separable Hilbert space. It was also
shown in [3] that not all finite graphs are induced subgraphs of a commuting graph of complex
matrices if the size is kept fixed.

One of the basic properties of a graph is its diameter and connectedness. This question turned
out to be surprisingly hard for the commuting graphs. For example, only recently it was shown in
[11] that a commuting graph of a finite group can have an arbitrary large diameter. In contrast, if a
group has a trivial center then every connected component of its commuting graph has diameter
at most 10, see [17]. More is known for commuting graphs of Mn(F), the algebra of n-by-n matrices
over a field F. If F is algebraically closed and n ≥ 3 then the diameter of the commuting graph
Γ(Mn(F)) is 4, see [1]. This result was of fundamental importance in classifying surjections which
preserve commutativity on complex matrices in one direction only [5]. For other fields it was
shown in [1] that the diameter of a connected commuting graph of Mn(F) is bounded above by 6
and it was shown in [19] that there existsF such that the commuting graph of M219(F) is connected
with diameter 6. In our recent paper [7] we constructed, for each prime p ≥ 7, two similar matrices
A,B ∈ M2p(Q), at maximal possible distance, i.e., at distance 6 in the commuting graph Γ(M2p(Q))
(here, Q denotes the field of rational numbers). In contrast to these results, some peculiarities
appear if one considers finite fields F. Clearly, in this case Γ(Mn(F)) is a finite graph and it is
known to have the following properties (see [8]): if n ≥ 4 is even, then its diameter is 4, if n is a
prime, then it is disconnected, and if n is neither a prime nor a square of a prime (the smallest
such n is 15), then its diameter is at most 5.

Presently, we consider the case of commuting graphs of Mn(F) where n = p2 is a square of an
odd prime p. Our main result shows that, subject to some constraints which are satisfied for every
finite field with sufficiently many elements, the commuting graph has diameter at least 5. We
conclude with, up to our knowledge the first, example of a commuting graph of matrix algebras
with diameter five. We show that this occurs in M15(F) for suitable finite fields F.

2. Preliminaries

Throughout, let p ≥ 3 be a prime, let n = p2, let F be a field, and let C = C(m(x)) ∈ Mp(F) be
a companion matrix of an irreducible polynomial m(x) ∈ F[x] with degree p, so that K := F[C] is
a field extension of F. Also, let GF(pn) be the Galois field of order pn and let Zn be an additively
written cyclic group of order n; if n = p is a prime then Zp has additional structure of a field in
which case we also abbreviate Zp = GF(p).

The following definition will be essential for the construction of two matrices in Mn(F) at
distance at least 5.
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Definition 2.1. For any matrix X ∈Mp(F) we define the block tridiagonal matrix

S(X) :=



I X 0 · · · 0 0

Xp−1 I X
. . . 0 0

0 Xp−2 I
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0
. . . I X

0 0 0 · · · X I


∈Mn(F); n = p2. (1)

A crucial step towards our goal is the construction of a matrix X in the next lemma. For
convenience let us recall here the fundamental theorem of Galois theory. If the field extensionK|F
is the splitting field of some irreducible separable polynomial over F, then it is a Galois extension.
The cardinality of its Galois group equals [K : F], the degree of the extension. In particular, if
K = F[C] for a companion matrix C ∈ Mp(F) of some irreducible polynomial and if its size p is a
prime, then [K : F] = p is a prime, so the Galois group of extension K|F must be cyclic as this is
the only group of prime order.

Lemma 2.2. Let p be a prime and F a field with at least p2(p−1)
2 + 2 elements. Choose C ∈ Mp(F), a

companion matrix of some irreducible monic separable polynomial m(x) ∈ F[x] so that K := F[C] is its
splitting field. Then, there exists a matrix U ∈Mp(F) such that S(U) is invertible, Up

∈ FI,

UK = KU and Mp(F) = K +KU +KU2 + · · · +KUp−1. (2)

Furthermore, φ(X) = UXU−1 (X ∈ K) is a generator of the cyclic group Gal(K|F), and the sum (2) is direct
as a sum of leftK-modules.

Proof. Note that Mp(F) is a central simple F-algebra, K ⊆ Mp(F), |Gal(K|F)| = [K : F] = p, and
p2 = dimF(Mp(F)). By [9, §10, Lemma 2] this guarantees the existence of invertible U ∈ Mp(F)
such that (2) holds and that X 7→ UXU−1 generates Gal(K|F). The only thing that is left for us to
prove, is that U can be chosen in such way that S(U) is invertible. It is obvious that we can freely
interchange Uwith λU for any nonzero λ ∈ Fwithout disturbing any other properties of U. So, let
us denote q(λ) = det S(λU) ∈ F[λ] and observe that by the construction of the matrix S(λU), q(λ)
is a polynomial of degree at most p2(p−1)

2 . Since q(0) = 1, we can conclude that q(λ) is a nonzero
polynomial and hence there exists a nonzero λ ∈ F such that q(λ) , 0, which proves that S(λU) is
indeed an invertible matrix.

3. Main Result

To prove our main result that in the commuting graph of p2-by-p2 matrices (p an odd prime)
over suitable fields we can always find two matrices at distance at least five (see Theorem 3.2
below) it will be beneficial to find an invertible matrix S ∈ Mn(F), such that any two nonscalar
matrices F ∈Mp(K) ⊆Mn(F) and H ∈ S−1Mp(K)S are different. We show in Proposition 3.1 below
that S := S(U) for the matrix U from Lemma 2.2 yields the desired result.

Proposition 3.1. If p-by-p block matrices F,G ∈Mp(K) ⊆Mn(F) are both nonscalar, then F , S−1GS.
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Proof. Let F = (Fi j)
p
i, j=1,G = (Gi j)

p
i, j=1 with Fi j,Gi j ∈ K. Suppose that SF = GS. We need to show that

at least one of the matrices F and G is scalar. Denote by Ei j ∈ Mp(K) ⊆ Mn(F) the block matrix
with identity matrix at the (i, j)-th place and 0’s elsewhere. Choose U from Lemma 2.2 and denote
Û = diag(U, . . . ,U) ∈Mn(F). Expand the matrix S as

S = S0 + S1Û + S2Û
2 + · · · + Sp−1Û

p−1 = I + RÛ + E(p−1) (p−2)Û
2 + · · · + E21Û

p−1

where

R =



0 I 0 · · · 0 0

0 0 I
. . . 0 0

0 0 0
. . . 0 0

...
...

...
. . .

. . .
...

0 0 0 · · · 0 I
0 0 0 · · · I 0


,

Comparing the (i, j)-th block of SF = GS we get
∑p−1

k=0(SkÛ
kF)i j =

∑p−1
k=0(GSkÛ

k)i j. Since each block of
each Sk belongs to K = F[C] we can apply Lemma 2.2 blockwise and using UkFi j = φk(Fi j)Uk we
deduce that SkÛ

kF = GSkÛ
k for every k = 0, 1, . . . , p − 1. With k = 0 we get F = G. With k = p − 1,

we get

E21Û
p−1F = Ûp−1


0 0 · · · 0

F11 F12 · · · F1p
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


= FE21Û

p−1 =


F12 0 · · · 0
F22 0 · · · 0
F32 0 · · · 0
...

...
. . .

...
Fp2 0 · · · 0


Ûp−1.

So F1 j = 0 for every j , 1, Fi2 = 0 for every i , 2 and Up−1F11 = F22U
p−1. Similarly, for every

s = 2, . . . , p − 2, we get E(s+1) s Û
p−sF = FE(s+1) s Û

p−s, so Fsj = 0 for every j , s, Fi ( j+1) = 0 for every
i , s + 1 and Up−sFss = F(s+1) (s+1)U

p−s. Thus

F =



F11 0 0 · · · 0 0
0 F22 0 · · · 0 0
...

...
. . .

...
...

0 0 0
. . . 0 0

F(p−1) 1 0 0 · · · F(p−1) (p−1) F(p−1) p
Fp1 0 0 · · · 0 Fpp


.

Now, with k = 1 we have RÛF = FRÛ, so

Û



0 F22 0 · · · 0 0 0
0 0 F33 · · · 0 0 0

0 0 0
. . . 0 0 0

...
...

...
. . .

. . .
...

...
F(p−1) 1 0 0 · · · 0 F(p−1) (p−1) F(p−1) p

Fp1 0 0 · · · 0 0 Fpp
F(p−1) 1 0 0 · · · 0 F(p−1) (p−1) F(p−1) p


=
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=



0 F11 0 · · · 0 0 0
0 0 F22 · · · 0 0 0

0 0 0
. . . 0 0 0

...
...

...
. . .

. . .
...

...
0 0 0 · · · 0 F(p−2) (p−2) 0
0 F(p−1) 1 0 · · · 0 F(p−1) p F(p−1) (p−1)
0 Fp1 0 · · · 0 Fpp 0


Û.

Thus F(p−1) 1 = Fp1 = F(p−1) p = 0, so F is block diagonal, and UF( j+1) ( j+1) = F j jU, for every j =
1, . . . , p − 1, so F j j = φ(F( j+1) ( j+1)). We now have

F = diag(φp−1(Fpp), φp−2(Fpp), . . . , φ(Fpp),Fpp).

In particular, UFpp = F(p−1) (p−1)U. Looking at the next to last entry in the last row, we see that also
UF(p−1) (p−1) = FppU, so U2Fpp = FppU

2, or φ2(Fpp) = Fpp. Thus, φ2 is also a generator of cyclic group
Gal(K|F) and Fpp is its fixed point, so Fpp ∈ FI. Then F j j = Fpp for every j and matrix F is scalar, a
contradiction.

Theorem 3.2. Let p ≥ 3 be a prime, F be a field containing at least p2(p−1)
2 + 2 elements and let n = p2.

Suppose that F admits a Galois field extension L of degree n with a cyclic Galois group. Then there exist
nonscalar matrices in Mn(F) at a distance of at least 5. If the commuting graph of Mn(F) is connected, it
has a diameter of at least 5.

Remark 3.3. Any finite field with enough elements, and also the field of rational numbers Q satisfy the
conditions of the theorem, see [15]. In the finite case, the commuting graph of Mn(F) is connected, see [2,
Theorem 6]. In the case of rational numbers Q it is not, see [2, Remark 8].

Remark 3.4. In [6, Theorem 3.1] it is proved that Γ(M9(Z2)) is connected with diameter at least 5. We
therefore conjecture that in Theorem 3.2 the condition |F| ≥ p2(p−1)

2 + 2 is superfluous.

Proof. Since Gal(L|F) = Zn has a unique proper subgroup, by the Fundamental Theorem of Galois
theory the field L has a unique proper subfieldK. Moreover, L, hence alsoK, are finite separable
extensions of F so they are simple extensions ([12, Theorem 3.9, p. 95]). Therefore, there exist
β ∈ K and α ∈ Lwith

K = F[β] and L = F[α] = K[α].

Let mα(x) be the minimal polynomial of α over K and mβ(x) be the minimal polynomial of β over
F. Let C ∈Mp(F) be the companion matrix of mβ(x) and let

X = C ⊕ · · · ⊕ C ∈Mn(F).

Then F[X] ' F[C] ' K and, by identifyingK = F[X],

CMn(F)(K) = CMn(F)(F[X]) = CMn(F)(X) = Mp(K) ⊆Mn(F).

Similarly, let A ∈Mp(K) ⊆Mn(F) be the companion matrix of mα(x) ∈ K[x]. ThenK[A] ' L and

CMn(F)(L) = CMn(F)(K) ∩ CMn(F)(A) = Mp(K) ∩ CMn(F)(A) = CMp(K)(A) = K[A] = L.

Also, F[A] = L implies CMn(F)(A) = L. So we have the following picture

F ⊆ K = F[X] ⊆ F[A] = K[A] = L ⊆Mp(K) ⊆Mn(F).
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Now let S ∈ Mn(F) be a matrix defined in (1). We claim that in the commuting graph, the
distance d(A,SAS−1) ≥ 5. To see this, let B = S−1AS and let

A = X0 X1 X2 . . . Xk−2 Xk−1 Xk = B (3)

be the shortest path between A and B. Since X1 ∈ CMn(F)(A) = L = F[A] is nonscalar, either F[X1] =
F[A] and CMn(F)(X1) = CMn(F)(A) = F[A] or F[X1] = K = F[X] and CMn(F)(X1) = CMn(F)(X) = Mp(K).
In the first case, X2 commutes with A, so (3) is not the shortest path. In the second case, we may
assume without loss of generality that X1 = X ∈ F[A]. Similarly, we may assume without loss
of generality that Xk−1 = S−1XS ∈ F[B]. By Proposition 3.1, matrices X1 and Xk−1 are not equal,
thus d(A,B) > 2. Since X2 ∈ CMn(F)(X1), X2 ∈ Mp(K), and similarly Xk−2 ∈ S−1Mp(K)S. Clearly,
also X1 ∈ Mp(K) and Xk−1 ∈ S−1Mp(K)S. Hence, whatever the choice of matrices F ∈ {X1,X2} and
H ∈ {Xk−2,Xk−1}, they are not equal by Proposition 3.1, thus d(A,B) > 4.

4. Concluding Remarks and Examples

Let us show that the commuting graph of a matrix algebra can have diameter equal to 5.
Below we provide a series of examples of such matrix algebras with the size 15-by-15 over
various fields. To wit, let A = C(m(x)) ∈ M15(Z2) be the companion matrix of the polynomial
m(x) = x15 +x5 +x4 +x2 +1 ∈ Z2[x]. It is easily seen that m(x) is irreducible and thatZ2[A] ' GF(215)
is its splitting field (in finite fields, every extension is a normal extension, see [14, Theorem 2.14]).
Let F|Z2 be a finite extension of fields, let F̄ be its algebraic closure and let α ∈ F̄ be a zero of m(x).
Since Z2[α] is a subfield of F[α] we have[

F[α] : Z2

]
=

[
F[α] : Z2[α]

]
×

[
Z2[α] : Z2

]
=

[
F[α] : Z2[α]

]
× 15.

Hence, 15 divides
[
F[α] : Z2

]
=

[
F[α] : F

]
× [F : Z2]. Now, if [F : Z2] is relatively prime with 15,

then 15
∣∣∣ [F[α] : F] ≤ 15, so that [F[α] : F] = 15 in which case m(x) is irreducible over F.

Hence, m(x) is irreducible over a field GF(2t) where t is not divisible by 3 nor by 5, so it is
irreducible over an infinite sequence of field extensions ofZ2. Let F = GF(2t) be such a finite field
extension. Note that A ∈ M15(Z2) ⊆ M15(F) generates a field F[A], isomorphic to GF(215t) and
it is well-known that there are exactly two intermediate subfields between F and F[A], namely
the fields GF(23t) and GF(25t). Also, the multiplicative group Z2[A]∗ = Z2[A] \ {0} of a finite field
Z2[A] is cyclic of order 215

− 1 = 7× 31× 151 = 32767 and one easily checks that the multiplicative
order of A is |A| = 215

− 1. Thus, A generates Z2[A]∗. So, |A31×151
| = 7 = 23

− 1 = |GF(23)∗| and
|A7×151

| = 25
− 1 = |GF(25)∗|. Hence, Z2[A3] = GF(23) and Z2[A5] = GF(25) where

A3 = A31×151, A5 = A7×151.

As such, the minimal polynomials of A3 and A5 have degrees 3 and 5, respectively, so that

GF(23t) = F[A3] and GF(25t) = F[A5].
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Consider a matrix

S =



0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
0 1 0 1 1 0 0 0 0 0 1 1 1 1 1
0 0 1 0 0 1 1 0 0 1 0 0 1 0 0
1 0 1 1 0 1 0 0 0 1 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 0
1 0 1 1 0 1 0 0 0 0 1 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 0 1 0 0
0 0 0 0 0 1 1 0 1 0 0 1 0 1 1
1 0 1 0 0 0 1 0 1 1 0 0 0 1 0
1 1 1 0 1 0 0 1 0 0 0 0 0 1 0
1 0 0 0 1 1 0 0 0 1 0 1 1 1 1
1 0 1 0 1 1 0 0 1 1 0 0 1 0 0
0 1 1 0 0 1 0 0 0 1 1 0 0 1 0
1 0 0 0 0 1 1 1 1 1 1 1 1 1 1
0 1 0 1 1 1 1 1 0 0 1 0 1 0 1



∈M15(Z2) ⊆M15(F).

One can check that S is invertible and that

CM15(Z2)(A3) ∩ CM15(Z2)(S−1A3S) = CM15(Z2)(A3) ∩ CM15(Z2)(S−1A5S)

= CM15(Z2)(A5) ∩ CM15(Z2)(S−1A3S) = CM15(Z2)(A5) ∩ CM15(Z2)(S−1A5S) = Z2I.

Observe that the dimension of the intersection of centralizers does not change under field exten-
sions because the intersection C(C)∩ C(D) corresponds to a solution of a system of homogeneous
linear equations XC − CX = XD − DX = 0 with coefficients (i.e., matrices) C,D in the same field
Z2. Hence, we also have

CM15(F)(A3) ∩ CM15(F)(S−1A3S) = CM15(F)(A3) ∩ CM15(F)(S−1A5S)

= CM15(F)(A5) ∩ CM15(F)(S−1A3S) = CM15(F)(A5) ∩ CM15(F)(S−1A5S) = FI (4)

in any field extension F|Z2 in which the polynomial m(x) is irreducible.
Thus, if

A = X0 X1 X2 X3 X4 = S−1AS

is a path of length 4 in the commuting graph of M15(F), then we may assume that F[X1] ∈
{F[A3],F[A5]} and we may likewise assume that F[X3] ∈ {S−1F[A3]S,S−1F[A5]S}. Note that there
is no intermediate subfield between F and F[A3], so every element in F[A3] \ F generates F[A3].
Similar arguments are valid for F[A5]. Thus, as far as commutativity is concerned, we may well
assume that already X1 ∈ {A3,A5} and likewise X3 ∈ {S−1A3S, S−1A5S}. Then, X2 belongs to
the intersection of the corresponding centralizers which by (4) consists of scalar matrices only, a
contradiction.

Consequently, the distance between A and S−1AS is at least five. In combination with [7] this
shows that diam Γ(M15(F)) = 5 for every finite field extension F|Z2 in which the polynomial m(x)
is irreducible.

We acknowledge that all the relevant computations in this example were done by GAP, [10].
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