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Abstract. In this paper, we introduce a notion of the J-kernel of a bounded linear operator on a Krein
space and study the J-Fredholm theory for Krein space operators. Using J-Fredholm theory, we discuss
when (a-)J-Weyl’s theorem or (a-)J-Browder’s theorem holds for bounded linear operators on a Krein
space instead of a Hilbert space.

1. Introduction

The Fredholm theory is usually described by the spectral theory of bounded linear operators with
finite dimensional kernel and cokernel (called Fredholm operators) and such operators naturally arise in the
Fredholm integral equations. In particular, Fredholm operators are used to find an approximate inverse to a
differential operator or a fundamental solution of a partial differential equation [9]. Hermann Weyl noticed
that the elements in the spectrum of a normal operator N which can be removed by the compact perturbation
of N are precisely the eigenvalues of finite multiplicity which are isolated points of the spectrum of N. It
was proved by many people that there are several classes of operators including normal, hyponormal and
Toeplitz operators for which Weyl’s observation is true. In the local spectral theory, one of basic concepts
is the single-valued extension property which arises in the spectral decomposition theory and was also
known to be useful for the study of operators satisfying (a-)Weyl’s theorem [7].

LetK be a Hilbert space with a positive definite inner product 〈·, ·〉. Suppose that a selfadjoint involution
J onK , i.e., J = J−1 = J∗, is given to produce an indefinite inner product

〈x, y〉J = 〈Jx, y〉 (x, y ∈ K ).

In this case, we say that the pair (K , J) is a Krein space and that 〈·, ·〉J is the indefinite inner product given by
J. Due to such indefinite inner product, a Krein space K can be decomposed into a direct sum of a Hilbert
space K+ and the anti-space K− of a Hilbert space. The theory of a Krein space has attracted increasing
attention in both mathematics and physics and has proved to be an effective tool for the research areas
which are described by an indefinite inner product. For the study of massless or gauge fields, the positivity
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of an inner product in the space has to be abandoned, but we need an indefinite inner product because
of useful properties such as Lorentz invariance. We refer the book [4] for a detailed information of Krein
spaces.

The purpose of this paper is to introduce a notion of theJ-kernel of a bounded linear operator on a Krein
space and to study theJ-Fredholm theory for operators on a Krein space instead of a Hilbert space. Using
such aJ-Fredholm theory, we discuss for which Krein space operatorsJ-Weyl’s theorem orJ-Browder’s
theorem hold. This paper is organized as follows. In section 2, we introduce basic notions of some operators
on a Krein space and review various spectra of operators, (a-)Weyl’s theorem and (a-)Browder’s theorem
for bounded linear operators on a Hilbert space. In section 3, we first introduce a notion of theJ-kernel for
a Krein space operator. We also introduce notions of J-Fredholm, J-Weyl and J-Browder operators and
study their properties. Section 4 is devoted to the study of (J-)Weyl’s theorem and (J-)Browder’s theorem
for J-selfadjoint operators and J-unitary operators.

2. Preliminaries

LetK andH be complex Hilbert spaces. We denote by L(K ,H) the set of all bounded linear operators
from K into H , and abbreviate L(K ) = L(K ,K ). If T ∈ L(K ,H), we write ker(T) for the kernel of T and
ran(T) for the range of T.

Let (K , J) be a Krein space equipped with an indefinite inner product 〈·, ·〉J. Throughout this paper,
∗ denotes the Hilbert space adjoint with respect to the inner product 〈·, ·〉, whereas # denotes the Krein
space adjoint, called the J-adjoint, with respect to the indefinite inner product 〈·, ·〉J. We easily see that the
J-adjoint T# of T is given by

T# = JT∗ J

for the selfadjoint involution J. We say that the operator J is a fundamental symmetry, and that both
P+ = (I + J)/2 and P− = (I − J)/2 are fundamental projections. The direct sum K = K+ ⊕K− will be called the
fundamental decomposition, whereK+ = P+(K ) andK− = P−(K ). We easily see that fundamental projections
P+ and P− are mutually orthogonal. Two important differences between Hilbert spaces and Krein spaces
are the existence of nontrivial neutral and isotropic elements.

Now, we briefly review some notions of various spectra, which are used in this paper. We refer [2, 12]
for more detailed information. Let T ∈ L(K ) and k ∈N. The family {ker(Tk)} forms an ascending sequence
of subspaces. We call the ascent of T for the smallest nonnegative integer k for which ker(Tk) = ker(Tk+1)
holds. We also see that the family {ran(Tk)} forms a descending sequence. The smallest nonnegative integer
k for which ran(Tk) = ran(Tk+1) is called the descent of T. We say that T ∈ L(K ) is upper semi-Fredholm if it
has closed range and finite dimensional kernel and lower semi-Fredholm if it has closed range and its range
has finite codimension. If T is either upper or lower semi-Fredholm, then T is called semi-Fredholm, and
the index of T is defined by ind(T) := dim ker(T)− dim ker(T∗). If both dim ker(T) and dim ker(T∗) are finite,
then T is called Fredholm. An operator T is called Weyl if it is Fredholm of index zero and Browder if it is
Fredholm with finite ascent and finite descent.

For T ∈ L(K ), we write σ(T), σp(T), σa(T), σs(T), and σcom(T) for the spectrum, the point spectrum, the
approximate point spectrum, the surjective spectrum, and the compression spectrum of T, respectively. We
review several spectra as follows;

(a) the left essential spectrum σle(T) := {λ ∈ C : T − λ is not upper semi-Fredholm},

(b) the right essential spectrum σre(T) := {λ ∈ C : T − λ is not lower semi-Fredholm},

(c) the essential spectrum σe(T) := {λ ∈ C : T − λ is not Fredholm},

(d) the Weyl spectrum σw(T) := {λ ∈ C : T − λ is not Weyl},

(e) the Browder spectrum σb(T) := {λ ∈ C : T − λ is not Browder}.
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Evidently, we have the following inclusions

σle(T) ∪ σre(T) = σe(T) ⊆ σw(T) ⊆ σb(T) = σe(T) ∪ acc σ(T),

where we write acc σ(T) for the set of all accumulation points of σ(T).
Let iso σ(T) be the set of all isolated points of σ(T). We write π00(T) := π0 f (T) ∩ iso σ(T) where

π0 f (T) = {λ ∈ C : 0 < dim ker(T − λ) < ∞}. We also write p00(T) := σ(T) \ σb(T), which is the set of all Riesz
points of T. We say that Weyl’s theorem holds for T if σ(T) \ σw(T) = π00(T), and that Browder’s theorem holds for
T if σ(T) \ σw(T) = p00(T), equivalently, if σw(T) = σb(T). Hermann Weyl proved that Weyl’s theorem holds
for hermitian operators. Weyl’s theorem has been extended from hermitian operators to several classes of
operators by many authors [3, 5, 7].

We recall the Weyl essential approximate point spectrum σea(T) and the Browder essential approximate point
spectrum σab(T) given by

σea(T) :=
⋂
{σa(T + K) : K ∈ C(K )},

σab(T) :=
⋂
{σa(T + K) : TK = KT and K ∈ C(K )}

whereC(K ) is the set of all compact operators onK . We say that a-Weyl’s theorem holds for T if σa(T)\σea(T) =
πa

00(T) and that a-Browder’s theorem holds for T if σa(T) \ σea(T) = pa
00(T), where πa

00(T) := {λ ∈ iso σa(T) : 0 <
dim ker(T − λ) < ∞} and pa

00(T) := σa(T) \ σab(T). Then we see obvious implications;

(a) a-Weyl’s theorem =⇒ a-Browder’s theorem =⇒ Browder’s theorem,

(b) a-Weyl’s theorem =⇒Weyl’s theorem =⇒ Browder’s theorem.

3. J -Fredholm Operators on Krein Spaces

In this section, we denote by (K , J) a Krein space equipped with an indefinite inner product 〈·, ·〉J. For
an operator T ∈ L(K ), let ker(T) = {x ∈ K : Tx = 0}. We define the J-kernel of T, J- ker(T), by

J- ker(T) := {x ∈ K : 〈Tx,Tx〉J = 0}.

We can easily see that the J-kernel of T has the following properties;

Proposition 3.1. Let T ∈ L(K ). Then the following statements hold.

(i) J- ker(T) is closed.

(ii) ker(T) ⊆ J- ker(T).

In general, if T has a closed range, then the dimension of ker(T) is equal to the codimension of the
range of the adjoint T∗. However, we see from Proposition 3.1 that even if the range of T is closed, that the
dimension of J- ker(T) may not be equal to the codimension of the range of the J-adjoint T#. Indeed, it is
observe that dimK/ran(T#) = dimK/ran(T∗) = dim ker(T) ≤ dimJ- ker(T) since ker(T) may be properly
contained in J- ker(T). Moreover, the family {ker(Tk)} forms an ascending sequence of subspaces, but the
sequence {J- ker(Tk)}may not be ascending.

Example 3.2. We consider the 3-dimensional Krein spaceK with an indefinite inner product given by the symmetric
operator J acting on K defined by J(x, y, z) = (−x,−y, z). Let T be a linear operator acting on K defined by
T(x1, x2, x3) = (x2, x3, x1). Then (

√
2, 1, 1) belongs to J- ker(T), but does not belong to J- ker(T2). Indeed, since

T(
√

2, 1, 1) = (1, 1,
√

2) and T2(
√

2, 1, 1) = (1,
√

2, 1), we have that

〈T(
√

2, 1, 1),T(
√

2, 1, 1)〉J = 〈(−1,−1,
√

2), (1, 1,
√

2)〉 = 0,

〈T2(
√

2, 1, 1),T2(
√

2, 1, 1)〉J = 〈(−1,−
√

2, 1), (1,
√

2, 1)〉 = −2.

Unlike the kernel ker(T), theJ-kernelJ- ker(T) is not an invariant subspace of T, that is, the inclusion T(J- ker(T)) ⊆
J- ker(T) does not hold.
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Though, in general, the sequence {J- ker(Tk)} is not ascending, we would like to define a notion like an
ascent. We define the J-ascent by

ϕ(T) := sup
k

dim(J- ker(Tk)).

If J- ker(T) is an invariant subspace of T, it is obvious that Tk(J- ker(T)) is contained in J- ker(T) for each
nonnegative integer k, so that the collection {J- ker(Tk)} is an ascending sequence. Therefore, if J- ker(T)
is an invariant subspace of T and ϕ(T) := p < ∞, then this means that J- ker(Tp) = J- ker(Tp+1) for such an
integer p > 0.

We say that T ∈ L(K ) is aJ-Fredholm operator if ran(T) is closed, dimJ- ker(T) < ∞ and ran(T) has finite
codimension. In this case, we define the J-index of T by

J-ind(T) := dimJ- ker(T) − dim(K/ran(T)).

It follows from Proposition 3.1 that ind(T) ≤ J-ind(T). We also see that if T is J-Fredholm, then it is
automatically Fredholm. But, the converse does not hold, in general. We will give the example which is
Fredholm, but not J-Fredholm.

Example 3.3. Let T be the unilateral shift on l2(N) and J be defined by

Je2n−1 = e2n and Je2n = e2n−1.

Then J is a fundamental symmetry with J∗ = J−1 = J on l2(N). If x := (xn) ∈ J-ker(T), then we have that

0 = 〈Tx,Tx〉J = 〈JTx,Tx〉 =

∞∑
n=1

(
x2nx2n+1 + x2n+1x2n

)
Hence, we have that dimJ-ker(T) = ∞, which implies that T is notJ-Fredholm. However, we see that dim ker(T) = 0
and dim ker(T∗) = 1, so that T is Fredholm.

Lemma 3.4. Let T ∈ L(K ) and letM be a subspace of K such that dimK/M = n < ∞. If T is J-Fredholm, then
so is the restriction T|M.

Proof. It suffices to show this lemma only for n = 1 since we can inductively see the other cases. Suppose
that dimK/M = 1. Then we have the decompositionK =M⊕ span{x1} for some x1 , 0.

We first assume that Tx1 < ran(T|M). Since ran(T) = ran(T|M) ⊕ span{Tx1} and J- ker(T|M) ⊆ J- ker(T),
we have that

dimK/ran(T|M) = dimK/ran(T) + 1 and dimJ- ker(T|M) ≤ dimJ- ker(T).

Suppose that Tx1 ∈ ran(T|M). Then we see that ran(T) = ran(T|M). and that there exists an element
u ∈ M such that Tx1 = (T|M)u, which deduces that J- ker(T) = J- ker(T|M) ⊕ span{x1 − u}. Indeed, if
x ∈ J- ker(T|M) ⊕ span{x1 − u}, then we can write

x = m + λ(x1 − u) for some m ∈ J- ker(T|M) and λ ∈ C.

Thus, we have that 〈Tx,Tx〉J = 〈JTx,Tx〉 = 〈Tm,Tm〉J = 0, which implies that x ∈ J- ker(T). Conversely,
if x ∈ J- ker(T), then we can write x = m + λx1 for some m ∈ M and λ ∈ C. Then we have that
0 = 〈Tx,Tx〉J = 〈JT(m +λu),T(m +λu)〉 = 〈T(m +λu),T(m +λu)〉J, so that m +λu ∈ J- ker(T|M). This means
that x = (m + λu) + λ(x1 − u) ∈ J- ker(T|M) ⊕ span{x1 − u}. Therefore, we obtain that

dimK/ran(T|M) = dimK/ran(T) and dimJ- ker(T|M) = dimJ- ker(T) − 1,

which also implies that T|M is J-Fredholm.
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Remark 3.5. Unlike the Fredholm index, in general, the index product formula does not hold for theJ-index. More
precisely, even if T,S ∈ L(K ) are J-Fredholm, we may see that J-ind(ST) , J-ind(S) + J-ind(T). We have an
example which does not satisfy the index product formula for the J-index as follows;

The Krein space K given in Example 3.2 is finite dimensional, so that T is J-Fredholm. We see that T2 is also
J-Fredholm. If x = (x1, x2, x3) belongs to J- ker(T), then we have

0 = 〈Tx,Tx〉J = 〈JTx,Tx〉 = −x2
2 − x2

3 + x2
1,

so that x2
1 = x2

2 + x2
3. This means that dimJ- ker(T) = 2. However, if x belongs to J- ker(T2), then we also have

0 = 〈T2x,T2x〉J = 〈JT2x,T2x〉 = −x2
3 − x2

1 + x2
2.

Hence this implies that dimJ- ker(T2) = 2, so that J-ind(T2) = 2. Thus the index product formula does not hold
for the J-index since J-ind(T) +J-ind(T) = 4 , 2 = J-ind(T2).

We say that T ∈ L(K ) isJ-Weyl if it isJ-Fredholm andJ-ind(T)=0, andJ-Browder if it isJ-Fredholm
and both the J-ascent ϕ(T) and the descent of T are finite. We define the J-essential spectrum, J-Weyl
spectrum, and J-Browder spectrum as follows;

J-σe(T) = {λ ∈ C : T − λ is not J-Fredholm},
J-σw(T) = {λ ∈ C : T − λ is not J-Weyl},
J-σb(T) = {λ ∈ C : T − λ is not J-Browder}.

Proposition 3.6. If T ∈ L(K ) is J-Browder, then T is Browder.

Proof. Suppose that T is J-Browder and let n ∈ N be the descent of T. By Proposition 3.1, T has the finite
ascent, so that the ascent of T is also n by [1, Theorem 3.3]. Since T is Fredholm, it is Browder.

Corollary 3.7. For any T ∈ L(K ), the following implications hold.

T is J-Browder =⇒ T is Browder =⇒ T is Weyl.

Moreover, it follows that σw(T) ⊆ σb(T) ⊆ J-σb(T).

Remark 3.8. Unlike Proposition 3.6, even if T ∈ L(K ) is J-Weyl, it is not necessarily Weyl. Indeed, suppose that
T is J-Weyl and let dimK/ran(T) = n < ∞. Since J-ind(T) = 0, we see that dimJ- ker(T) = dimK/ran(T) =
n < ∞. Since ker(T) ⊆ J- ker(T), it follows that dim ker(T) ≤ n. Thus, we have that ind(T) = dim ker(T) −
dimK/ran(T) ≤ n− n = 0. Moreover, even though T is Weyl, it is notJ-Weyl. For example, let U be the unilateral
shift on l2(N) and T be defined by the next operator matrix

T =

(
U 0
0 U∗

)
on l2(N) ⊕ l2(N)

Then dim ker(T) = dim ker(T∗) = 1, so T is Weyl. Now we define a fundamental symmetry J on l2(N) as Example
3.3. Then since U has the infinite dimensional J-kernel, it follows that dimJ- ker(T) = ∞ for a fundamental

symmetry J :=
(
J 0
0 J

)
on l2(N) ⊕ l2(N). This means that T is not J-Weyl. However, we observe the following

implication;
T is J-Weyl =⇒ T is upper semi-Fredholm and ind(T) ≤ 0, that is, 0 < σea(T).

Moreover, we have that σea(T) ⊆ J-σw(T).
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An operator T ∈ L(K ) has the single valued extension property at λ0 ∈ C if for every open neighborhood U
of λ0, the only analytic function f : U −→ H which satisfies the equation

(T − λ) f (λ) = 0 (λ ∈ U)

is the constant function f ≡ 0 on U. We say that T has the single valued extension property if it has the single
valued extension property at every λ ∈ C. Evidently, every operator T has the single valued extension
property at every point of the boundary ∂σ(T) of σ(T), in particular, at every isolated point of σ(T). We have
that (see [1, Theorem 3.8] for details)

T − λ has finite ascent =⇒ T has the single valued extension property at λ, (1)

and that dually,

T − λ has finite descent =⇒ T∗ has the single valued extension property at λ. (2)

If T−λ is semi-Fredholm, then it is known that (1) and (2) are equivalent. Thus, if T−λ isJ-Fredholm, the
converses of (1) and (2) are also true.

We first consider the case where T is J-Weyl and either selfadjoint or unitary.

Lemma 3.9. Let S,T ∈ L(K ). If S and T are J-Fredholm operators, then both ST and TS are J-Fredholm.

Proof. We note that T(J- ker(ST)) ⊆ J- ker(S) and S(J- ker(TS)) ⊆ J- ker(T). Indeed, if x ∈ J- ker(ST),
then 〈STx,STx〉J = 0, so that Tx ∈ J- ker(S). This means the inclusion

T(J- ker(ST)) ⊆ J- ker(S).

Similarly, we can see the inclusion S(J- ker(TS)) ⊆ J- ker(T). Since S and T are J-Fredholm, it follows
that dimJ- ker(ST) < ∞, dimJ- ker(TS) < ∞ and the ranges of ST and TS are finite codimensional, which
completes the proof.

Theorem 3.10. If T ∈ L(K ) is J-Weyl, and either selfadjoint or unitary, then the following statements are true;

(i) J- ker(T) = ker(T).

(ii) Tn is J-Weyl for every positive integer n.

(iii) Tn is J-Browder for every positive integer n.

(iv) Tn is Browder for every positive integer n.

(v) Tn is Weyl for every positive integer n.

Proof. (i) If T is J-Weyl and selfadjoint, then we have that dimJ- ker(T) = dim ker(T). Since ker(T) ⊆
J- ker(T) by definition, we get the equality J- ker(T) = ker(T).

Suppose that T is J-Weyl and unitary. Since T∗ is also unitary, we get the equalities dimJ- ker(T) =
dim ker(T∗) = 0, which implies that J- ker(T) = ker(T∗) = {0}.

(ii) Suppose that T is selfadjoint and J-Weyl. Since T is J-Fredholm, it follows from Lemma 3.9 that
Tn is also J-Fredholm for every positive integer n. We will show that J-ind(Tn) = 0. We note that
if J- ker(T) = ker(T), then J- ker(Tn) = ker(Tn) for every positive integer n. Indeed, if x ∈ J- ker(Tn),
then 〈T(Tn−1)x,T(Tn−1)x〉J = 〈Tnx,Tnx〉J = 0. Thus, we have that Tn−1x ∈ J- ker(T). By (i), we have that
J- ker(T) = ker(T), so that Tnx = 0 and then x ∈ ker(Tn) for every positive integer n. Since Tn is selfadjoint,
we have that

J-ind(Tn) = dimJ- ker(Tn) − dim ker(Tn) = 0.

Therefore, Tn is J-Weyl.
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We assume that T is unitary and J-Weyl. Since Tn is unitary for every integer n, we obtain that
J-ind(Tn) = dimJ- ker(Tn) for each n ≥ 1. If x ∈ J- ker(Tn), then we see that Tn−1x ∈ J- ker(T). But, T is
injective, so that Tn−1x = 0. Since Tn−1 is also injective, we have that x = 0. Hence, J-ind(Tn) = 0, which
implies that Tn is J-Weyl.

(iii) We first show that T is J-Browder. It is known that if T is either selfadjoint or unitary, then
it has the single valued extension property. Since T is Fredholm, it has finite ascent and descent. By
(i), this implies that dimJ- ker(Tn) = dim ker(Tn) < ∞ for every positive integer n. Thus, we have
ϕ(T) = supn dim(J- ker(Tn)) < ∞, which implies that T is J-Browder. We also obtain from the same
argument that Tn is also J-Browder for every positive integer n because Tn is also J-Weyl and either
selfadjoint or unitary.

(iv) and (v) are obvious from Corollary 3.7.

Corollary 3.11. Let T be selfadjoint. Consider the following conditions;

(i) T is J-Weyl and 0 ∈ iso σ(T).

(ii) T is J-Browder but not invertible.

(iii) T is J-Fredholm and 0 ∈ iso σ(T).

Then we have the implications (i) =⇒ (ii) =⇒ (iii).

Proof. (i)⇒(ii) It immediately follows from Theorem 3.10.
(ii)⇒(iii) Suppose that T isJ-Browder but not invertible. It is clear that T isJ-Fredholm. By Corollary 3.7,
we have that T is Browder, so that T has finite ascent and descent. This implies that 0 ∈ iso σ(T).

Like as notions of π00(T), πa
00(T) and p00(T), we define J-π00(T), J-πa

00(T) and J-p00(T) as follows;

J-π00(T) = {λ ∈ iso σ(T) : 0 < dimJ- ker(T − λ) < ∞},
J-πa

00(T) = {λ ∈ iso σa(T) : 0 < dimJ- ker(T − λ) < ∞},
J-p00(T) = σ(T) \ J-σb(T).

Then we get the relation between the spectrum and the J-Weyl spectrum for selfadjoint operators.

Corollary 3.12. If T is selfadjoint, then σ(T) \ J-σw(T) ⊆ J-π00(T).

Proof. For λ ∈ σ(T) \ J-σw(T), T − λ isJ-Weyl and selfadjoint since λ is real. Hence, T − λ has finite ascent
and descent, that is, λ ∈ iso σ(T). By Theorem 3.10, we have that

0 < dimJ- ker(T − λ) < ∞.

Hence, λ ∈ J-π00(T), which completes the proof.

Remark 3.13. If T ∈ L(K ) is J-Fredholm, then we can find the closed subspaces K1 and K2 of K such that
K = J- ker(T) ⊕ K1 = T(K ) ⊕ K2. For the restriction T1 := T|K1 , we have that ker(T1) = ker(T) ∩ K1 ⊂

J- ker(T) ∩K1 = {0}, Hence, T1 is injective and we observe the implication

T is J-Fredholm =⇒ T is invertible modulo compact operator

since a J-Fredholm T is Fredholm.

Lemma 3.14. Let S, T ∈ L(K ). Suppose that ST=TS and T(J- ker(T)) ⊆ J- ker(S) and S(J- ker(ST)) ⊆
J- ker(T). If ST is J-Fredholm, then both S and T are J-Fredholm.
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Proof. We observe two inclusions J- ker(T) ⊆ J- ker(ST) and ran(ST) = ran(TS) ⊆ ran(T). Indeed, if
x ∈ J- ker(T), then Tx ∈ T(J- ker(T)) ⊆ J- ker(S), so that x ∈ J- ker(ST). Thus, we get the first inclusion
and the second inclusion is trivial. If ST isJ-Fredholm, then dimJ- ker(ST) < ∞ and dimK/ran(ST) < ∞.
Hence, T is also J-Fredholm. Similarly, we see that S is also J-Fredholm.

Theorem 3.15. Let T ∈ L(K ). Suppose that J- ker(T) is an invariant subspace of T and that f is analytic in a
bounded open neighborhood of σ(T). Then the following equality holds :

J-σe( f (T)) = f (J-σe(T)).

Proof. We assume that f is not identically zero on a bounded open neighborhood U of σ(T) otherwise it is
clear. We can write f (z) = c(z−α1) · · · (z−αn)1(z), where c, α1, α2, · · · , αn ∈ C and 1(z) is analytic on U with no
zeros. If 0 < f (J-σe(T)), then c(λ−α1) · · · (λ−αn)1(λ) , 0 for any λ ∈ J-σe(T). Thus, c(λ−α1) · · · (λ−αn) , 0,
which implies that λ , αi for any λ ∈ J-σe(T). Hence, each T − αi is J-Fredholm for i = 1, 2, · · · ,n. By
Lemma 3.9, f (T) is J-Fredholm, so that 0 < J-σe( f (T)). Hence, J-σe( f (T)) ⊆ f (J-σe(T)).

To prove the converse, we first take any λ < J-σe( f (T)). Then f (T) − λ is J-Fredholm and we have the
decomposition as follows;

f (T) − λ = d(T − λ1) · · · (T − λm)h(T), (3)

where d, λ1, . . . , λm ∈ C and h(T) is invertible. Since the right side of (3) commute, it follows from Lemma
3.14 that each T −λi isJ-Fredholm. Therefore, we see that λ < f (J-σe(T)), which implies that f (J-σe(T)) ⊆
J-σe( f (T)).

4. Weyl Type Theorems forJ -Selfadjoint Operators

We consider the several spectra ofJ-selfadjoint operators and the spectra of their Hilbert space adjoint
operators. In the remaining of the section, (K , J) denote a Krein space with an indefinite inner product 〈·, ·〉J.

Lemma 4.1. If T ∈ L(K ) is J-selfadjoint, then the following statements hold.

(i) σp(T) = σp(T∗), σa(T) = σa(T∗), σs(T) = σs(T∗), and σcom(T) = σcom(T∗).

(ii) σ(T) = σ(T∗), that is, a spectrum of T is symmetric with respect to the real line.

(iii) σle(T) = σle(T∗), σre(T) = σre(T∗) and σe(T) = σe(T∗).

(iv) J
(

ker(T∗ − λ)
)

= ker(T − λ) and J
(

ker(T − λ)
)

= ker(T∗ − λ).

(v) J
(
J- ker(T∗ − λ)

)
= J- ker(T − λ) and J

(
J- ker(T − λ)

)
= J- ker(T∗ − λ).

Proof. (i) We first show that σa(T) = σa(T∗). If λ ∈ σa(T), then there exists a sequence {xn} in K with ‖xn‖ = 1
such that ‖(T − λ)xn‖ → 0 as n→∞. Thus we obtain that

lim
n→∞
‖(T∗ − λ)Jxn‖ = lim

n→∞
‖J(T − λ)xn‖ = 0. (4)

Since ‖Jxn‖ = ‖xn‖ = 1 for every n, we have that λ ∈ σa(T∗), which implies the inclusion σa(T) ⊆ σa(T∗).
Similarly, the converse inclusion holds, so that σa(T) = σa(T∗).

We claim that σp(T) = σp(T∗). Indeed, since T is J-selfadjoint, we have that

T − λ = T#
− λ = J(T∗ − λ)J.

Thus, for some vector x ∈ K , (T − λ)x = 0 if and only if (T∗ − λ)Jx = 0. This means that λ is an eigenvalue
of T if and only if λ is an eigenvalue of T∗. Furthermore, for the surjective spectra and the compression
spectra, we also have that

σs(T) = σa(T∗) = σa(T) = σs(T∗) and σcom(T) = σp(T∗) = σp(T) = σcom(T∗).
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(ii) Since σ(T) = σa(T) ∪ σs(T) for any T ∈ L(K ), it is clear from (i) that σ(T) = σ(T∗). Hence, λ ∈ σ(T) if
and only if λ ∈ σ(T), which implies that the spectrum of T is symmetric with respect to the real line.

(iii) We note that σre(T∗) = σle(T) and σe(T) = σle(T) ∪ σre(T) for any T ∈ L(K ). We will only show that
σle(T) = σle(T∗) since the others are similar. It follows from [6] that λ ∈ σle(T) if and only if there exists a
sequence (xn) of unit vectors in K such that (xn) weakly converges to 0 and limn→∞ ‖(T − λ)xn‖ = 0. By (4),
it suffices to show that if a sequence (xn) weakly converges to 0, then (Jxn) weakly converges to 0. Since (xn)
weakly converges to 0, limn→∞〈xn, y〉 = 0 for any y ∈ K . Hence we have that

lim
n→∞
〈Jxn, y〉 = lim

n→∞
〈xn, Jy〉 = 0 for any y ∈ K ,

so that a sequence (Jxn) weakly converges to 0. Therefore, we have σle(T) = σle(T∗).
(iv) For x ∈ ker(T−λ), we have (T∗−λ)Jx = J(T−λ)x = 0, so that Jx ∈ ker(T∗−λ). Hence, J

(
ker(T−λ)

)
⊂

ker(T∗ − λ) and we also have ker(T − λ) ⊂ J
(

ker(T∗ − λ)
)
. We similarly see that the reverse inclusions are

satisfied.
(v) Suppose that x ∈ J- ker(T − λ). Since J is a fundamental symmetry, there exists a vector y ∈ K such

that x = Jy. Then we have that

0 = 〈(T − λ)x, (T − λ)x〉J = 〈(T∗ − λ)Jx, (T − λ)x〉
= 〈(T∗ − λ)y, J(T∗ − λ)y〉 = 〈(T∗ − λ)y, (T∗ − λ)y〉J,

which means that Jx = y ∈ J- ker(T∗ − λ). Hence, we obtain that

J
(
J- ker(T − λ)

)
⊆ J- ker(T∗ − λ) and J- ker(T − λ) ⊆ J

(
J- ker(T∗ − λ)

)
.

Since the reverse inclusions can similarly be shown, we skip the proof.

Lemma 4.2. Suppose that T ∈ L(K ) is J-selfadjoint and λ ∈ C.

(i) dim ker(T − λ) = dim ker(T∗ − λ).

(ii) dimJ- ker(T − λ) = dimJ- ker(T∗ − λ).

(iii) T − λ has closed range if and only if T∗ − λ has closed range.

Proof. (i) Since T is J-selfadjoint, it follows from (iv) in Lemma 4.1 that

J
(

ker(T∗ − λ)
)

= ker(T − λ).

Since J is invertible, we see that dim ker(T − λ) = dim ker(T∗ − λ).
(ii) By (v) in Lemma 4.1, we also have that dimJ- ker(T − λ) = dimJ- ker(T∗ − λ).
(iii) Suppose that T−λ has closed range. If y ∈ ran(T∗ − λ), then there exists a sequence (yn) in ran(T∗−λ)

such that limn→∞ ‖yn − y‖ = 0. We choose a sequence (xn) in K such that yn = (T∗ − λ)xn for each n ∈ N.
Since Jyn = J(T∗ − λ)xn = (T − λ)Jxn ∈ ran(T − λ) and limn→∞ ‖Jyn − Jy‖ = limn→∞ ‖yn − y‖ = 0, we have that
Jy ∈ ran(T − λ) = ran(T − λ). Putting Jy = (T − λ)z for some z ∈ K , we have that

y = J(T − λ)z = (T∗ − λ)Jz ∈ ran(T∗ − λ).

Thus, we see that ran(T∗ − λ) = ran(T∗ − λ), so that ran(T∗ − λ) is closed. Similarly, we can see that the
converse is true.

Lemma 4.3. Let T ∈ L(K ) be J-selfadjoint and λ ∈ C.

(i) T − λ has finite ascent if and only if T∗ − λ has finite ascent.
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(ii) T − λ has finite descent if and only if T∗ − λ has finite descent.

(iii) ϕ(T − λ) < ∞ if and only if ϕ(T∗ − λ) < ∞.

Proof. (i) Suppose that T−λ has finite ascent, that is, ker(T−λ)p = ker(T−λ)p+1 for some positive integer p.
We will prove that ker(T∗ − λ)p+1

⊂ ker(T∗ − λ)p. If x ∈ ker(T∗ − λ)p+1, then (T − λ)p+1 Jx = J(T∗ − λ)p+1x = 0.
Hence, Jx ∈ ker(T − λ)p+1 = ker(T − λ)p, so that we have that

(T∗ − λ)px = J(T − λ)p Jx = 0.

Therefore x ∈ ker(T∗ − λ)p, which implies that ker(T∗ − λ)p+1
⊂ ker(T∗ − λ)p. Since in general, the reverse

inclusion is true, we have that T∗ − λ has finite ascent. The converse implication similarly holds.
(ii) Suppose that T − λ has finite descent, that is, ran(T − λ)q = ran(T − λ)q+1 for some positive integer q.

For any y ∈ ran(T∗ − λ)q, there exists x ∈ K such that (T∗ − λ)qx = y. Then we have that

Jy = J(T∗ − λ)qx = (T − λ)q Jx ∈ ran(T − λ)q = ran(T − λ)q+1.

Thus, there exists a vector z ∈ K such that Jy = (T − λ)q+1z, so that

y = J(T − λ)q+1z = (T∗ − λ)q+1 Jz ∈ ran(T∗ − λ)q+1.

Hence we have the inclusion ran(T∗ − λ)q
⊆ ran(T∗ − λ)q+1. However, the reverse inclusion is trivial, so that

T∗ − λ has finite descent. A similar argument shows that the converse implication also holds.
(iii) Since (T − λ)k is J-selfadjoint for every positive integer k, it follows from Lemma 4.2 that the

statements are equivalent.

Proposition 4.4. If T ∈ L(K ) is J-selfadjoint, then the following statements hold.

(i) Tn is J-selfadjoint for every nonnegative integer n.

(ii) If T is invertible, then T−1 is also J-selfadjoint.

(iii) T is left invertible if and only if T is right invertible.

(iv) If dim ker(T) < ∞, then ind(T) = 0, that is, T is Weyl.

Proof. (i) Since JTn J = (JTJ)n = (T∗)n = (Tn)∗ for any n ≥ 0, Tn is J-selfadjoint.
(ii) It follows from J = J−1 that JT−1 J = (JTJ)−1 = (T∗)−1 = (T−1)∗.
(iii) If T is left invertible, then dim ker(T) = 0 and ran(T) is closed. Thus, it follows from Lemma 4.2 that

dim ker(T∗) = 0 and the range ran(T∗) is closed. This means that T∗ is also left invertible. By a principle of
duality, T is right invertible. Similarly, we can show that the converse is true.

(iv) In the proof of Lemma 4.2, we see that dim ker(T) = dim ker(T∗). Since dim ker(T) < ∞, it is satisfied
that ind(T) = 0, so that T is Weyl.

Theorem 4.5. Suppose that T ∈ L(K ) is J-selfadjoint and J-Weyl. Then the following statements are true;

(i) J- ker(T) = ker(T).

(ii) Tn is J-Weyl for every positive integer n.

(iii) Tn is Weyl for every positive integer n.

(iv) Tn is J-Browder for every positive integer n.
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Proof. (i) If T is J-selfadjoint and J-Weyl, then

dim ker(T) = dim ker(T∗) = dimJ- ker(T) < ∞.

By Proposition 3.1, we have that J- ker(T) = ker(T).
(ii) Since T isJ-Weyl, it isJ-Fredholm. By Lemma 3.9, we have that Tn isJ-Fredholm for every positive

integer n. We will show that J-ind(Tn) = 0 for n ≥ 1. Since J- ker(T) = ker(T), we obtain that J- ker(Tn) =
ker(Tn) for every positive integer n. Indeed, if x ∈ J- ker(Tn), then 〈T(Tn−1)x,T(Tn−1)x〉J = 〈Tnx,Tnx〉J = 0,
which means that Tn−1x ∈ J- ker(T). Since J- ker(T) = ker(T), we get Tnx = 0 and x ∈ ker(Tn). Since Tn is
J-selfadjoint, we have that

J-ind(Tn) = dimJ- ker(Tn) − dim ker(Tn) = 0,

which implies that Tn is J-Weyl.
(iii) It follows from (ii) and Proposition 4.4 that Tn isJ-selfadjoint andJ-Weyl for every positive integer

n. Since ind(Tn) = J-ind(Tn) = 0, Tn is also Weyl.
(iv) We first show that T is J-Browder. Since Tn is J-selfadjoint, we obtain from (i), (ii) and (iii) that

ϕ(T) = sup
k

dimJ- ker(Tk) = sup
k

dim ker(Tk) < ∞.

Since dim ker(T) = dim ker(T∗) and T has finite ascent, T has also finite decent by [1, Theorem 3.4]. Thus, T
isJ-Browder. By the same argument, we see that Tn is alsoJ-Browder for every positive integer n because
Tn is also J-selfadjoint and J-Weyl.

We note that, in general, aJ-selfadjoint operator does not satisfy Weyl’s theorem. Indeed, let (H⊕H , J)
be a Krein space whereH is a Hilbert space, I is the identity onH and J :=

(
0 I
I 0

)
. Let T be the operator

(
U∗ 0
0 U

)
acting onH ⊕H , where U is the unilateral shift onH . It is not hard to see that while T is a J-selfadjoint
operator on (H ⊕H , J), neither Weyl’s theorem nor Browder’s theorem holds for T.

Now we consider the set J-F+(K ) := {T ∈ L(K ) : ran(T) is closed and dimJ- ker(T) < ∞}. From the
definition, we have that

J-σea(T) := {λ ∈ C : T − λ < J-F+(K ) or J-ind(T − λ) > 0}

is the J-Weyl essential approximate point spectrum,

J-σab(T) := {λ ∈ C : T − λ < J-F+(K ) or ϕ(T) = ∞}

is theJ-Browder essential approximate point spectrum. We introduce another Weyl’s theorems and Browder’s
theorems in terms of the J-kernel on a Krein space (K , J), which may be regarded as extensions of Weyl’s
theorem and Browder’s theorem for Hilbert space operators.

Definition 4.6. Let T be any operator in L(K ).

1. J-Weyl’s theorem holds for T if σ(T) \ J-σw(T) = J-π00(T).
2. J-Browder’s theorem holds for T if σ(T) \ J-σw(T) = J-p00(T),

equivalently, if J-σw(T) = J-σb(T).
3. a-J-Weyl’s theorem holds for T if σa(T) \ J-σea(T) = J-πa

00(T).
4. a-J-Browder’s theorem holds for T if J-σea(T) = J-σab(T).

We observe that in general, there is no relation between Weyl’s theorem and J-Weyl’s theorem. We
give two examples such that one satisfies Weyl’s theorem, but not J-Weyl’s theorem and another satisfies
J-Weyl’s theorem, but not Weyl’s theorem.

Example 4.7. Let J be an operator defined by Je1 = e2, Je2 = e1 and Jen = en (n ≥ 3). We see that J is a fundamental
symmetry on l2(N), which gives an indefinite inner product.
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1. Let U be the unilateral shift on l2(N) and x ∈ J-ker(U). Then we have that

0 = 〈JUx,Ux〉 =

∞∑
n=1

|xn+1|
2,

so that dimJ-ker(U) = 1. Since dim ker(U∗) = 1, we have J-ind(U) = 0, so that U is J-Weyl. We see that
0 ∈ σ(U) \ J-σw(U), but J-π00(U) = ∅. Therefore, J-Weyl’s theorem does not hold for U. However, Weyl’s
theorem holds for U since σ(U) = σw(U) = D and π00(U) = ∅, whereD denotes the unit disc.

2. Let V be an operator on l2(N) defined by V(x1, x2, x3, · · · ) = (x1, 0, x2, x3, . . .) for (xn) ∈ l2(N). Then we have
that σ(V) = σw(V) = π00(V) = {0, 1}, so that Weyl’s theorem does not hold.
Indeed, dim ker(V) = 0, dim ker(V∗) = dim ker(V − I) = 1, and dim ker(V∗ − I) = 2. If x ∈ J-ker(V), then
0 = 〈JVx,Vx〉 =

∑
∞

n=1 |xn+1|
2, so that dimJ-ker(V) = 1. Moreover, if x ∈ J-ker(V − I), then we have that

0 = 〈J(V − I)x, (V − I)x〉 =

∞∑
n=1

|xn+1 − xn+2|
2.

Thus, we see that dimJ-ker(V − I) = 2, so that σ(V) \ J-σw(V) = J-π00(V). This means that J-Weyl’s
theorem holds for V.

In the following theorem, we discuss J-selfadjoint operators which satisfy the Weyl’s theorem or the
Browder’s theorem.

Theorem 4.8. Let T ∈ L(K ) be J-selfadjoint.

(i) Weyl’s theorem holds for T if and only if so does for T∗.

(ii) Browder’s theorem holds for T if and only if so does for T∗.

(iii) J-Weyl’s theorem holds for T if and only if so does for T∗.

(iv) J-Browder’s theorem holds for T if and only if so does for T∗.

Proof. (i) We first prove that σw(T) = σw(T∗). If T − λ is Weyl for some λ ∈ C, then it is Fredholm and
dim ker(T − λ) = dim ker(T∗ − λ) < ∞. We see from Lemma 4.2 that

ind(T∗ − λ) = dim ker(T∗ − λ) − dim ker(T − λ)

= dim ker(T − λ) − dim ker(T∗ − λ) = 0.

Moreover, we have σe(T) = σe(T∗), so that T∗ − λ is Fredholm. Thus, T∗ − λ is Weyl, which implies that
σw(T) ⊇ σw(T∗). By symmetry, the reverse inclusion is also true.

Since T is J-selfadjoint, Lemmas 4.1 and 4.2 give the following equivalences;

λ ∈ π00(T)⇐⇒ λ ∈ iso σ(T) and 0 < dim ker(T − λ) < ∞
⇐⇒ λ ∈ iso σ(T∗) and 0 < dim ker(T∗ − λ) < ∞
⇐⇒ λ ∈ π00(T∗).

Thus, we have that π00(T) = π00(T∗). Hence we see that Weyl’s theorem holds for T if and only if so does T∗.
(ii) By Lemma 4.3, we have that σb(T) = σb(T∗). It is clear to see that

σb(T) = σw(T)⇐⇒ σb(T∗) = σw(T∗).

Indeed, if σb(T) = σw(T), then σb(T∗) = σb(T) = σw(T) = σw(T∗) where the third equality follows from (i).
Conversely, if σb(T∗) = σw(T∗), then we also have σb(T) = σw(T). Therefore, Browder’s theorem holds for T
if and only if so does T∗.
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(iii) We claim thatJ-σw(T) = J-σw(T∗). If T−λ isJ-Weyl, then it isJ-Fredholm and dimJ- ker(T−λ) =

dimJ- ker(T∗ − λ) < ∞. By Lemma 4.2, we have that

J-ind(T∗ − λ) = dimJ- ker(T∗ − λ) − dim ker(T − λ)

= dimJ- ker(T − λ) − dim ker(T∗ − λ) = 0.

Hence T∗ − λ is J-Weyl, which means that J-σw(T) = J-σw(T∗). We obtain from Lemmas 4.1 and 4.2 that
J-π00(T) = J-π00(T∗). Indeed, we have that

λ ∈ J-π00(T)⇐⇒ λ ∈ iso σ(T) and 0 < dimJ- ker(T − λ) < ∞
⇐⇒ λ ∈ iso σ(T∗) and 0 < dimJ- ker(T∗ − λ) < ∞
⇐⇒ λ ∈ J-π00(T∗).

Therefore, J-Weyl’s theorem holds for T if and only if so does T∗.
(iv) From Lemma 4.3, we have that J-σb(T) = J-σb(T∗). Like (ii), we see that

J-σb(T) = J-σw(T)⇐⇒ J-σb(T∗) = J-σw(T∗).

Therefore, J-Browder’s theorem holds for T if and only if so does T∗.

Example 4.9. We assume that T and J are matrices of the form

T =

(
i 0
0 −i

)
and J =

(
0 1
1 0

)
in L(C ⊕ C).

Then J is a fundamental symmetry with J = J∗ = J−1 on C ⊕ C and T∗ J = JT∗, that is, T is a J-selfadjoint operator.
We observe that σ(T) = {i,−i} and J-σw(T) = ∅. Indeed, J-ker(T − iI) = ker(T∗ + iI) = {(x, 0) : x ∈ C} and
J-ker(T + iI) = ker(T∗− iI) = {(0, x) : x ∈ C}. Moreover, we get thatJ-π00(T) = {i,−i}. ThereforeJ-Weyl’s theorem
holds for T, and it follows from Theorem 4.8 that T∗ satisfies also J-Weyl’s theorem.

Remark 4.10. In the proof of Theorem 4.8, we observe that if T is J-selfadjoint, then the equalities σw(T) = σw(T),
σb(T) = σb(T), and p00(T) = p00(T) are true. However, we observe that π00(T) , π00(T). On the other hand, if a
J-selfadjoint operator T is reguloid, that is, there is a generalized inverse of T − λ for λ ∈ iso σ(T), that is

T − λ = (T − λ)Sλ(T − λ) for some Sλ ∈ L(K ),

then the equality π00(T) = π00(T) also holds. Indeed, if λ ∈ π00(T), then λ ∈ iso σ(T) and 0 < dim ker(T − λ) < ∞.
Since T is reguloid, T−λ has closed range, so that T is upper semi-Fredholm. However, both T and T∗ have the single
valued extension property at λ, equivalently, T − λ has finite ascent and descent. Hence, T is Browder and we have
that

π00(T) ⊆ σ(T) \ σb(T) = σ(T) \ σb(T) = p00(T) ⊆ π00(T).

Similarly, we see that the reverse inclusion also holds.

The following theorem may be regarded as a generalized version of Theorem 4.8 for Weyl or Browder
essential approximate spectrum.

Theorem 4.11. Let T ∈ L(K ) be J-selfadjoint. Then the following statements hold.

(i) a-Weyl’s theorem holds for T if and only if so does for T∗.

(ii) a-Browder’s theorem holds for T if and only if so does for T∗.

(iii) a-J-Weyl’s theorem holds for T if and only if so does for T∗.
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(iv) a-J-Browder’s theorem holds for T if and only if so does for T∗.

Proof. (i) We first claim that σea(T) = σea(T∗). Suppose that T−λ is upper semi-Fredholm and ind(T−λ) ≤ 0.
Then it follows from (iii) in Lemma 4.1 that T∗ − λ is also upper semi-Fredholm. We will only prove that
ind(T∗ − λ) ≤ 0. Since ind(T − λ) ≤ 0, we have that ind(T∗ − λ) ≥ 0 by duality. This implies from (i) in
Lemma 4.2 that

dim ker(T − λ) = dim ker(T∗ − λ) ≥ dimK
/
ran(T∗ − λ) = dim ker(T − λ).

Hence we obtain that

ind(T∗ − λ) = dim ker(T∗ − λ) − dimK
/
ran(T∗ − λ)

= dim ker(T − λ) − dim ker(T − λ) ≤ 0.

Therefore, we have that σea(T∗) ⊆ σea(T). Similarly, we get the reverse inclusion.
On the other hand, by Lemma 4.1 (i) and Lemma 4.2 (i) we have that πa

00(T) = πa
00(T∗). Thus, a-Weyl’s

theorem holds for T if and only if so does T∗.
(ii) We see from Lemma 4.1 and Lemma 4.3 that σab(T) = σab(T∗). In the proof of (i), we also proved that

σea(T) = σea(T∗), which implies that a-Browder’s theorem holds for T if and only if so does T∗.
(iii) We observe the equality J-σea(T) = J-σea(T∗). Indeed, we suppose that T − λ is upper semi J-

Fredholm and J-ind(T) ≤ 0. From the equality ind(T) ≤ J-ind(T) ≤ 0, we have that dim ker(T − λ) ≤
dim ker(T∗ − λ). By (iii) in Lemma 4.2, we have that

J-ind(T∗ − λ) = dimJ- ker(T − λ) − dim ker(T − λ)

≤ dim ker(T − λ) − dim ker(T∗ − λ) ≤ 0.

Hence we have that λ < J-σea(T∗), which implies thatJ-σea(T∗) ⊆ J-σea(T). We can similarly get the reverse
inclusion.

Moreover, it follows from Lemma 4.1 and Lemma 4.2 that

λ ∈ J-πa
00(T)⇐⇒ λ ∈ iso σa(T) and 0 < dimJ- ker(T − λ) < ∞

⇐⇒ λ ∈ iso σa(T∗) and 0 < dimJ- ker(T∗ − λ) < ∞
⇐⇒ λ ∈ J-πa

00(T∗).

Thus, we have that a-J-Weyl’s theorem holds for T if and only if so does T∗.
(iv) Lemma 4.1 and Lemma 4.3 give the relation J-σab(T) = J-σab(T∗), so that by the same argument in

the proof of Theorem 4.8, we have

J-σab(T) = J-σea(T)⇐⇒ J-σab(T∗) = J-σea(T∗).

Therefore, a-J-Browder’s theorem holds for T if and only if so does T∗.

We observe that the spectrum of J is the set σ(J) = {−1, 1} since J = J∗ = J−1. If T is J-unitary, then
T∗ JT = TJT∗ = J and we see that σ(T∗ JT) = σ(TJT∗) = σ(J) = {−1, 1}. While T is invertible, it does not hold
that the equality T∗ = T−1, in general. In the following lemma, we investigate various spectra of aJ-unitary
operator.

Lemma 4.12. If T ∈ L(K ) is J-unitary, then we have the following properties;

(i) σp(T−1) = σp(T∗), σa(T−1) = σa(T∗), σs(T−1) = σs(T∗), and σcom(T−1) = σcom(T∗).

(ii) σ(T−1) = σ(T∗), which implies that for every λ ∈ σ(T), σ(T) also contains its inverse point 1
λ

with respect to
the unit circle.
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(iii) σle(T−1) = σle(T∗), σre(T−1) = σre(T∗), and σe(T−1) = σe(T∗).

(iv) J
(

ker(T∗ − λ)
)

= ker(T−1
− λ) and J

(
ker(T−1

− λ)
)

= ker(T∗ − λ).

(v) J
(
J- ker(T∗ − λ)

)
= J- ker(T−1

− λ) and J
(
J- ker(T−1

− λ)
)

= J- ker(T∗ − λ).

Proof. The proof is routine, so that we omit it.

For a J-unitary operator T, we easily see the relations about kernels;

dim ker(T−1
− λ) = dim ker(T∗ − λ) < ∞,

dimJ- ker(T−1
− λ) = dimJ- ker(T∗ − λ) < ∞.

Moreover, we have that T−1
− λ has closed range if and only if T∗ − λ has closed range. Like the case of a

J-selfadjoint operator, we also observe the following lemma for a J-unitary operator.

Lemma 4.13. Let T ∈ L(K ) be J-unitary and λ ∈ C. Then the following statements are true;

(i) T−1
− λ has finite ascent if and only if T∗ − λ has finite ascent.

(ii) T−1
− λ has finite descent if and only if T∗ − λ has finite descent.

(iii) ϕ(T−1
− λ) < ∞ if and only if ϕ(T∗ − λ) < ∞.

Proof. The proofs are very similar to those of Lemma 4.3.

Theorem 4.14. If T ∈ L(K ) is J-unitary and J-Weyl, then the followings are true;

(i) J- ker(T) = ker(T).

(ii) Tn is J-Weyl for every positive integer n.

(iii) Tn is Weyl for every positive integer n.

(iv) Tn is J-Browder for every positive integer n.

Proof. The proof is very similar to that of Theorem 4.5.

Theorem 4.15. If T ∈ L(K ) is J-unitary, then the followings are true;

(i) Weyl’s theorem holds for T−1 if and only if so does for T∗.

(ii) Browder’s theorem holds for T−1 if and only if so does for T∗.

(iii) J-Weyl’s theorem holds for T−1 if and only if so does for T∗.

(iv) J-Browder’s theorem holds for T−1 if and only if so does for T∗.

(v) a-Weyl’s theorem holds for T−1 if and only if so does for T∗.

(vi) a-Browder’s theorem holds for T−1 if and only if so does for T∗.

(vii) a-J-Weyl’s theorem holds for T−1 if and only if so does for T∗.

(viii) a-J-Browder’s theorem holds for T−1 if and only if so does for T∗.

Proof. This is comparable to Theorem 4.8 and Theorem 4.11, and its proof is again very similar.
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