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Abstract. In their attempt to develop domain theory in situ T0 spaces, Zhao and Ho introduced a new
topology defined by irreducible sets of a resident topological space, called the SI-topology. Notably, the
SI-topology of the Alexandroff topology of posets is exactly the Scott topology, and so the SI-topology
can be seen as a generalisation of the Scott topology in the context of general T0 spaces. It is well known
that the convergence structure that induces the Scott topology is the Scott-convergence – also known as
lim-inf convergence by some authors. Till now, it is not known which convergence structure induces
the SI-topology of a given T0 space. In this paper, we fill in this gap in the literature by providing a
convergence structure, called the SI-convergence structure, that induces the SI-topology. Additionally, we
introduce the notion of I-continuity that is closely related to the SI-convergence structure, but distinct from
the existing notion of SI-continuity (introduced by Zhao and Ho earlier). For SI-continuity, we obtain here
some equivalent conditions for it. Finally, we give some examples of non-Alexandroff SI-continuous spaces.

1. Introduction

Zhao and Ho defined SI-topology on T0 spaces in an attempt to generalise the Scott topology on
posets ([9, Definition 3.1]). The working principle which uses irreducible sets as the topological counterparts
of directed sets is now called Zhao-Ho replacement principle in [1]. A subset U of a T0 space X is SI-open if
and only if (i) U is open in X and (ii) if F is irreducible in X then

∨
F ∈ U implies F ∩U , ∅ whenever

∨
F

exists [9]. By observing the fact that Alexandroff-irreducible sets are exactly the directed sets, SI-topology
appears to be a proper generalisation of the Scott topology.

It is well known that the Scott topology can be induced by a certain convergence structure which is
defined via directed sets and order (see, e.g., [5]). In other words, given a poset P endowed with the
Alexandroff topology, there is a convergence structure defined in it which induces the Scott topology. Then
a natural question arises can the SI-topology be induced by some convergence structure defined in the
underlying topological space? In this paper, we give a positive answer to this question. Moreover, we
characterise those T0 spaces in which the convergence structure inducing the SI-topology is topological.
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This research is supported by Nanyang Technological University Research Scholarship, Joint Ph.D. Program of Beijing Institute

of Technology, and NIE AcRF project (RI 3/16 ZDS)
Email addresses: hadrian.andradi@gmail.com (Hadrian Andradi), shenchong0520@163.com, corresponding author (Chong

Shen), wengkin.ho@nie.edu.sg (Weng Kin Ho), dongsheng.zhao@nie.edu.sg (Dongsheng Zhao)



H. Andradi et al. / Filomat 32:17 (2018), 6017–6029 6018

Besides generalising the Scott topology, Zhao and Ho also introduced the notion of SI-continuous spaces,
as a topological parallel of continuous posets. However, their definition of an SI-continuous space makes
use of directed sets – which is not consistent with the Zhao-Ho replacement principle. We shall remedy this
unsatisfactory point by proving that the directed condition in the definition of SI-topology can be replaced
interchangeably by irreducible condition.

It is true that if X is an SI-continuous space, then the SI-topology on X is just the Scott topology of some
continuous poset (see [1, Remark 4.6]). However, this fact does not imply that the underlying topology of
an SI-continuous poset is the Alexandroff topology of a certain poset. At the last part of this paper , we
shall define a new topology on posets and deploy it to provide examples of an SI-continuous spaces which
are not Alexandroff spaces.

2. Preliminaries

Throughout this paper, given a topological space X and x ∈ X, we denote by O(X) the topology on X
and byN(x) the collection of all open sets containing x. Any order-theoretical notion on a T0 space X refers
to its specialisation order ≤O(X) (or simply ≤). A nonempty subset F of a topological space X is irreducible if
for every U1, U2 ∈ O(X), F∩U1 , ∅ and F∩U2 , ∅ imply F∩U1 ∩U2 , ∅. The collection of all irreducible
subsets of X is denoted by Irr(X). A topological space is an Alexandroff space if any intersection of open sets
is again open, or equivalently, any point has a smallest open set containing it [3].

Let P be a poset. A subset of P is Alexandroff open if it is an upper set. An Alexandroff open set U is Scott
open if it is inaccessible by directed suprema, i.e., for every directed set D whose supremum exists, if the
supremum is in U then D meets U. The collection of all Alexandroff open (resp. Scott open) subsets of P
forms a topology on P, called the Alexandroff topology (resp. the Scott topology) and denoted by α(P) (resp.
σ(P)). The following property can be deduced easily.

Proposition 2.1. A T0 space X is an Alexandroff space if and only if O(X) is precisely the Alexandroff topology on
the specialisation poset induced by X.

A convergence structure in a set X is a class C of tuples ((xi)i∈I, x) where (xi)i∈I is a net whose terms are
elements of X and x ∈ X. A topology induced by a convergence class C in X is the collection τC of all subsets
U of X satisfying

((xi)i∈I, x) ∈ C and x ∈ U =⇒ xi ∈ U eventually.

A convergence structure C in X is said to be topological if for every net (xi)i∈I in X which topologically
converges to x with respect to τC, it holds that ((xi)i∈I, x) ∈ C. Given a topological space X and a net (xi)i∈I in

X, we shall write xi
O(X)
−−−→ x to denote (xi)i∈I topologically converges to x in X.

For any other standard definitions and notations of topology and domain theory, we refer the reader
to [5, 6, 8].

3. SI-Topology, SI-Convergence, and I-Continuity

In this section, we introduce the notion of SI-convergence which, we shall prove later, is the one that
induces the SI-topology defined by Zhao and Ho. We first recall the definition of the SI-topology and some
properties related to it.

Definition 3.1. (([9]) Let X be a T0 space. A subset U of X is called SI-open if the following conditions are
satisfied:

(1) U is an open set in X.

(2) For any F ∈ Irr(X),
∨

F ∈ U implies F ∩U , ∅whenever
∨

F exists.

The set of all SI-open subsets of X is denoted by OSI(X).
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Remark 3.2. For any T0 space X, OSI(X) is a topology on X, called the SI-topology. The space (X,OSI(X)) is
then denoted by SI(X).

Proposition 3.3. ([9])

(1) For a T0 space X, OSI(X) ⊆ O(X).

(2) If P is a poset and X = (P, α(P)), then OSI(X) equals the Scott topology on P.

(3) The specialisation orders on X and SI(X) coincide.

Proposition 3.4. Let X be a T0 space. Then SI(X) is a weak monotone convergence space, i.e., every monotone net
having a supremum converges to that supremum [4, p. 459].

Proof. Let (xi)i∈I be a monotone net in SI(X) with supremum x and U ∈ OSI(X) such that x ∈ U. Then the set
D := {xi | i ∈ I} is directed, hence irreducible, in X by Proposition 3.3(3). Since

∨
D = x ∈ U, it follows that

D ∩U , ∅. Then openness of U implies that xi ∈ U eventually.

Recall that given a poset P, a net (xi)i∈I in P Scott-converges to x ∈ P if and only if there exists a directed
set D such that

(1)
∨

D exists with x ≤
∨

D, and

(2) D is a set of eventual lower bounds of (xi)i∈I.

It is known that the Scott-convergence structure induces the Scott topology (see [5]). The following propo-
sition shows that every set of eventual lower bounds of a net can be completely described by upper sets.

Proposition 3.5. Let P be a poset, D a subset of P, and (xi)i∈I a net in P. Then the following conditions are equivalent:

(1) D is a set of eventual lower bounds of (xi)i∈I.

(2) For every upper set U, D ∩U , ∅ implies xi ∈ U eventually.

Proof. (1) =⇒ (2): Let d ∈ D ∩ U. By assumption, xi ≥ d eventually. Since d ∈ U and U is upper, we have
xi ∈ U eventually.

(2) =⇒ (1): Let d ∈ D. Then D∩↑d , ∅. By assumption, xi ∈ ↑d eventually, meaning that d is an eventual
lower bound of (xi)i∈I.

By considering Proposition 3.5 and a poset P endowed with the Alexandroff topology on it, the definition
of Scott-convergence can be rephrased in a topological way as follows: a net (xi)i∈I in P Scott-converges to
x ∈ P if and only if there exists an irreducible set D in (P, α(P)) such that

(1)
∨

D exists with x ≤
∨

D, and

(2) for every U ∈ α(P), D ∩U , ∅ implies xi ∈ U eventually.

Lifting the above to the realm of T0 spaces, we have the following definition.

Definition 3.6. Let X be a T0 space. A net (xi)i∈I in X is said to SI-converge to x ∈ X, denoted by xi
SI
−→ x or

(xi)i∈I
SI
−→ x, if there exists F ∈ Irr(X) such that

(i)
∨

F exists with x ≤
∨

F, and

(ii) for every U ∈ O(X), F ∩U , ∅ implies xi ∈ U eventually.

We denote the topology induced by the SI-convergence structure by τSI, i.e., V ∈ τSI if and only if for every

net (xi)i∈I, xi
SI
−→ x and x ∈ V imply xi ∈ V eventually.
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Remark 3.7. Let X be T0 space and (xi)i∈I be a net in X. If xi
SI
−→ x then xi

SI
−→ y for every y ≤ x.

It is easy to verify that every constant net SI-converges to its constant term and if a net SI-converges to
some point then any subnet also SI-converges to the same point.

Lemma 3.8. For every F ∈ Irr(X) admitting a supremum, there exists a net (xi)i∈IF such that it SI-converges to
∨

F
and all of its terms are in F.

Proof. Let x =
∨

F. Define IF = {(e,O) ∈ F × O(X) | e ∈ O} and equip IF with ≤ defined as follows:
(e1,O1) ≤ (e2,O2) if and only if O2 ⊆ O1. Irreducibility of F gives that IF is directed. For every (e,O) ∈ IF,
we let x(e,O) = e. If U ∈ O(X) is such that F ∩ U , ∅, then there exists d ∈ X such that (d,U) ∈ IF. For every

(e,O) ≥ (d,U) we have that x(e,O) = e ∈ U. Hence x(e,O)
SI
−→ x.

The following theorem tells us that the topology induced by the SI-convergence structure in a T0 space
is precisely the SI-topology. This fact can be regarded as a topological parallel of the well-known fact in
domain theory: Scott-convergence structure induces the Scott topology.

Theorem 3.9. On a T0 space X, the two topologies τSI and OSI(X) coincide.

Proof. Let V ∈ τSI.

(1) Suppose that V is not open in X. Then there exists x ∈ V such that for every W ∈ N(x) = {W ∈ O(X) |
x ∈ W}, W * V. We equip N(x) with reverse inclusion order. We have that N(x) is a directed posets.
For every W ∈ N(x), we let xW ∈ W \ V to form a net (xW)W∈N(x). It is clear that {x} ∈ Irr(X) and
x ≤

∨
{x}. Let U ∈ O(X) be such that x ∈ U. Then for every W ∈ N(x) such that W ⊆ U it holds that

xW ∈ U. Hence xW
SI
−→ x. Since V ∈ τSI, xW ∈ V for some W ∈ N(x), which is a contradiction. Therefore

V is open in X.

(2) Let F ∈ Irr(X) such that
∨

F exists with
∨

F ∈ V. By Lemma 3.8, there exists a net (xi)i∈IF such that it
SI-converges to

∨
F and all of its terms are in F. Since

∨
F ∈ V and V ∈ τSI, it holds that F ∩ V , ∅.

From (1) and (2) we have that τSI ⊆ OSI(X). Now let V ∈ OSI(X) and (xi)i∈I be a net SI-converging to x ∈ V.
By definition, there exists F ∈ Irr(X) such that

∨
F exists with x ≤

∨
F and for every U ∈ O(X), F ∩ U , ∅

implies xi ∈ U eventually. Since x ≤
∨

F and x ∈ V ∈ OSI(X),
∨

F ∈ V holds, and hence F ∩ V , ∅. Since
V ∈ O(X), xi ∈ V holds eventually. Therefore V ∈ τSI. This completes the proof.

Proposition 3.10. Let X and Y be T0 spaces, and f be a continuous mapping from X to Y. Then the following
conditions are equivalent:

(1) f is a continuous mapping from SI(X) to SI(Y).

(2) For every net (xi)i∈I in X and x ∈ X, xi
SI
−→ x in X implies f (xi)

SI
−→ f (x) in Y.

Proof. (1) =⇒ (2): It is a consequence of Theorem 3.9.
(2) =⇒ (1): Let V ∈ OSI(Y). Since f is continuous from X to Y, f−1(V) ∈ O(X). Let F be irreducible in X

such that
∨

F exists with x :=
∨

F ∈ f−1(V). Then f (
∨

F) ∈ V. By Lemma 3.8, there exists a net (xi)i∈IF in X
such that it SI-converges to x and all of its term are in F. The assumption then implies that the net ( f (xi))i∈IF

SI-converges to f (x). It follows that the net ( f (xi))i∈IF converges to f (x) with respect to topology τSI on X,
hence by Theorem 3.9, with respect to OSI(X). This implies f (xi) ∈ V eventually. Thus there exists xi ∈ F
such that xi ∈ f−1(V), implying that F ∩ f−1(V) , ∅. We conclude that f−1(V) ∈ OSI(X), and therefore (1)
holds.

It is known that a poset being continuous is a necessary and sufficient condition for Scott-convergence
structure in it to be topological. Then it is natural to ask whether there exists a similar characterisation for
SI-convergence case. The rest of this section shall be focused on the search of such characterisation. We
first begin with a new notion of way-below relation.
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Definition 3.11. Let X be a T0 space. Define I-way-below relation�I on X as follows: x �I y if and only if
for every irreducible set F in X with existing supremum, y ≤

∨
F implies x ∈ cl(F).

One can see that when X is a poset P endowed with the Alexandroff topology, then the I-way-below
relation is exactly the usual way-below relation on P.

Remark 3.12. Let X be a T0 space and u, x, y, z ∈ X. Then

(i) x�I y implies x ≤ y,

(ii) u ≤ x�I y ≤ z implies u�I z,

(iii) x�I y if and only if for every irreducible closed set F with existing supremum, y ≤
∨

F implies x ∈ F.

In the following proposition, we have a connection between I-way-below relation and SI-convergence
structure.

Proposition 3.13. Let X be a T0 space. Then x�I y if and only if for every net (xi)i∈I, xi
SI
−→ y implies xi

O(X)
−−−→ x.

Proof. Necessity: Let U ∈ N(x) and (xi)i∈I
SI
−→ y. Then there exists F ∈ Irr(X) such that

∨
F exists with y ≤

∨
F

and F ∩ U , ∅ implies xi ∈ U eventually. By assumption, it holds that x ∈ cl(F), hence F ∩ U , ∅ and the
result follows.

Sufficiency: Let F ∈ Irr(X) such that
∨

F exists with y ≤
∨

F. By Lemma 3.8, there exists a net (xi)i∈IF

such that it SI-converges to
∨

F and all of its terms are in F. In virtue of Remark 3.7, we have xi
SI
−→ y, hence

xi
O(X)
−−−→ x. Then for every U ∈ N(x), it holds that xi ∈ U eventually. Since xi ∈ F for every i ∈ IF, this implies

x ∈ cl(F). We conclude that x�I y.

Taking the special case when X is a poset P endowed with the Alexandroff topology, we have that x is
way-below y in the poset P if and only if for every net Scott-converging to y, it holds that xi ∈ ↑x eventually
which is precisely that given in [10, Lemma 1].

Definition 3.14. A T0 space X is called I-continuous if for every x ∈ X the set �Ix := {y ∈ X | y �I x} is an
irreducible set in X whose supremum is x.

Proposition 3.15. A T0 space X is I-continuous if and only if for every x ∈ X there exists F ∈ Irr(X) with existing
supremum such that F ⊆ �Ix and

∨
F ≥ x.

Proof. The necessity part is immediate from the definition of I-continuity. Now let x ∈ X and assume there
exists an irreducible subset F of �Ix such that

∨
F exists with

∨
F ≥ x. Let U and V be open sets in X such

that �Ix ∩ U , ∅ and �Ix ∩ V , ∅. There exist u ∈ U and v ∈ V such that u �I x and v �I x. By the
assumption, it holds that u, v ∈ cl(F). Hence cl(F) ∩ U , ∅ and cl(F) ∩ V , ∅, which imply F ∩ U , ∅ and
F ∩ V , ∅. Irreducibility of F gives F ∩ U ∩ V , ∅. Since F ⊆ �Ix, it holds that �Ix ∩ U ∩ V , ∅, and hence

�Ix is irreducible. The fact that
∨

F ≥ x and F ⊆ �Ix implies that
∨

�Ix = x. This completes the proof.

Proposition 3.16. Let X be an I-continuous space, x, y ∈ X, and (xi)i∈I a net in X. Then the following statements
are equivalent:

(1) xi
SI
−→ y.

(2) If x�I y then xi
O(X)
−−−→ x.

Proof. By Proposition 3.13, (1) implies (2) always holds even when X is not I-continuous. Now assume (2)
and X is I-continuous. We have that �Iy ∈ Irr(X) and y ≤

∨

�Iy. Let U ∈ O(X) such that �Iy ∩ U , ∅. Then

there exists x ∈ U such that x�I y. By assumption, xi ∈ U holds eventually. Hence xi
SI
−→ y.
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Corollary 3.17. If X is I-continuous, then the SI-convergence structure in X satisfies the following condition:

(Div) If (xi)∈I does not SI-converge to x then there exists a subnet (y j) j∈J of (xi)i∈I such that any subnet of (y j) j∈J
does not SI-converge to x.

Proof. Suppose that (xi)∈I does not SI-converge to x. Since �Ix ∈ Irr(X) and x ≤
∨

�Ix, there exists U ∈ O(X)
such that �Ix ∩ U , ∅ and for all i ∈ I there exists ji ∈ I such that ji ≥ i and x ji < U. Thus the set
J := { j ∈ I | x j < U} is cofinal in I. Now consider the subnet (x j) j∈J of (xi)i∈I. Let (zk)k∈K be any subnet of

(x j) j∈J. Suppose to the contrary that zk
SI
−→ x. Notice that there exists y ∈ U such that y �I x as �Ix ∩U , ∅.

By Proposition 3.16, it holds that zk ∈ U eventually, which is a contradiction. Therefore (zk)k∈K does not
SI-converge to x.

If X is a poset P endowed with the Alexandroff topology, then it is clear that X being an I-continuous
space is the same as P being a continuous poset. Given a continuous poset P, one can deduce that for every
x ∈ P, the set of all elements in P which is way-above x, i.e., �x, is Scott open. However, if one has an
I-continuous space, the set �Ix := {y ∈ X | y�I x}may not be SI-open, as shown in the following example.

Example 3.18. Let X be the natural numbers endowed with the cofinite topology. We can see that for every
x in X, x�I y if and only if x = y. Hence X is I-continuous. For every x ∈ X, it holds that �Ix = {x} which is
clearly not open in X, hence not open in SI(X).

The remaining of this section is devoted to the relation between SI-convergence on a space and the
I-continuity of the space. We first define, for every T0 space X, the following condition (I∗).

(I∗) Whenever X is I-continuous then the set �Ix is always open in SI(X) for every x ∈ X.

Remark 3.19. Every T0 Alexandroff space satisfies condition (I∗).

Lemma 3.20. Let X be a T0 space satisfying condition(I∗). If X is I-continuous, then the SI-convergence structure in
X is topological.

Proof. It suffices to prove that if (xi)i∈I topologically converges to x in SI(X) then xi
SI
−→ x. By I-continuity of

X, we have that F := �Ix ∈ Irr(X) and x ≤
∨

F. Now let U ∈ O(X) be such that F ∩U , ∅. Then there exists
u ∈ U such that u�I x. By the given assumption, we have that �Iu is open in SI(X). Thus xi ∈ �Iu eventually.

Since �Iu ⊆ U, xi ∈ U holds eventually. Hence xi
SI
−→ x, as desired.

Lemma 3.21. If the SI-convergence structure in X is topological, then X is I-continuous.

Proof. Let x ∈ X and Fx = {Fi | i ∈ I} be the collection of all irreducible subsets Fi of X such that
∨

Fi exists
with x ≤

∨
Fi. Define a preorder ≤ on I as follows: i ≤ j for all i, j ∈ I. For every i ∈ I, let xi =

∨
Fi to form

a net (xi)i∈I. It is immediate that we have xi
SI
−→ x. For every i ∈ I, by Lemma 3.8, there exists a net (xi, j) j∈IFi

such that it SI-converges to xi and xi, j ∈ Fi for every j ∈ IFi . Let M := Πi∈IIFi be equipped with pointwise
order. Since SI-convergence is topological, the net (x(i, f ))(i, f )∈I×M SI-converges to x, where x(i, f ) = xi, f (i) and
the order on I ×M is the pointwise order. Then there exists F ∈ Irr(X) such that

1.
∨

F exists with x ≤
∨

F, and

2. for every U ∈ O(X), F ∩U , ∅ implies x(i, f ) ∈ U eventually.

We will show that F ⊆ �Ix. Take any e ∈ F. Let E be irreducible in X such that
∨

E exists with
∨

E ≥ x and
U be open in X such that e ∈ U. Then there exists i0 ∈ I such that E = Fi0 . Since F ∩U , ∅ (by the presence
of e), there exists (i∗, f ∗) ∈ I ×M such that (i, f ) ≥ (i∗, f ∗) implies x(i, f ) ∈ U eventually. Since (i0, f ∗) ≥ (i∗, f ∗),
it holds that x(i0, f ∗) = xi0, f ∗(i0) ∈ U ∩ Fi0 = U ∩ E, and hence e ∈ cl(E). Therefore e �I x. Since

∨
F ≥ x and

F ⊆ �Ix, in virtue of Proposition 3.15, we conclude that X is I-continuous.
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Combining Lemmas 3.20 and 3.21, we have the following theorem.

Theorem 3.22 (SI-convergence Theorem). Let X be a T0 space satisfying condition (I∗). Then the following two
statements are equivalent:

(1) The SI-convergence structure in X is topological.

(2) X is I-continuous.

Corollary 3.23 (Scott-convergence Theorem). [10, Theorem 1] Let P be a poset. Then the Scott-convergence
structure in P is topological if and only if P is continuous.

4. SI-Continuous Spaces

In this section we revisit the notion of SI-continuity introduced in [9]. In particular, we prove some
equivalent conditions for SI-continuity of a T0 space. First recall the definition of SI-way-below relation
and then continue with the definition of SI-continuous space.

Definition 4.1. ([9]) Let X be a T0 space. For x, y ∈ X, define x�SI y, read as x is SI-way-below y, if for every
irreducible set F, y ≤

∨
F implies x ∈ ↓F whenever

∨
F exists.

Given any T0 space X and subset A of X, it holds that ↓A ⊆ cl(A). Consequently, x�SI y implies x�I y.
However, the converse is not true in general, as witnessed by the following example.

Example 4.2. Let J = N × (N ∪ {∞}) be Johnstone’s poset [7]. Now let J∗ = J ∪ {>} equipped with ≤ as on
Johnstone’s poset with an addition of a top element, which is greater than any element in J∗. More precisely
≤ on J∗ is defined as follows:

(i) (m,n) ≤ (p, q)⇔ (m = p and n ≤ q) or (q = ∞ and n ≤ p), and

(ii) x ≤ > for every x ∈ J∗.

Let X = SI( J∗, σ( J∗)). We then have that J ∈ Irr(X) and cl( J) = J∗. It can be verified that> �I > but>3SI >.

Definition 4.3. ([9]) A T0 space X is called SI-continuous if for every x ∈ X, the following conditions hold:

(SI1) �SIx := {y ∈ X | x�SI y} is open in X.

(SI2) �SIx := {y ∈ X | y�SI x} is a directed subset of X with
∨

�SIx = x.

One may see that the definition of SI-continuity is somewhat not satisfying. This is merely because of
condition (SI2), i.e., the set �SIx needs to be directed, which is incoherent with the Zhao-Ho replacement
principle. More precisely, when working directly in T0 spaces, one should use irreducibility instead
of directedness. In response to this, we define the notion of SI∗-continuity by changing the “directed”
condition in (SI2) to “irreducible” condition and later prove that SI-continuity and SI∗-continuity are just
the same notions.

Definition 4.4. A T0 space X is called SI∗-continuous if for every x ∈ X, the following conditions hold:

(SI∗1) �SIx := {y ∈ X | x�SI y} is open in X.

(SI∗2) �SIx := {y ∈ X | y�SI x} is an irreducible subset of X with
∨

�SIx = x.

Remark 4.5. It is proven in [1] that condition (SI∗2) is equivalent to the existence of an irreducible subset of

�SIx whose supremum is x.
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In the proof of [9, Theorem 6.4], it is proven that the relation�SI on an SI-continuous space is interpola-
tive, i.e., x �SI y implies x �SI z �SI y for some z. The same situation also happens on an SI∗-continuous
space.

Lemma 4.6. Let X be an SI∗-continuous space and F ∈ Irr(X). Then �SIF :=
⋃
{ �SId | d ∈ F} is irreducible in X. In

addition, if
∨

F exists, then
∨

�SIF exists and
∨

�SIF =
∨

F.

Proof. Let U and V be open sets in X such that ( �SIF) ∩ U , ∅ and ( �SIF) ∩ V , ∅. Pick a ∈ ( �SIF) ∩ U and
b ∈ ( �SIF)∩V. Then we can find d, e ∈ F such that a�SI d and a ∈ U, b�SI e and b ∈ V, implying �SIa∩F , ∅
and �SIb ∩ F , ∅. As F is irreducible and �SIa and �SIb are open in X, we have �SIa ∩ �SIb ∩ F , ∅. Then there
exists z ∈ �SIa ∩ �SIb ∩ F. It follows that a ∈ �SIz ∩ U , ∅ and b ∈ �SIz ∩ V , ∅. Note that �SIz is irreducible,
thus �SIz ∩ U ∩ V , ∅. Since �SIz ⊆ �SIF, we have �SIF ∩ U ∩ V , ∅. Therefore �SIF is irreducible. The fact
that

∨

�SIF =
∨

F follows from the fact that
∨

�SIx = x for every x ∈ X.

Corollary 4.7. If X is an SI∗-continuous space, then the relation�SI is interpolative.

Proof. Suppose x, y ∈ X satisfying x�SI y. By Lemma 4.6, we have that Fy :=
⋃
{ �SId | d�SI y} is irreducible

and
∨

Fy =
∨

�SIy = y, implying x ∈ ↓Fy = Fy. Thus there exists d�SI y such that x�SI d.

One could notice that, in an SI-continuous space, the set Fy defined in the proof of Corollary 4.7 is
directed (see also the proof of [9, Theorem 6.4]). This condition is too strong as in the definition of�SI one
only needs to consider irreducible sets. This allows us to retain the interpolation property of �SI on an
SI∗-continuous space. In fact, in SI-continuous spaces, �SIx being irreducible can imply �SIx being directed.
This surprising fact leads us to the equivalence between SI-continuity and SI∗-continuity.

Theorem 4.8. Let X be a T0 space. Then X is SI-continuous if and only if it is SI∗-continuous.

Proof. It suffices to show that if X is SI∗-continuous, then for every x ∈ X the statement (SI2) holds. Let
y, z ∈ �SIx. By Corollary 4.7, we have �SIy ∩ �SIx , ∅ and �SIz ∩ �SIx , ∅. Note that �SIx is irreducible and
both �SIy and �SIz are open in X, implying �SIy ∩ �SIz ∩ �SIx , ∅. Then there is u ∈ �SIx such that y ≤ u and
z ≤ u. Hence �SIx is directed. The conclusion x =

∨

�SIx is trivial by the SI∗-continuity of X

Remark 4.9. At this juncture, we already have two notions of continuity of T0 spaces, namely, I-continuity
and SI-continuity (which equals SI∗-continuity). It can be easily verified that on the I-continuous space
given in Example 3.18, �I is exactly �SI. Consequently the space is not SI-continuous. This shows that
I-continuity and SI-continuity are generally distinct.

It is known that for a continuous poset P, the collection of all sets of the form �x, x ∈ P, forms a base for
the Scott topology on P. A similar property is also satisfied by SI-continuous spaces.

Proposition 4.10. If X is an SI-continuous space then for every x ∈ X the set �SIx is SI-open.

Proof. Let F be an irreducible subset of X such that
∨

F exists with
∨

F ∈ �SIx. By Corollary 4.7, there exists
z ∈ X such that x�SI z�SI

∨
F. It follows that z ∈ ↓F. Hence F ∩ �SIx , ∅.

Corollary 4.11. Let X be a T0 space. Then X is SI-continuous if and only if for any x ∈ X, the following conditions
hold:

(i) �SIx is SI-open.

(ii) �SIx is irreducible in X with
∨

�SIx = x.

Proposition 4.12. If X is SI-continuous, then the collection

{ �SIx | x ∈ X}

forms a base for OSI(X).
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Proof. Let U be SI-open and x ∈ U. By SI-continuity of X, �SIx is an irreducible set whose supremum is x.
Since U is inaccesible by suprema of irreducible sets, there exists u ∈ U such that u �SI x. Since U is an
upper set, x ∈ �SIu ⊆ U. This completes the proof as �SIu is SI-open from Corollary 4.11.

The following proposition provides a relation between SI-continuity and SI-convergence structure.

Proposition 4.13. If X is an SI-continuous space, then the SI-convergence structure in X is topological.

Proof. It suffices to prove that if (xi)i∈I topologically converges to x in SI(X) then xi
SI
−→ x. By SI-continuity of

X, we have that F := �SIx ∈ Irr(X) and x ≤
∨

F. Now let U ∈ O(X) be such that F ∩U , ∅. Then there exists
u ∈ U such that u �SI x. By Proposition 4.10, �SIu is open in SI(X). We then have that xi ∈ �SIu eventually.

Since �SIu ⊆ U, we have xi ∈ U eventually. Hence xi
SI
−→ x, as desired.

Corollary 4.14. Every SI-continuous space is I-continuous.

Proof. It is immediate from Lemma 3.21 and Proposition 4.13.

The converse of Proposition 4.13 is not always true, as shown in the following example.

Example 4.15. Let X be the natural numbers endowed with cofinite topology. Then O(X) = OSI(X). We
claim that the SI-convergence structure in X is topological. Let (xi)i∈I topologically converges to x in SI(X).
Set F = {x}. We have x ≤

∨
F. Let U be in O(X) = OSI(X) such that F∩U , ∅. Then U is an open set in SI(X)

containing x. Hence xi is in U eventually. We have that xi
SI
−→ x. Hence SI-convergence convergence in X is

topological. We can see that x �SI y if and only if x = y. Hence for every x ∈ X, �SIx = {x} which is clearly
not SI-open. Therefore X is not SI-continuous.

Notice that, based on what we have already attained until this stage, the concepts of SI-topology and
SI-continuity in the realm of T0 spaces mimic the concepts of Scott topology and continuity in the realm of
posets in some ways. Indeed, the SI-topology of an SI-continuous space is the Scott topology of a continuous
poset, which is precisely the induced specialisation poset, as shown in the following.

Theorem 4.16. (see also [1, Remark 4.6]) If X is an SI-continuous space, then:

(1)
(
X,≤O(X)

)
is a continuous poset, and

(2) OSI(X) = σ
(
X,≤O(X)

)
.

Proof. By Proposition 3.4 and [9, Theorem 6.4], SI(X) is a weak monotone convergence C-space. Then (1)
and (2) follow from [4, Theorem 4].

While it is correct that the SI-continuity of a space implies the continuity of its induced specialisation
poset, it is not true in general that the continuity of the specialisation poset induced by a given T0 space
implies the SI-continuity of the space. Indeed, one can easily find a continuous poset and an order-
compatible topology on it which is strictly coarser than the Scott topology. By Theorem 4.16, this poset
endowed with the topology is not SI-continuous.

Example 4.17. (1) Any infinite antichain A endowed with the upper topology ν(A) on A, i.e., that generated
by sets of the form A \↓x is not an SI-continuous space while the antichain itself is a continuous poset.

(2) The coproduct of infinitely many continuous posets is again continuous. Yet when we endow it with
the upper topology, the resulting T0 space is not SI-continuous.
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Recall that the derivation of SI-topology from an existing topology is motivated by that of the Scott
topology from the Alexandroff topology. From Theorem 4.16, we know that whenever a space is SI-
continuous, its SI-topology is just the Scott topology. However, there is no information about the underlying
topology. In fact, it is not necessarily the Alexandroff topology. In what follows, we shall put our attention
on examples of non-Alexandroff SI-continuous spaces that we advertise in abstract. To provide those
examples, we introduce the notion of a novel topology on posets called the Scott-max topology.

Definition 4.18. Let P be a poset. The set of all maximal elements in P is denoted by max(P). The Scott-max
topology on P, denoted by ξ(P), is defined to be the coarsest topology containing all Scott open subsets of P
and all subsets of max(P).

Remark 4.19. Let P be a poset.

(1) The Scott-max topology on P is located in between the Scott topology and the Alexandroff topology
on P. Hence it is an order compatible T0 topology.

(2) If max(P) = ∅ then the Scott-max topology on P is just the Scott topology.

The following lemma can be easily verified from the definition of Scott-max topology.

Lemma 4.20. Let P be a poset and U ⊆ P. Then U is in ξ(P) if and only if there exist U∗ ∈ σ(P) and A ⊆ max(P)
such that U = U∗ ∪ A and U∗ ∩ A = ∅.

Proof. The sufficiency is clear by the definition. To prove the necessity, we first note that σ(P) ∪max(P) is
closed under finite intersection. Thus it forms a base for ξ(P). Now let U be in ξ(P). Since σ(P) and max(P)
are closed under arbitrary union, we have that U is the union of some Scott open set V and some subset B
of max(P). We then take U∗ = V and A = B \ V. Clearly, U = U∗ ∪ A and U∗ ∩ A = ∅.

Proposition 4.21. Let P be a poset. Then α(P) = ξ(P) if and only if x� x for every x ∈ P \max(P).

Proof. Let α(P) = ξ(P). Then for every x ∈ P\max(P), the set ↑x ∈ ξ(P). By Lemma 4.20, there exist U∗ ∈ σ(P)
and A ⊆ max(P) such that ↑x = U∗ ∪A and U∗ ∩A = ∅. Since x < max(P), it holds that U∗ = ↑x, hence x� x.

Conversely, to show α(P) ⊆ ξ(P), it suffices to show that that ↑x ∈ ξ(P) for all x ∈ P. If x ∈ max(P), then
↑x = {x} ∈ ξ(P). If x < max(P), then, by assumption, for every directed set D such that

∨
D ∈ ↑x we have

D ∩ ↑x , ∅. Hence ↑x ∈ σ(P) ⊆ ξ(P).

Proposition 4.22. Let P be a poset. Then the following conditions are equivalent:

(1) σ(P) = ξ(P).

(2) x� x for every x ∈ max(P).

(3) max(P) ∈ σ(P).

Proof. (1) =⇒ (2): It is clear since, by assumption, {x} ∈ σ(P) for every x ∈ max(P).
(2) =⇒ (3): It is clear that max(P) is an upper set. Now let D be a directed set admitting a supremum and∨

D ∈ max(P). By assumption
∨

D�
∨

D. This forces
∨

D ∈ D, which implies D∩max(P) , ∅. Therefore
max(P) ∈ σ(P).

(3) =⇒ (1): It suffices to show that {x} ∈ σ(P) for every x ∈ max(P). Let x ∈ max(P). If D is a directed set
whose supremum is x, then by assumption it holds that D ∩max(P) , ∅, and hence x ∈ D. This completes
the proof.

By making use of the Scott-max topology, one can easily provide many examples of a space X such that
X is SI-continuous but O(X) is not the Alexandroff topology on the specialisation poset induced by X, i.e.,
X is not an Alexandroff space. We first look at the following example.
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Figure 1: An illustration of the poset P

Example 4.23. Let P = [0,∞] be equipped with the usual order. By Propositions 4.21 and 4.22, we have that
σ(P) & ξ(P) & α(P). We consider the T0 space X = (P, ξ(P)). Every nonempty subset of P is directed, and
hence irreducible sets in X are exactly directed subsets of P. Since P is a continuous poset, we have that X
is SI-continuous.

At the end of this section, we provide another example of an SI-continuous space X such that X is not
an Alexandroff space. Unlike the space given in Example 4.23, the space (P, ξ(P)) given in Example 4.24
satisfies the following property: the collection of all irreducible sets in (P, ξ(P)) and the collection of all
directed sets in the specalisation poset induced by (P, ξ(P)) do not coincide.

Example 4.24. Let I = {1, 2, 3}, R+ be the set of all positive real numbers ordered with the usual order, and
R∗ = R+

∪ {0, ω} in which ω is the top element. Define P = I ×R∗ and a partial order ≤ in P as follows (see
Figure 1):

(i) x ≤ (2, ω) =: > for every x ∈ P,

(ii) for every i ∈ I, (i, r) ≤ (i, s) if and only if r ≤ s in R∗,

(iii) for every r, s ∈ R∗, (1, r) and (3, s) are incomparable,

(iv) for every i ∈ {1, 3} and r, s ∈ R∗ such that r ≤ s, (i, r) ≤ (2, s).

We have the following easy facts regarding P.

(1) Every nonempty subset of P has supremum.

(2) ξ(P) \ σ(P) = {{>}}.

(3) For every x ∈ P − {(1, 0), (2, 0), (3, 0)}, it holds that ↑x ∈ α(P) − ξ(P).
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From (2) and (3), we have σ(P) & ξ(P) & α(P). For every i ∈ I, define Ri = {(i, r) | r ∈ R+
∪ {0}}. The poset P is

continuous from the fact that

(i) �> = R1 ∪ R2 ∪ R3,

(ii) �(i, ω) = Ri for every i ∈ {1, 3},

(iii) �(i, r) = ↓(i, r) − {(1, r), (2, r), (3, r)} for every i ∈ I and r ∈ R+, and

(iv) �(i, 0) = {(i, 0)} for every i ∈ I.

Claim: For every irreducible set F in (P, ξ(P)) whose supremum exists, there exists a directed set D ⊆ F such
that

∨
F =

∨
D.

Proof of Claim: We only need to consider the case when F is not directed. Clearly > < F. We also have that∨
F < R1 ∪R3, otherwise F ⊆ R1 or F ⊆ R3 which implies F is directed. If

∨
F = >, then F contains a directed

subset D of R2 such that
∨

D = >. The remaining possible case is
∨

F =: (2, r) ∈ R2, where r ∈ R ∪ {0}.
Suppose to the contrary that F∩R2 = ∅. Then, since F is not directed, there exist a ∈ R1 and b ∈ R3 such that
a, b ∈ F. Consider the set Ui = Ri ∪R2 ∪ {(i, ω),>}, for i ∈ {1, 3}. It follows that U1,U3 ∈ ξ(P) with F∩Ui , ∅,
for i ∈ {1, 3}, but F ∩U1 ∩U3 = ∅, which contradicts the fact that F is irreducible and therefore F ∩ R2 , ∅.
Let D = F ∩ R2 and assume

∨
D = (2, s) for some s ∈ R ∪ {0}. Clearly, D is directed. We will show that

s = r. Suppose to the contrary that s < r. Since
∨

F = (2, r), there exist i0 ∈ {1, 3} and E ⊆ F ∩ Ri0 such that∨
E = (i0, r). Define

U1 = ↑(i0, s) ∪ ↑(2, s) \ {(i0, s), (2, s)} and U2 = R2 ∪ {>}.

Then U1,U2 ∈ ξ(P) and U1 ∩U2 = ↑(2, s) \ {(2, s)}. We have that F∩U1 , ∅, F∩U2 , ∅, but F∩U1 ∩U2 = ∅,
which is a contradiction. Therefore s = r, which means

∨
D =

∨
F. We conclude that Claim is indeed

correct.

As a corollary of the above claim, the relation�SI on (P, ξ(P)) is exactly the way-below relation on P. This
leads to the fact that (P, ξ(P)) is an SI-continuous space. Notice that if U is a nonempty Scott open set
in P, then > ∈ U. Consequently, as R2 is a directed set whose supremum is >, R2 ∩ U , ∅, and hence
(P \ {>}) ∩U , ∅. By the fact that ξ(P) \ σ(P) = {{>}}, we have that P \ {>} ∈ Irr(P, ξ(P)). But, it is clear that
P \ {>} is not directed. So we conclude that

Irr(P, ξ(P)) , Dir(P) := {D ⊆ P | D is directed}.

5. Conclusion and Further Work

In this paper, we have defined the SI-convergence structure that induces the SI-topology first introduced
in [9]. Additionally, we characterise those T0 spaces X in which the SI-convergence structure is topological.
Another contribution we have provided is the establishment of a more natural definition of SI-continuity
and examples of non-Alexandroff SI-continuous spaces. Before we end this paper, let us pose some possible
research directions.

1. Besides the Alexandroff and Scott topologies, there is another prominent topology on posets called the
Lawson topology. This topology has some interesting properties, particularly when the underlying
poset is quasicontinuous. It would be interesting to study a topological parallel of the Lawson
topology and its connection with some notion of quasicontinuous spaces (one such notion is already
studied in [2]).

2. A characterisation of T0 spaces in which the SI-convergence structure is topological is provided in
Theorem 3.22. However, this characterisation is not a complete characterisation since it only holds for
a certain class of T0 spaces, i.e., T0 spaces satisfying condition (I∗). This opens a direction of research:
to find a characterisation better than that given in Theorem 3.22.
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3. Although we can provide a space on which the I-way-below and SI-way-below relations do not
coincide, we are currently unable to distinguish between I-continuous spaces and spaces satisfying
condition (SI2). In fact, the space given in Example 4.2 is neither I-continuous nor SI-continuous.
Moreover, we also have no information on the difference between the class of SI-continuous spaces
and the class of I-continuous spaces satisfying condition (I∗). All of these facts could make one
consider doing deeper investigation regarding I-continuity, SI-continuity, and connections between
them.

Acknowledgement

The authors express gratitude to the anonymous reviewer for his comments and suggestions. The
authors also thank Prof. Xiaoyong Xi for his thoughtful suggestion on defining the Scott-max topology on
posets.

References

[1] H. Andradi, W.K. Ho, Topological Scott convergence theorem, arXiv:1710.03115v1 (2017).
[2] J. Lu, Quasicontinuous spaces, A Presentation in Workshop on Topology and Order Structures, Nanyang Technological University,

Singapore, 2018.
[3] F.G. Arenas, Alexandroff spaces, Acta Math. Univ. Comenianae 68 (1999) 17–25.
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