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Abstract. The Harary index (HI), the average distance (AD), the Wiener polarity index (WPI) and the
connective eccentricity index (CEI) are distance–based graph invariants, some of which found applications
in chemistry. We investigate the relationship between HI, AD, and CEI, and between WPI, AD, and CEI.
First, we prove that HI > AD for any connected graph and that HI > CEI for trees, with only three
exceptions. We compare WPI with CEI for trees, and give a classification of trees for which CEI ≥ WPI or
CEI < WPI. Furthermore, we prove that for trees, WPI > AD, with only three exceptions.

1. Introduction

Throughout this paper we consider only simple connected graphs. For a graph G = (V,E) with vertex
set V = V(G) and edge set E = E(G), the degree of a vertex v, denoted by dG(v), is the number of edges
incident with v. Denote by dG(u, v) the distance between vertices u and v in G. The eccentricity of a vertex v
in a graph G is defined to be εG(v) = max{dG(u, v)|u ∈ V(G)}. The diameter of a connected graph G is equal
to max{εG(v)|v ∈ V(G)}, whereas its radius is equal to min{εG(v)|v ∈ V(G)}.

A connected graph is said to be a tree if it contains no cycles. Let Pn, Sn, Cn, and Kn be the path, star,
cycle, and complete graph of order n, respectively. For other notation and terminology not defined here,
the readers are referred to [3].

One of the oldest and best studied distance–based graph invariants is the Wiener index, defined as [26]

W(G) =
∑

{u,v}⊆V(G)

dG(u, v) .
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In some applications, it is more convenient to study the average distance (AD) of G,

W(G) =
1(n
2
) ∑
{u,v}⊆V(G)

dG(u, v) =
2

n(n − 1)
W(G) .

Results on Wiener index can be found in the reviews [12, 16, 27]. For results on average distance see
[4–6, 11] and the references cited therein.

Another distance-based graph invariant, put forward independently in [22] and [25], is the reciprocal–
analogue of the Wiener index, named Harary index (HI), and defined as

H(G) =
∑

{u,v}⊆V(G)

1
dG(u, v)

.

The Wiener polarity index (WPI), introduced also by Wiener in 1947 [26], is

Wp(G) = |{(u, v) | dG(u, v) = 3,u, v ∈ V(G)}| .

It also found applications in chemistry [18, 24]. For recent mathematical results on WPI see [13–15, 21, 23, 30].
In 2000, the connective eccentricity index (CEI) of a connected graph G, denoted by Cξ(G), was introduced

by Gupta et al. [17] as

Cξ(G) =
∑

u∈V(G)

dG(u)
εG(u)

.

For recent results on the CEI see [1, 28, 29] and the references cited therein.
Relationships between various graph invariants have received much attention over the past few decades,

see e.g., [7–10, 19, 20].
In this paper, we investigate various relationships between the above listed distance–based graph

invariants. We prove that the Harary index is greater than the average distance for any connected graph.
Also, we prove that for trees, the Harary index is greater than the connective eccentricity index, with only
three exceptions. Moreover, we compare the Wiener polarity index with the connective eccentricity index
for trees, and give an explicit classification of all trees for which CEI is greater or smaller than WPI. We prove
that for trees, the Wiener polarity index is greater than the average distance, with only three exceptions.
Finally, we compare the Harary index with connective eccentricity index in terms of a radius-dependent
condition.

2. Main Results

In this section, we investigate the relationship between the Harary index and average distance and
connective eccentricity index, and the relationship between the Wiener polarity index and average distance
and connective eccentricity index. We will proceed by dividing our discussions into four subsections.

2.1. Harary index and average distance

For a connected graph G, the remoteness of G is defined as ρ = ρ(G) = max
v∈V(G)

1
n−1 DG(v). We need a result

on remoteness due to Aouchiche and Hansen, which reads as follows:

Lemma 2.1 ([2]). Let G be a connected graph of order n with remoteness ρ. Then ρ ≤ n/2 with equality if and only
if G � Pn.

Next, we will show that the Harary index is greater than the average distance for any connected graph.
First, we prove a somewhat stronger result:
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Theorem 2.2. Let G be a connected graph with average distance W(G) and average degree d(G). Then

H(G) > d(G) ·W(G) .

Proof. Suppose that the order and size of G are n and m, respectively. Then d(G) = 2m
n . By Lemma 2.1,

d(G) ·W(G) =
2m
n
·

∑
v∈V(G) DG(v)

n(n − 1)
=

2m
n2 ·

∑
v∈V(G)

DG(v)
n − 1

≤
2m
n2 · nρ ≤

2m
n2 · n ·

n
2

= m .

Obviously,

H(G) =
∑

{u,v}⊆V(G)

1
dG(u, v)

≥ m

with equality if and only if G � Kn.
Therefore, H(G) ≥ d(G) ·W(G). It is not difficult to see that the equality in the above inequality cannot

be attained. Thus, H(G) > d(G) ·W(G).

Since d(G) ≥ 1 for any connected graph G, we have:

Corollary 2.3. Let G be a connected graph with average distance W(G) and Harary index H(G). Then

H(G) > W(G) .

2.2. Harary index and connective eccentricity index
In order to find the relationship between the Harary index and the connective eccentricity index, we

first consider the following three special graphs.
For the complete graph Kn, Cξ(Kn) = n(n − 1) > n(n−1)

2 = H(Kn) for n ≥ 2.
For a ≥ 1, b ≥ 1, let Sa+1 and Sb+1 be stars on a + 1 and b + 1 vertices, respectively. Then the double star Sa,b

is the tree obtained by connecting an edge between two centers of Sa+1 and Sb+1.
For the double star Sa,b (a + b = n − 2), Cξ(Sa,b) = 5n−4

6 , H(Sa,b) = ab
3 +

3(a+b)
2 + 1 ≥ n−3

3 +
3(n−2)

2 + 1 = 11n−18
6 .

Therefore, H(Sa,b) > Cξ(Sa,b) for n ≥ 4.
For the complete bipartite graph K n

2 ,
n
2
, where n ≥ 4 and n is an even integer, Cξ(K n

2 ,
n
2
) = n2

4 , H(K n
2 ,

n
2
) =

3n2

8 −
n
4 . Therefore, Cξ(K n

2 ,
n
2
) < H(K n

2 ,
n
2
) for n ≥ 4.

From the above examples, one concludes that in the general case, HI and CEI are incomparable. Bearing
this in mind, we shall restrict our considerations to to trees.

Theorem 2.4. Let T be a tree of order n. If T ∈ {P2,P3}, then H(T) < Cξ(T). Otherwise,

H(T) ≥ Cξ(T)

with equality if and only if T � S4.

Proof. For T ∈ {P2,P3}, it can be easily checked that H(T) < Cξ(T). Assume therefore that T < {P2,P3}. Then,
n ≥ 4.

Let A = {v|dT(v) = n − 1}. Since T is a tree, we have |A| ≤ 1.
If |A| = 0, then εT(v) ≥ 2 for each vertex v in T, and thus, dT(v)

εT(v) ≤
dT(v)

2 . For any vertex v in T, write

D̂T(v) =
∑

u∈V(G)\{v}

1
dT(u,v) . Note that if εT(v) ≥ 2, then D̂T(v) > dT(v). Therefore,

H(T) =
1
2

∑
v∈V(T)

D̂T(v) >
1
2

∑
v∈V(T)

dT(v) ≥
∑

v∈V(T)

dT(v)
εT(v)

= Cξ(T) .
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Thus, in this case, H(T) > Cξ(T).
Now, let |A| = 1. Then T � Sn, and thus, H(T) = H(Sn) = (n−1)+

(n−1
2
)
·

1
2 =

(n−1)(n+2)
4 , Cξ(T) = n−1

2 +(n−1) =
3(n−1)

2 . Note that n ≥ 4. Thus, H(T) ≥ Cξ(T), with equality only if n = 4, that is, if T � S4. Conversely, if
T � S4, then H(T) = Cξ(T).

This completes the proof.

Next, we compare the Harary and connective eccentricity indices for connected graphs under given
restricted condition.

Theorem 2.5. Let G be a connected graph of order n ≥ 4 with m edges and p ≥ 0 vertices of degree n − 1. If
m ≥ (n−1)(n−2p)

2 and p < n
2 , then H(G) ≤ Cξ(G).

Proof. Let ∆ be the maximum degree of graph G. First, we claim that ∆ = n − 1.
If ∆ ≤ n − 2, then p = 0. By our assumption that m ≥ (n−1)(n−2p)

2 =
n(n−1)

2 , we must have G � Kn, a
contradiction.

Thus, we may assume that ∆ = n − 1. Then d ≤ 2. If d = 1, then G � Kn and hence H(G) =
n(n−1)

2 <

n(n − 1) = Cξ(G). Suppose therefore that d = 2. Since m ≥ (n−1)(n−2p)
2 , we have

H(G) = m +
1
2

[
n(n − 1)

2
−m

]
≤ p(n − 1) +

2m − p(n − 1)
2

= Cξ(G) .

2.3. Wiener polarity index and connective eccentricity index

In order to find a relationship between the Wiener polarity index and the connective eccentricity index,
we first consider the following two special graphs.

For the complete graph Kn, Cξ(Kn) = n(n − 1) > 0 = Wp(Kn) for n ≥ 2.
For the path Pn, Cξ(Pn) < n · 2

n
2

= 4 < n − 3 = Wp(Pn) for n ≥ 8.
These examples imply that in the general case, WPI and CEI are incomparable. In view of this, we

restrict our considerations to trees.
We first introduce a special class of trees.
Suppose that Pd+1 = v0v1 · · · vd−1vd is a path of length d. For d ≥ 3, let Tn(r, t) be a tree of order n with

diameter d obtained from Pd+1 by attaching r and t pendent vertices to v1 and vd−1, respectively. Here, r ≥ 0,
t ≥ 0, and r + t = n − d − 1, See Fig. 1.

...................

......... .........

v0 v1 v2 vdvd−1vd−2

︷ ︸︸ ︷ ︷ ︸︸ ︷r t

Fig. 1. The tree Tn(r, t), where r ≥ 0, t ≥ 0, and r + t = n − d − 1.

We first state a result due to Deng et al.
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Lemma 2.6 ([14]). Let T be a tree of order n and diameter d ≥ 3. Then Wp(T) ≥ n − 3 with equality if and only if
T � Tn(r, t) for d > 4, and T � Tn(n − 4, 0) for d = 3.

Note that the tree Tn(n − 4, 0) in Lemma 2.6 is isomorphic to the double star S1,n−3.
In 2009, Du et al. gave the following remarkable formula for computing the Wiener polarity index of

trees.

Lemma 2.7 ([15]). Let T be a tree. Then

Wp(T) =
∑

uv∈V(T)

[dT(u) − 1][dT(v) − 1] . (1)

Theorem 2.8. Let T be a tree of order n. If T ∈ {Sn,P5,S2,2,T6(1, 0),T7(2, 0)} or T � S1,n−3 for 4 ≤ n ≤ 14, then
Cξ(T) ≥Wp(T) with equality if and only if T � T7(2, 0) or T = con1S1,11. Otherwise,

Wp(T) > Cξ(T) .

Proof. We have to separately consider the following three cases:
Case d = 2: Then T � Sn and thus Cξ(T) = 3(n − 1)/2 > 0 = Wp(T).
Case d = 3: Then T � Sa,b (a + b + 2 = n, 1 ≤ a ≤ b) and thus

Wp(T) − Cξ(T) = ab −
5a + 5b + 6

6
=

5b(a − 1) + a(b − 5) − 6
6

.

First we assume that a = 1. Then T � S1,n−3 and then Wp(T) − Cξ(T) = n−14
6 . For 4 ≤ n ≤ 13, Wp(T) < Cξ(T),

for n = 14, Wp(T) = Cξ(T), whereas for n ≥ 15, Wp(T) > Cξ(T). Assume next that a ≥ 2. If b = 2, then
(a, b) = (2, 2) and therefore Wp(T) < Cξ(T). Otherwise, b ≥ 3. Then 5b(a − 1) + a(b − 5) − 6 ≥ 5b − 2a − 6 > 0.
Thus we have Wp(T) > Cξ(T).

Case d ≥ 4: Assume first that T � Tn(r, t). Then Wp(T) ≥ n − 3, Cξ(G) ≤ r+s+2
4 + 2n−6−r−s

3 + 2
2 , and

Wp(T) − Cξ(T) ≥
n
3
−

5
2

+
r + s
12

.

If n ≥ 8, then from the above it follows Wp(T) > Cξ(T). Otherwise, in this case n = 5 or 6 or 7. Since
T � Tn(r, t), we have T � P5 (n = 5) or T � P6 (n = 6) or T � T6(1, 0) (n = 6) or T � P7 (n = 7) or T � T7(1, 0)
(n = 7) or T � T7(2, 0) (n = 7) or T � T7(1, 1) (n = 7).

For T � P5, Cξ(T) = 17/6 > 2 = Wp(T). For T � P6, Cξ(T) = 41/15 < 3 = Wp(T). For T � T6(1, 0), Cξ(T) =

41/12 > 3 = Wp(T). For T � P7, Cξ(T) = 14/5 < 4 = Wp(T). For T � T7(1, 0), Cξ(T) = 119/60 > 4 = Wp(T).
For T � T7(2, 0), Cξ(T) = 4 = Wp(T). For T � T7(1, 1), Cξ(T) = 4 = Wp(T).

Assume next that T � Tn(r, t). Then by Lemma 2.7, Wp(T) ≥ n − 2. Let Pd+1 : v1v2 . . . vdvd+1 be a diametral
path in T. Then

Cξ(G) ≤
2
4

+
d2 + dd

3
+

2n − 4 − d2 − dd

2
= n − 2 −

d2 + dd − 3
6

where d2 and dd are the degrees of the vertices v2 and vd, respectively. Thus we have Wp(T) − Cξ(T) ≥
d2+dd−3

6 > 0 as d2 ≥ 2 and dd ≥ 2.
This completes the proof.

2.4. Wiener polarity index and average distance
In order to find the relationship between the Wiener polarity index and the average distance, we first

consider the following special graphs.
For the complete graph Kn, W(Kn) = 1 > 0 = Wp(Kn) for n ≥ 2.
For the six-membered cycle C6, W(C6) = 9

5 < 3 = Wp(C6).
For the path Pn, W(Pn) < n

2 ≤ n − 3 = Wp(Pn) for n ≥ 6.
These examples show that in the general case, WPI and AD are incomparable. Bearing this in mind, we

restrict our considerations to trees.
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Theorem 2.9. Let T be a tree of order n. If T ∈ {Sn,P4,P5}, then W(T) ≥Wp(T) with equality if and only if T � P5.
Otherwise,

Wp(T) > W(T) .

Proof. We first show that the statement of theorem is true for each tree in the set {Sn,P4,P5}.
If T � Sn, then W(T) = 2(n − 1)/n > 0 = Wp(T).
If T � P4, then W(T) = 5/3 > 1 = Wp(T).
If T � P5, then W(T) = 2 = Wp(T).
Assume now that T < {Sn,P4,P5}. Let d be the diameter of T. Then d ≥ 3. We consider the following

three cases.
Case 1. 3 ≤ d ≤ n − 3.
By Lemma 2.6, Wp(T) ≥ n − 3 ≥ d > W(T).
Case 2. d = n − 2.
If T � Tn(1, 0), then by Lemma 2.6, Wp(T) = n−3. As d ≥ 3, we have n ≥ 5. If n = 5, then T � T5(1, 0) = S1,2.

Then Wp(T) = n − 3 = 2 > 9/5 = W(T). So, we may suppose that n ≥ 6. Then by Lemma 2.1, W(T) ≤ ρ < n
2 ,

and thus,

Wp(T) −W(T) > n − 3 −
n
2

=
1
2

(n − 6) ≥ 0,

that is, Wp(T) > W(T).
Now, we assume that T � Tn(1, 0). Then by Lemma 2.6, Wp(T) ≥ n − 2 = d > W(T).
Case 3. d = n − 1.
Then T � Pn = Tn(0, 0). By Lemma 2.6, Wp(T) = n − 3. Note that n = d + 1 ≥ 4. By our assumption that

T < {Sn,P4,P5}, we have n ≥ 6. Thus, W(T) < ρ = n
2 . Therefore, Wp(T) −W(T) > n − 3 − n

2 = 1
2 (n − 6) ≥ 0.

This completes the proof.
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