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Three Step Algorithm for Weighted Resolvent Average of a Finite
Family of Monotone Operators

Malihe Bagheri?, Mehdi Roohi?

?Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, Iran

Abstract. In this paper, we introduce a composite iterative method for finding a common zero point of
weighted resolvent average of a finite family of monotone operators. Furthermore, the strong convergence
of the proposed iterative method is established. Finally, our results are illustrated by some numerical
examples.

1. Introduction

Let H be a real Hilbert space with the norm ||.|| and the inner product (., .). Let A be a set-valued mapping
with the domain dom A = {x € H : A(x) # 0} and the range ran A = {u € H : 3x € dom A, u € A(x)}. The graph
of AisthesetgraA = {(x,u) e HXH :x € domA, u € A(x)}. An operator A : H —o H is said to be monotone if

(x—yu—-0v)>0, ¥(x,u),(y,v) € graA.

A monotone operator A is called maximal monotone if there exists no monotone operator B such that gra A
is a proper subset of gra B. The resolvent of A is the mapping J4 = (A +1d)™".
Recall [2] that amap T : H — H is called nonexpansive if

ITx = Tyll < Il -y, Vx,y € H.

A point x € H is said to be a fixed point of the operator T : H — H, if Tx = x. The set of all fixed points of T
is denoted by Fix(T), i.e.,

Fix(T) ={x e H: Tx = x}.

Let us consider the zero point problem for monotone operator A on a real Hilbert space H, i.e., finding a
point x € dom A such that 0 € A(x). It was first introduced by Martinet [12] in 1970. Rockafellar [16] defined
the proximal point algorithm of Martinet by generalizing a sequence {x,} such that

Xn+l = ]sy,Axn +e,, n €N,
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for arbitrary point xg € H, where {e,} is a sequence of errors and {s,,} € (0, ). The sequence {x,} is known
to converge weakly to a zero of A, if liminf, e s, > 0 and Y., llexll < oo, see [16], but fails in general
to converge strongly [6]. Xu [21] investigated a modified version of the initial proximal point algorithm
studied by Rockafellar with xy € H chosen arbitrarily,

Xpt1 = PnXo + 1- Bi)s,axn + e, n €N,

where {e,} is the errors sequence. For {¢,} summable, it was proved that [21] {x,} is strongly convergent if
sn — oo and {B,} € (0,1) with Y,” B = c0 and lim,, e B = 0.

Recently, Marino and Rugiano [9] introduced the following iteration process: for arbitrary chosen xy € C
construct a sequence {x,} by

Xn+l = ﬁnf(xn) +(1- ﬁn)T(anxn + (1 —an)xu1), n €N,

where a,, 5, € (0,1) and f is a k-contraction mapping on H. They showed that this process converges
strongly to the unique fixed point of the contraction Prix(r).

In 2014, Mongkolkeha, Cho and Kumam [13], defined the following iterative scheme, by x € C and

zp = (1- Vn)xn + v Uxy,
Yn = (1 - ﬂn)Txn + ﬁnsznl
Xn+l = (1 - an)xn + QnlYn,

where {a,}, {8,} and {y,} are sequences in (0, 1). They show that if lim inf(1 — a,,)a, > 0, liminf(1 - ,), > 0
and )N Vs < o then {x,} converges weakly to an element of Fix(T) N Fix(S).

In this paper, we introduce a composite iteration of resolvent average for a finite family of monotone
operators as follows:

x1 € H,

Zy = VuXn + (1 = V) JRa ) X0, 1)
Yn = ﬁnxn + (1 - ﬁn)]R(A,/\)Zn/

Xn+1l = anyf(xn) +(Id - anB)yn + én,

where B is a strongly monotone linear bounded self-adjoint operator and f is a k-contraction mapping on
H. We prove, under certain appropriate assumptions on sequences {a,}, {8.} € (0,1), {y.} € [0,1] and {e,},
that {x,} converges strongly to a zero point of resolvent average of the family.

2. Preliminaries

Let K be a closed convex subset of H. Then for every point x € H, there exists a unique nearest point in
K, denoted by Pk(x), such that

llx = Pkl < llx — ull, Yu € K.

The operator Py is called the metric projection of H onto K. It is well known that Px(x) is nonexpansive. The
metric projection Pg(x) is characterized by Px(x) € K and

(u — Pg(x),x — Pg(x)) <0, Yu e K
An operator T : H — H is said to be firmly nonexpansive if

ITx = TylP +11Id - T)x - (1d ~ T)YIP < llx - yIP, ¥x,y € H.
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A mapping f : H — H is said to be k-contraction on H if there exists a constant k € (0, 1) such that

If(x) = fWIl < kllx — yll, Vx,y € H.

A sequence of points {x,} in a Hilbert space H is said to converge weakly to a point x in H if

X, y) =K%, y), Yy € H;

in symbols, x, — x.
The defining property of the adjoint of a bounded operator L on a Hilbert space, denoted by L, is that

(x,Ly) ={(L'x,y), ¥x,y € H.

A bounded linear operator L : H — H on a Hilbert space H is called self-adjoint if L* = L.
An operator B : H —o H is called strongly monotone with constant ) > 0 if

(Bx = By,x —y) 2 ¥llx — ylP’, Vx,y € H.

These basic definitions are also have presented in various parts of the book [2]. Now, we recall some
properties of monotone operators.

Proposition 2.1. [2, Proposition 23.7] Suppose that A : H —o H is a set-valued mapping. Then

(i) if A is monotone, then | is single-valued and firmly nonexpansive.
(ii) if A is maximal monotone, then |4 is single-valued and firmly nonexpansive and its domain is all of H.
(iii) 0 € A(x) ifand only if x € Fix(Ja). Since the fixed point set of nonexpansive operators is closed and convex, the
projection onto Z = A~(0) is well defined whenever Z # 0 (see [16]).

We recall (see [1]) the definition of the proximal average and resolvent average. To this end, we assume
thatm e Nand I = {1,2,...,m}. For everyi €I, let A; : H — H be a set-valued mapping and let A; > 0 be
such that },;;;Ai =1. Weset A = (Ay,...,Ap)and A = (Ay, ..., Ap).

Definition 2.2. [1, Definition 1.4] The A-weighted resolvent average of A is defined by
-1
R(A,A) = (Z Al +1d)71) - 1d. @)
iel

The equation (2) is equivalent to the following equation (see [1]):

Jr@an = Z Ai]a;- (©)
i€l

Proposition 2.3. [1, Theorem 2.5] Suppose that for each i € 1, A; : H — H is monotone and x € H. If
Nier A71({0)) # 0, then

(R(A, )7 (10} = () A7 ({0)).

i€l

Proposition 2.4. [1, Theorem 2.2] Suppose that for eachi € I, A; : H — H is a set-valued mapping. Then

(R, )™ =R@A™, A).

Lemma 2.5. [1, Theorem 2.11] Let A; : H —o H be monotone for each i € I. Then R(A, A) is monotone and

dom Jra,a) = ﬂ dom J4,.

iel
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3. Main Results

In this section, we introduce a composite iteration for a finite family of monotone operators and its
convergence analysis is given. First we present some useful lemmas.

Lemma 3.1. [11, Lemma 2.5] Assume that B is a strongly monotone linear bounded self-adjoint operator on Hilbert
space H with coefficient y > 0 and 0 < p < ||B||™*. Then |[Id — pB|| < 1 - pY.

Lemma 3.2. Suppose thatforeachi € I, A; : H —o H is a monotone operator. Then (R(4, A))~1(0) = Fix(J. R(AA))

Lemma 3.3. Let {A; : H —o H}ig be a finite family of monotone operators with (R(A, A))"1({0}) # 0, where A; > 0
and Y,;; Ai = 1. Let B be a strongly monotone linear bounded self-adjoint operator with coefficient y > 0. Assume
that f is a k-contraction mapping on H and 0 <y < y/k. Let {x,} be the sequence generated by (1). Assume that the
following conditions hold:

(i) e € Hand Lo lleall < o0,
(ii) lim a, = 0.
Then {||x, — zI| : n € IN} is bounded for each z € (R(A, A))"1({0}). Consequently, {x,} and {IJra,1)Xn = Xull : 1 € N}

are bounded.

Proof. By using the Proposition 2.1, Lemma 3.2 and triangle inequality for any z € (R(4, A))7'({0}), we have:

iz = zIl = lynxn + (1 = Yn)Ra,0)Xn — 2l
= lyu(xn = 2) + (1 = yu)(Jr@anxn — 2l
< Yullxn =zl + (1 = y)llJr@a,nXn — Jr@a,nzll (4)
< yallxn =zl + (1 = yu)llxn — zl|
< Iy — zl|.

By our assumption and (4), we obtain:

”]/n -zl = ”ﬁnxn +(1- ﬁn)]R(A,/\)Zn —Z||
= [IBu(xn — 2) + (1 = Bu)Jranzn — 2l

< ,Bnuxn - ZH + (1 - ,BH)HIR(A,/\)Zn - ]R(A,/\)Z“ (5)
< Bullxn =zl + (1 = Bu)llzn — zlI
< llxn —zlI.

By the condition (ii), without loss of generality, we can assume that a,, < ||B||"! for all n € IN. It follows from
Lemma 3.1 that |[Id — a,B|| < 1 — a,y. Hence, from triangle inequality and (5), we have

llxnsr = zll = llany f(xn) + (Id — @uB)yn + en — |
= layy f(x,) + Id — a,B)y, + €, —z + a,Bz — a,, BZ||
= llen(y f(xn) — Bz) + (Id — auB)(yn — 2) + eull
< anyllif (xn) = f@N + anlly f(z) = Bzll + (1 — a)llyn — zIl + llexll
< ankyllxn =zl + anlly f(2) = Bzl + (1 — a )l — 2l + llexll

< (1= an(@ = k)il — 2ll + anlly f(2) - Bl + ||en||
Iy f(z) -
y—ky

< (1= an@ = k)l = 2ll + (7 = ky) e

llyf (@) BZII}

Smax{nxn—zn, 1 +lleul.
Y =Ky
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This shows by induction that

lyf) - Bally | ¥
Fen — 21 < max iy — 2, DLEZ Iy
y—ky =

Therefore, {||x, — z|| : n € N} is bounded for each z € (R(A, A))~'({0}). Hence {x,} is bounded.
Finally, it follows from nonexpansivity of resolvent of R(A, A) that
R Xn = Xull < ITranXn = 2l + [0 = 2ll < 2|x, — z]l.

Therefore, {||Jr@a,1X: — Xull : 1 € N} is bounded. [

Lemma 3.4. [18, Lemma 2.1] Let {x,} and {y,} be bounded sequences in Banach space X and let {8,,} be a sequence
in (0,1] with 0 < liminf B, < limsup B, < 1. Suppose that x,11 = (1 = Bn)Yn + BnXn for all integers n > 0 and

n—oo

tim sup ([[yns1 = Yall = ne1 = 2all) < 0.

n—oo

Then lim ||y, — x|l = 0.
n—oo

Lemma 3.5. Let {A; : H — H}ies be a finite family of monotone operators with (R(A, A))~1({0}) # 0, where A; > 0
and Y, Ai = 1. Let B be a strongly monotone linear bounded self-adjoint operator with coefficient y > 0. Assume
that f is a k-contraction mapping on H and 0 <y <y/k. Let {x,} be the sequence generated by (1). Assume that the
following conditions hold for all n € IN:

(i) e, € Hand Zne]N llexll < oo,

(ii) lim a, =0,

(iif) 0 < liminfpB, <limsuppf, <1,

n—-oo
(iv) lim [yne1 = 7u| =0,
(v) Yn — Bn > €, for some € € (0,1).

Then ;}1_{1010 lxn = Jrea,nxall = 0.

Proof. It follows from Lemma 3.3 that {x,} and {||Jra,1)X» — x|l : n € N} are bounded. First, we claim that
llxn+1 = xull — 0. (6)

We observe from (1) that

Zn+l = Vn+1Xn+1 + (1 - Vn+1)]R(A,A)xn+1/
Zp = YnXn + (1 - Vn)]R(A,A)xn/

Then

Zns1 = Zn = (1 = Vur)) Ur@a ) Xus1 = JRANX0) + Vi1 (Xne1 — Xn) + (Vo — V1) UR@a,)Xn — Xu)-
We obtain
1Zn+1 = zall £ (1 = Vir)IR@AD X041 = JR@AD XAl + YraallXna1 — xall

+ |7/n - )/n+1“|]R(A,/\)xn = Xnl|

< pet = 2all + [y = yiar|M, (7)
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where M := sup{||Jr,aX: — Xall : n € N}. Put

by = Xn+1 — ﬁnxn
1-8,
Then
Xn1 = (1 - ,Bn)hn + Buxn, n € IN. (8)

By using our assumption and (8), we have

Xn+2 = Pr+1Xn+1 _ Xnt1 — Buxn
1-Bun 1-84
Ans1 ) f(xne1) + (d = @1 B)Yus1 + €n11 — Brs1Xns1
1- ﬁn+1

any f(xn) + (Id = a,B)y, + en — Buxn
_ T,
an+1(yf(xn+1) - Byn+1) an(yf(xn) - Byn)

1= Bun  1-Bs
+ Yn+1 = Prs1Xn+1 B Yn — PuXn eyl En
1-Bun 1-84 1-Bu1 1-B

~ an+1(yf(xn+1) - B]/n+1) an(yf(xn) - B]/n)
- 1- ﬁn+1 - 1- ﬁn

1 e
+ JrRANZn+1 — JRA)Zn + 1 n; | _nﬁ
n+ n

hps1 = hy =

Hence,

an
W = hall < 5 gl 1y f (1) = Byl + 7 ﬁll)/f(xn) Byall

lleqall llexl
+ izt — zull + ——— + — )

1_,3n+1 1_ﬁn‘

Now, substitute (7) into (9) yields:

Ay Qp
W = hall < 5 ; lly f(xXne1) = B]/n+1”+1_ﬁn”)/f(xn)_Byn“

llen-1]] llex||
+ |[xp41 = Xall + - Yu|M + .
” n+1 n” |Vn+1 yn‘ 1— ﬁn+1 1— ,Bn
Then
o
er = Poall = st = Xl < —d —— Iy f(Xns1) = BYnsall + =y f (xu) — Byall
1- ﬁn+ 1_,671
llen-1]] llex||
+ - Yu|M + + .
|7n+1 yn‘ 1_ﬁn+1 1_,8n

By conditions (i)-(iv), we get:

tim sup (11 = all = 1 = xll) < 0

n—oo
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It follows from Lemma 3.4 that
lim I7, = x| = 0. (10)
From (8), we have:
Xns1 = Xn = (1= Bu)(ln = xn),

so (10) yields that lim [|x,+1 — x,4|| = 0, i.e., (6) holds.

By assumption, we have x,+1 — ¥» = a@n(y f(x4) — By,) + 4. Therefore
lim (xy41 — yn) = 0. (11)
Observing

“yn = Xull < M0 — X1l + 41 — ]/n“/

using (6) and (11), we get lim ||y, — x4/ = 0.

On the other hand, by assumption and nonexpansivity of resolvent of R(A, A1), we have

IJrea,0Xn = Xl < X0 = Yall + lyn = Jrea,0Xnll
<l = yall + Ballxn = Jraa,nXall + lra,0%0 — Jreanzall
< ln = yall + Bullxn = Traa,pXull + 10 — zall
<l = Yall + Ballxn = Jr@apXull + (1 = yu)llxn = JreanXall,

which imphes (Vn - ﬁn)”]R(A,A)xn = x|l < lxn = yn”-
So, by condition (v), we obtain lim ||Jg,aX: — x4l = 0. O
n—oo

Lemma 3.6. [14] There holds the following inequality:
llx + yIP* < llxl* +2{y, x + y), ¥x,y € H.

Lemma 3.7. [5, Lemma 2.2 | For each x; € H, a; € [0,1], i = 1,2 with Zle a; = 1, we have ||ayx1 + axx0|> <
a|lx]? + aa|lxa 2.

Lemma 3.8. Let x € H and {a,} be a sequence in H such that ||a,|| — 0. Then there exists a constant L > 0 such
that ||x + ctul* < llxI + Lllval.

Proof. By Cauchy-Schwarz inequality and for L > 2||x|| + sup, . llaxll, we have:

2 2 2
Il + anl” = Il + 2 (x, ) + lleval
2 2
< Il + 2llxllllaall + llevall
2
<l + a1l + lleval])

< |IxII* + Lilall.
We are done. O
Lemma 3.9. [21, Lemma 2.5 | Assume that {a,} is a sequence of nonnegative real numbers such that

A1 < (1 - )/n)an + Vn(sn + ﬁ}’l/ nz 0/
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where {y,}ABn} and {6,,} satisfy the conditions:

(i) Vn © [O/ 1]/ Zle Vn = 09,
(it) limsup,_, . 6y < 0o0r X1 [yndul < oo,
(iii) By >0 forall n > 0 with ¥,;_o Pu < 0,

Then im0 a, = 0.
Theorem 3.10. Let {A; : H — H}ig be a finite family of monotone operators with Z = (R(A, A))"1({0}) # 0, where
Ai > 0and Y.y Ai = 1. Let B be a strongly monotone linear bounded self-adjoint operator with coefficient y = ||B|| > 0.

Assume that f is a k-contraction mapping on Hand 0 < y <y /k. Let {x,} be the sequence generated by (1). Assume
that the following conditions hold for all n € IN:

(i) e, € Hand Yo llenll < oo,
(ii) lim a, = 0and Yo 0y = o0,
n—oo

(iii) 0 <liminfp, <limsupf, <1,

(iv) lim [y = ya| =0,
(v) Yu—PBn > €, forsomee € (0, 1).
Then {x,} converges strongly to z = Pz(y f + (Id — B))(z).
Proof. First, we show that there exists a unique z € Z such that z = Pz(y f + (Id — B))(z). Since, (R(A, A))~1({0})

is nonempty, closed and convex, the projection Pz is well defined. Since Pz is nonexpansive and f is
k-contraction, for each x, y € H, we get:

IPz(y f + (Id = B))(x) — Pz(y f + (Id = B)()l
<|(yf + Id = B))(x) = (yf + (Id - B)W)ll
<y f@) =yl + lld = Bllllx — yll
< ykllx =yl + @ =)llx - yll
<@ =@ =70)lkx =yl
Banach’s Contraction Principle guaranties that Pz(yf + (Id — B)) has a unique fixed point. That is, there

exists a unique element z € Z such that z = Pz(yf + (Id — B))(z). Now, consider the mapping x —

tyf(x) + (Id - tB)]R(A,/\)x.
For each t € (0,1), let ¢; on H be defined by

¢r(x) = ty f(x) + (Id — tB)Jr@a 2.
For every x,y € Hand t € (0, 1), we have:
llp:(x) = Pl = Ity f(x) + (Id — tB)Jra,nX) — (ty f(y) + (Id — tB)Jrany)ll
< tyllf(x) = fW)Il + I1d = tBllllJr@a,nx = Jranyll
< tyklix —yll + (1 = tp)llx = yll
< @ =ty = yi)llx = yll.

Then ¢; is contraction. Next, we show that

limsup (yf(z) - Bz,x, —z) <0, (12)

n—o0o0

where z = ltirr01 x; with x; being fixed point of the contraction x — tyf(x) + (Id — B)Jr,ax. Since x; solves

the fixed point equation,

xp =ty f(x;) + (Id — tB)Jra,nX:
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By using Lemma 3.6 and Lemma 3.1, we obtain:

llxe = xall* = I(Id — tB)(Jrea Xt — %) + H(y f(x1) — Bxu)|I?

< (1 =YW ranxe — xall® + 2ty f(x1) = Bxu, X1 — X

<(@- 7_/t)2(||]R(A,A)xt = JraanXall? + 1rea X — xall?
+2 <]R(A,A)xt = JrRANXn, JRAN X — xn>) + 2ty f(xe) = Bxy, Xt — Xy)

< (1= (Ive = xall® + Wrea % = all® + 20 rea,p%n = Xallloen = 2111
+ 20y f(xr) — Bxy, Xp — X ) + 28 (Bx; — Bxy, X — X

<(1- )_/f)z(th = xull® + reanXn — xall®* + 21 rea %0 — Xallllc, — xt”)
+ 2ty f(xr) = Bxy, xp = x) + 24|Bllllxy — x|

Therefore,

Pt (1-yt?

(Bt =y ), 3 = x0) < =l = 2l + === (rean i = 2all* + 2WTreanxn = xullloen = xil)

By letting n — oo, we have:

—2
t
lim sup (Bx; — Y f(x¢), Xt — x,) < lim sup %llxt — xI%.

n—o0 n—o0

Now, taking ¢t — 0, we obtain (12). Now, from assumption, Lemma 3.6 and Lemma 3.8, for some appropriate
constant L > 0, we have:
Xs1 = 2l = llwy f(xa) + (Id = B)y, + €4 — 2
= |layy f(x,) + (Id = a,B)y, + 0Bz — a,Bz + ¢, — Z||?
= 11(0d = uB)(yn — 2) + uly f(xa) = B2) + e
< ||(Id = auB)(yn — 2) + enll* + 200 (Y f(xn) = Bz, Xys1 — 2)
< |Idd — a,B)(y, — 2)|I? + 2a, (yf(xy) — Bz, xp11 — z) + Lllen||
< (1= 7llyn = 2P + 200 (7 () = B2, Xs1 = 2) + Ll
= (1= ap)?llyn — 2l + 200y (f(Xn) = f(2), Xns1 — 2)
+ 20, (Y f(z) — Bz, Xps1 — 2) + Llle||
< (1= ay)llxn = 2IP + 2a, ykllx, = 2l - 2l
+ 20, (Y f(z) — Bz, Xps1 — 2) + Llley||
< (1= agy)llxn = 2IP + anyk(ll, = 2P + lxe1 = 2IP)
+2a, (yf(z) = Bz, Xu11 — 2) + Lllell,

This implies that

(1—a.p)* + ayyk

2
be —z|I” <
[P v

20
T S _ _
IPn = 2II" + 37— ok (yf(@) = Bz,xn1 —2) + el

1-a,y
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1-2a,y + ayvk 25
:( a‘)/ ay)||x _Z||2+ anV

ok g mllxn 2l?
e Q) - B —2) + Tl
<(1- %)”% 2|
_ —2
# I e = B =)+ 5 M) + el
< (1= 8)llxy — 2I* + Sty + 1,
where M = sup(l, —zIP : n € N}, 6, = 28, 1, = —Lllelland by = =L (7 (2) - B2, Xyt — 2+ 5255 M.

By assumption, lim, e 6, = 0, Y,,cn On = 00, limsup, |, t, < 0and ), s < 0. Hence, applying Lemma
3.9, we immediately deduce that x, — z where z = Pz(yf + (Id — B))(z). O

Algorithm 1 Iterative algorithms for resolvent average
Input: x; € H, {au}, {a} € (0,1), {yu} € [0,1], {Aih<i<n € (0,1), e} € H, A= (Ay,..., An)
Output: x,
fori=1tomdo
]Ai(xn) = (A + Id)‘l(xn);
end for

Set Jra,n(xn) = Z Ail 4, (xXn);
forn=1to. do
Zn = YnXn + (1 yn)]R(A,/\)xn;
Yn = Buxn + (1 = Bu)JRAN)Z0S

Xn+l = U(n)/f(xn) +(Id - anB)yn + ey,
end for

4. Numerical Examples

In this section, we evaluated strongly convergence of three step algorithm for weighted resolvent average
of a finite family of monotone operators.

Example 4.1. Let A;(x) = 2x — 1 Ax(x) = x and A3(x) = x+2. Set A = 2x —1,x,x +2), f(x) = 5 and for
every1 <i <3, A; = % Assume that e, = {n”} is the sequence of errors and let o, = { } Bn = {n+3 + %} and
Vo = {# + %} Let B = Id and y = 1. First note that A7 (x) = (x + 1), Ay (x) = x and A;'(x) = x — 2. So,

Al = (%(x +1),x,x— 2). Then by easy calculation, we get:

T () = (A7 + 1)) = {320 = D} L) = {3, and L ) = (5060 + ) 13)
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By using Proposition 2.4 and (13), we obtain:
(RA, )71 ({0}) = (REA™, )({0}) = Z Aifa) = 1d)({0)

= ((%(A;l +1d)~! + g(Ag1 +1d)~" + (§(A3‘1 + Id)‘l)_1 —1d)((0})

={reR:0¢ (%(A;l +1d) 7 1(x) + %(A;l +1d)71(x) + %(A;l +1d)™' ()}

x+2+2x—1
6 9

x
=freR:0e(z+ )} = (-04).
Therefore, Z = (R(A, A))~1({0}) = { - 0.4}. Hence, we have:

Pz(f(Z)) = P{_0.4}(f(—0.4)) = P[_0_4](—0.2) =-04
Let {x,} be the sequence generated by (1) for starting point x; € R. Clearly,

T Con) = (A1 +1d) (1) = [y € R 3, € (A + 1)) = {50 + 1)}
and similarly,

1 1
Jan(e) = {5}, Taya) = {5000~ 2))

Substituting (14) and (15) into (3), we obtain:

Traayn = Y Aifatn = {%(xn +1)+ %xn = %(xn ~2)} = {%(49(” -2)}.

i=1

Therefore,

N
=
I
—
il
+ [~
a1
+
Qi
~—
=
=
+
—
~
\O
—
il
|D—\
U‘I
~—
—~
o~
=
=
|
N
\./

— 1
Xn+l = mxn + (1 - ﬁ)yn + 5.

6041

(14)

(15)

It follows from Theorem 3.10 that x, converges, say to x. Since x, is convergent, by letting n — oo in the above

eqalities we obtain:
z= —x T (4x 2),
y= 11—0 i L4z -2),
xX=y.

Then, x = —0.4. The numerical results with starting point x; = 0, which are shown in Table 1, shows that x,, — —0.4.

Table 1: Results for given starting point x; = 0 in Example 4.1

10 20 50 100 200 500 1000

1
l Xn “ 0 -0.376042  -0.398733  -0.399836  -0.399961  -0.399990  -0.399998  -0.399999

Example 4.2. Let A= (x*—1,x—1,(x +1)?), f(x) = ¥ and A; = § for every 1 <i < 3. Let {e,},

}’l
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and y be the same as in Example 4.1. We have A~} ((1 +x)35,1+x,1+ xs) Then

2\3 2\3
3 mew e B mew }
]A 1(xn) { hl(xn) (2)%(3)% }1 ]A;1 (xn) = {z(xn 1)}/ ]A;1 (xn) = {xn hZ(xn) + (2)%(3)% 1s, (16)

where hy(x,) = (9 +9x, — V3+/31 + 54x, + 27x§)g and hy(x,) = (9 —9x, + V3+/31 — 54x, + 27x§)§. By using
Proposition 2.4 and (16), we obtain (R(A, A))~1({0}) = {1}. Therefore, Z = (R(A, A))"1({0}) = {1}. Hence, we have:

Pz(f(z)) = Ppy(f(1)) = Pm(%) =1

Let {x,} be the sequence generated by (1) with starting point x; € R. We have:

) (%)i} _ { 3’ ) }
]’“("”)‘{(z);(g)é i s = (10} o = {505 - 25 1) 17

Substituting (17) into (3), we obtain:

N 3L B ) ) G )
Juai = L Ml = 3(2 M RE) T e @eF me)) (18
Therefore,
Zy = (n+5 + ) + (% - L5)]R(A,)\)anr
Yn = (n+3 10 )x,, (% - L)]R(A NZns (19)

3
_ 1 1
Xua1 = 5an + (1= 5)y + 5.

The numerical results which are shown in Table 2 shows that x,, — 1.

Table 2: Results for given starting point x; = 0 in Example 4.2

1 10 20 50 100 200 500 1000 ]
[x, [ 0 1.001696 0.998254 0.999780  0.999948  0.999987  0.999998  0.999999  --- ]
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