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Abstract. In this paper, we present some sufficient conditions under which Bessel multipliers in Hilbert
C∗−modules with semi-normalized symbols are invertible and we calculate the inverses. Especially we
consider the invertibility of Bessel multipliers when the elements of their symbols are positive and when
their Bessel sequences are equivalent, duals, modular Riesz bases or stable under small perturbations. We
show that in these cases the inverse of a Bessel multiplier can be represented as a Bessel multiplier.

1. Introduction and preliminaries

Bessel multipliers in Hilbert spaces were introduced by Balazs in [3]. Bessel multipliers are operators de-
fined by a fixed multiplication pattern which is inserted between the analysis and synthesis operators. Bessel
multipliers have useful applications, for example they are used for solving approximation problems and
they are used in acoustics as a way to implement time-varying filters and recently have found applications
in psychoacoustics and denoising. For more information about the stated applications, see [4, 7, 17, 21, 26].
Multipliers have been investigated for Bessel fusion sequences in Hilbert spaces [16] (called Bessel fusion
multipliers) and for generalized Bessel sequences in Hilbert spaces [23] (called g-Bessel multipliers). Also
multipliers were introduced for p-Bessel sequences in Banach spaces [24] and for continuous frames [6].
Recently the present author and A. Khosravi generalized Bessel multipliers, g-Bessel multipliers and Bessel
fusion multipliers to Hilbert C∗−modules and many important results obtained for Bessel multipliers in
Hilbert and Banach spaces were generalized to Hilbert C∗−modules (see [14]). In this paper, we consider the
invertibility of multipliers in Hilbert C∗−modules. As we know, the invertibility of the operators related to
frames has great importance in frame theory mostly because of the reconstruction of signals. Thus studying
the conditions under which Bessel multipliers are invertible can be interesting. As a special case, we see in
[19] that (a,m)−approximate duals generate an invertible multiplier. We mention that (a,m)−approximate
duals are standard frames that imply the distance (with respect to the norm) between the identity operator
on the Hilbert C∗−module and the operator defined by multiplying the Bessel multiplier with symbol m
by an element a in the center of the C∗−algebra is strictly less than one. Therefore in this case, the inverse
of the multiplier can be calculated using Neumann algorithm. In this paper, we study the invertibility of
multipliers in more general cases.
Suppose that A is a unital C∗–algebra and E is a left A–module such that the linear structures of A and E are
compatible. E is a pre-HilbertA–module if E is equipped with anA–valued inner product 〈., .〉 : E×E −→ A,
such that
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(i) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉, for each α, β ∈ C and x, y, z ∈ E;
(ii) 〈ax, y〉 = a〈x, y〉, for each a ∈ A and x, y ∈ E;

(iii) 〈x, y〉 = 〈y, x〉∗, for each x, y ∈ E;
(iv) 〈x, x〉 ≥ 0, for each x ∈ E and if 〈x, x〉 = 0, then x = 0.

For each x ∈ E, we define ‖x‖ = ‖〈x, x〉‖
1
2 and |x| = 〈x, x〉

1
2 . If E is complete with ‖.‖, it is called a Hilbert

A–module or a Hilbert C∗–module over A. We callZ(A) = {a ∈ A : ab = ba,∀b ∈ A}, the center of A. Note that
if a ∈ Z(A), then a∗ ∈ Z(A), and if a is an invertible element ofZ(A), then a−1

∈ Z(A), also if a is a positive
element ofZ(A), since a

1
2 is in the closure of the set of polynomials in a, we have a

1
2 ∈ Z(A) (see [20]).

A Hilbert A−module E is finitely generated if there exists some set {x1, . . . , xn} in E such that every element
x ∈ E can be expressed as an A−linear combination x =

∑n
i=1 aixi, ai ∈ A. A Hilbert A−module E is countably

generated if there exists a countable set {xi}i∈I ⊆ E such that E equals the norm-closure of the A−linear hull
of {xi}i∈I.
Let E and F be Hilbert A–modules. An operator T : E −→ F is called adjointable if there exists an operator
T∗ : F −→ E such that 〈T(x), y〉 = 〈x,T∗(y)〉, for each x ∈ E and y ∈ F. Every adjointable operator T is
bounded and A–linear (that is, T(ax) = aT(x) for each x ∈ E and a ∈ A). We denote the set of all adjointable
operators from E into F by L(E,F). Note that L(E,E) is a C∗–algebra and it is denoted by L(E). For more
details about Hilbert C∗−modules, see [15].
Frames in Hilbert C∗−modules were introduced in [10]:

Definition 1.1. Let E be a Hilbert A−module. A family F = { fi}i∈I ⊆ E is a frame for E, if there exist real constants
0 < AF ≤ BF < ∞, such that for each x ∈ E,

AF 〈x, x〉 ≤
∑
i∈I

〈x, fi〉〈 fi, x〉 ≤ BF 〈x, x〉,

i.e., there exist real constants 0 < AF ≤ BF < ∞, such that the series
∑

i∈I〈x, fi〉〈 fi, x〉 converges in the ultraweak
operator topology to some element in the universal enveloping Von Neumann algebra of A such that the inequality
holds, for each x ∈ E. The numbers AF and BF are called the lower and upper bound of the frame, respectively. In
this case we call it an (AF ,BF ) frame. If only the second inequality is required, we call it a Bessel sequence. If the
sum converges in norm, the frame is called standard.

Frames in Hilbert C∗−modules are not trivial generalizations of Hilbert space frames because of the complex
structure of C∗−algebras. As we know, many important results obtained in Hilbert spaces do not hold
in Hilbert C∗−modules. For example, any closed linear subspace in a Hilbert space has an orthogonal
complement. But not every closed submodule of a Hilbert C∗−module is complemented. Moreover,
the Riesz representation theorem for continuous functionals on Hilbert spaces does not hold in Hilbert
C∗−modules, and so there exist nonadjointable bounded linear operators on Hilbert C∗−modules (see [15]).
Therefore it is expected that problems about frames in Hilbert C∗−modules are more complicated than those
in Hilbert spaces.
Now we recall the definition of g-frames in Hilbert C∗−modules from [12]:
A sequence Λ = {Λi ∈ L(E,Ei) : i ∈ I} is called a g-frame for E with respect to {Ei : i ∈ I} if there exist real
constants AΛ,BΛ > 0 such that

AΛ〈x, x〉 ≤
∑
i∈I

〈Λix,Λix〉 ≤ BΛ〈x, x〉,

for each x ∈ E. In this case we call it an (AΛ,BΛ) g-frame. If only the second-hand inequality is required,
then Λ is called a g-Bessel sequence. Note that standard g-frames are defined similar to the standard frames.
If {Ei : i ∈ I} is a sequence of Hilbert A−modules, then ⊕i∈IEi which is the set

⊕i∈IEi =
{
{xi}i∈I : xi ∈ Ei and

∑
i∈I

〈xi, xi〉 is norm convergent in A
}
,

is a Hilbert A−module with pointwise operations and A-valued inner product

〈{xi}i∈I, {yi}i∈I〉 =
∑
i∈I

〈xi, yi〉.
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For a standard g-Bessel sequence Λ, the operator TΛ : E −→ ⊕i∈IEi which is defined by TΛ(x) = {Λix}i∈I is
called the analysis operator of Λ. TΛ is adjointable with T∗

Λ
({xi}i∈I) =

∑
i∈I Λ∗i (xi), for each {xi}i∈I ∈ ⊕i∈IEi. Now

we define the operator SΛ : E −→ E by SΛx = T∗
Λ

TΛ(x) =
∑

i∈I Λ∗i Λi(x). If Λ is a standard (AΛ,BΛ) g-frame,
then AΛIdE ≤ SΛ ≤ BΛIdE. The operator SΛ is called the g-frame operator of Λ.
Recall that if Λ = {Λi}i∈I and Γ = {Γi}i∈I are standard 1−Bessel sequences such that

∑
i∈I Γ∗i Λix = x or equiv-

alently
∑

i∈I Λ∗i Γix = x, for each x ∈ E, then Γ (resp. Λ) is called a 1-dual of Λ (resp. Γ). Let Λ = {Λi}i∈I be
an (AΛ,BΛ) standard g-frame. We call Λ̃ = {ΛiS−1

Λ
}i∈I the canonical g-dual of Λ which is an ( 1

BΛ
, 1

AΛ
) standard

g-frame.
Note that F = { fi}i∈I is a standard Bessel sequence (resp. frame) if and only if ΛF = {Λ fi }i∈I is a standard
g-Bessel sequence (resp. g-frame), where Λ fi (x) = 〈x, fi〉, for each x ∈ E (see [12, Example 3.1]). This shows
that each Bessel sequence (resp. frame) generates a g-Bessel sequence (resp. g-frame). For a standard Bessel
sequence F = { fi}i∈I, we denote TΛF and SΛF by TF and SF , respectively.
We denote the canonical dual of a standard frame F = { fi}i∈I by F̃ = { f̃i}i∈I, where f̃i = S−1

F
fi. Also, duals

for two standard Bessel sequences F = { fi}i∈I and G = {1i}i∈I can be defined using the generated g-Bessel
sequences, so G (resp. F ) is a dual of F (resp. G) if x =

∑
i∈I〈x, fi〉1i or equivalently x =

∑
i∈I〈x, 1i〉 fi, for

each x ∈ E (see [11, Proposition 3.8]). For more results about frames and their generalizations in Hilbert
C∗–modules, see [1, 10–12, 22, 27].

Recall that `∞(I,A) is
{
{ai}i∈I ⊆ A : ‖{ai}i∈I‖∞ = sup{‖ai‖ : i ∈ I} < ∞

}
. If m = {mi}i∈I is a sequence in

`∞(I,A) with mi ∈ Z(A), for each i ∈ I, then m is called a symbol. If c is an element in Z(A) and mi = c, for
each i ∈ I, then m is denoted by m = {c}.

Proposition 1.2. [14] Let m = {mi}i∈I be a symbol. Then the operatorMm defined on⊕i∈IEi byMm({xi}i∈I) = {mixi}i∈I
is well-defined, adjointable withM∗m =Mm∗ and ‖Mm‖ ≤ ‖m‖∞, where m∗ = {m∗i }i∈I.

Definition 1.3. [14] Let Λ = {Λi}i∈I, Γ = {Γi}i∈I be standard g-Bessel sequences for E with respect to {Ei}i∈I and let
m = {mi}i∈I be a symbol. Then the operator Mm,Γ,Λ : E −→ E which is defined by Mm,Γ,Λ = T∗ΓMmTΛ is called the
g-Bessel multiplier for the g-Bessel sequences Λ and Γ with symbol m. We have Mm,Γ,Λ(x) =

∑
i∈I miΓ

∗

i Λi(x). Also
‖Mm,Γ,Λ‖ ≤

√
BΛBΓ‖m‖∞ and M∗m,Γ,Λ = Mm∗,Λ,Γ.

Definition 1.4. [14] Let E1,E2 be HilbertA−modules, m = {mi}i∈I a symbol and letF = { fi}i∈I ⊆ E1,G = {1i}i∈I ⊆ E2
be standard Bessel sequences. We call the operator Mm,G,F : E1 −→ E2 which is defined by Mm,G,F = T∗

ΛG
MmTΛF =

T∗
G
MmTF , the Bessel multiplier for the Bessel sequences F and G with symbol m. It is easy to see that Mm,G,F (x) =∑

i∈I mi〈x, fi〉1i.

As we said before, in frame theory, the inverses of the operators related to Bessel sequences and frames
play an important role mostly because of the reconstruction of signals. Note that if the Bessel multiplier
Mm,G,F is invertible, then every x ∈ E is reconstructed as∑

i∈I

mi〈M−1
m,G,F x, fi〉1i = x =

∑
i∈I

mi〈x, fi〉M−1
m,G,F 1i.

We can conclude from the above relation that {miM−1
m,G,F 1i}i∈I is a dual for { fi}i∈I, so every invertible multiplier

generates a dual. Our purpose is to obtain some sufficient conditions under which Bessel multipliers are
invertible and find a representation of the inverse of an invertible multiplier as a Bessel multiplier.
In this paper n = {ni}i∈I is a symbol with this property that there exists some positive number A such that
A1A ≤ |ni|, for each i ∈ I. n with these properties is called a semi-normalized symbol. Also in this note
m = {mi}i∈I is a semi-normalized symbol such that mi’s are positive elements in A (there exists some positive
number A such that A1A ≤ mi, for each i ∈ I). F = { fi}i∈I and G = {1i}i∈I are always assumed to be sequences
in a Hilbert C∗−module E, so Mm,G,F ∈ L(E). All C∗−algebras are unital and all Hilbert C∗−modules are
finitely or countably generated. All frames, g-frames and Bessel sequences are standard and all index sets
are finite or countable subsets ofN.
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2. Invertibility of Bessel multipliers with equivalent sequences

In this section, we consider the invertibility of Bessel multipliers when their Bessel sequences are
equivalent. First we recall the following definition from [2]:

Definition 2.1. Let T be an invertible operator in L(E).

(i) We say that Γ = {Γi ∈ L(E,Ei)}i∈I and Λ = {Λi ∈ L(E,Ei)}i∈I are T– equivalent if Γi = ΛiT, for each i ∈ I.
(ii) Let G = {1i}i∈I,F = { fi}i∈I ⊆ E. We say that G and F are T– equivalent if 1i = T fi, for each i ∈ I.

Theorem 2.2. Let Λ be a standard g-frame and let Γ and Λ be T– equivalent. Then

(i) Γ is a standard g-frame and Mm,Λ,Γ, Mm,Γ,Λ are invertible with

M−1
m,Λ,Γ = T−1S−1

m
1
2 ·Λ

and M−1
m,Γ,Λ = S−1

m
1
2 ·Λ

(T−1)∗, where m
1
2 ·Λ = {m

1
2
i Λi}i∈I.

(ii) If c ∈ Z(A) is positive and invertible, then M−1
{c},Λ,Γ = M

{c−1},̃Γ,Λ̃.
(iii) M−1

{1A},Λ,Λ
= M

{1A},Λ̃,Λ̃
.

Proof. (i) Let Λ be an (AΛ,BΛ) standard g-frame. It follows from the relation

AΛ‖x‖2

‖T−1‖2
≤ AΛ‖Tx‖2 ≤

∥∥∥∥∥∑
i∈I

〈ΛiTx,ΛiTx〉
∥∥∥∥∥ ≤ BΛ‖T‖2‖x‖2,

for each x ∈ E, the equality Γi = ΛiT and Theorem 3.1 in [27] that Γ is a standard g-frame with bounds AΛ

‖T−1‖2

and BΛ‖T‖2. Since m is semi-normalized with positive elements and Λ is a standard g-frame, Proposition
3.7 in [14] implies that Mm,Λ,Λ is invertible. Now we have

Mm,Λ,Γx =
∑
i∈I

miΛ
∗

i Γix =
∑
i∈I

miΛ
∗

i ΛiTx = Mm,Λ,ΛTx.

Because Mm,Λ,Λ and T are invertible, Mm,Λ,Γ is invertible with M−1
m,Λ,Γ = T−1M−1

m,Λ,Λ and the equality M∗m,Γ,Λ =

Mm∗,Λ,Γ = Mm,Λ,Γ yields that Mm,Γ,Λ is also invertible with M−1
m,Γ,Λ = (M−1

m,Λ,Γ)∗. Since Mm,Λ,Λ = S
m

1
2 ·Λ

(see the
proof of [14, Proposition 3.7] and also note that in this case, Λ is called weighted in the sense of [5]), we get
M−1

m,Λ,Γ = T−1S−1

m
1
2 ·Λ

and M−1
m,Γ,Λ = S−1

m
1
2 ·Λ

(T−1)∗.

(ii) It follows from part (i) that Γ is a standard g-frame. Let mi = c, for each i ∈ I. Then ‖c−1
‖
−11A ≤ mi, for

each i ∈ I and S
m

1
2 ·Λ

x = c
∑

i∈I Λ∗i Λix = cSΛx, so S−1

m
1
2 ·Λ

= c−1S−1
Λ

. Thus by part (i), M−1
{c},Λ,Γ = c−1T−1S−1

Λ
. It is

easy to obtain from Γi = ΛiT that SΓ = T∗SΛT and Γ̃i = ΓiS−1
Γ

= Λ̃iT∗−1. Then

M
{c−1},̃Γ,Λ̃x =

∑
i∈I

c−1T−1Λ̃i
∗

ΛiS−1
Λ x = c−1T−1S−1

Λ x.

Therefore M
{c−1},̃Γ,Λ̃ = c−1T−1S−1

Λ
= M−1

{c},Λ,Γ.
(iii) The result follows from part (ii) by considering c = 1A.

Remark 2.3. Let F = { fi}i∈I and G = {1i}i∈I ⊆ E be standard Bessel sequences. If φi, ψi : E −→ A are defined by
φi(x) = 〈x, fi〉, ψi(x) = 〈x, 1i〉, then Φ = {φi}i∈I and Ψ = {ψi}i∈I are standard g-Bessel sequences and in this case
Mm,Ψ,Φ = Mm,G,F ([14, Remark 3.6]). Also if G and F are T−equivalent, then

ψi(x) = 〈x, 1i〉 = 〈x,T fi〉 = 〈T∗x, fi〉 = φiT∗(x).

Hence Ψ and Φ are T∗−equivalent.

The above remark shows that if two standard Bessel sequences are T−equivalent, then the standard g-
Bessel sequences induced by them are T∗−equivalent. Now using Theorem 2.2 and Remark 2.3, we get the
following result which is a generalization of Corollary 4.5 and Example 4.1 in [8] to Hilbert C∗−modules.
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Corollary 2.4. Let F be a standard frame and let G and F be T– equivalent. Then

(i) G is a standard frame and Mm,F ,G, Mm,G,F are invertible with

M−1
m,F ,G = (T−1)∗S−1

m
1
2 ·F

and M−1
m,G,F = S−1

m
1
2 ·F

T−1, where m
1
2 · F = {m

1
2
i fi}i∈I.

(ii) If c ∈ Z(A) is positive and invertible, then M−1
{c},F ,G = M

{c−1},G̃,F̃
.

(iii) M−1
{1A},F ,F

= M
{1A},F̃ ,F̃

.

Proposition 2.5. Let Λ and Γ be standard g-frames. If Γ and {n∗i Λi}i∈I or Λ and {niΓi}i∈I are equivalent, then Mn,Λ,Γ

is invertible with M−1
n,Λ,Γ = Mn−1 ,̃Γ,Λ̃, where n−1 = {n−1

i }i∈I.

Proof. Since n is a semi-normalized symbol, similar to the first part of the proof of Theorem 4.3 (iii) in [14],
we obtain that n−1 = {n−1

i }i∈I is a symbol. Let Γ and {n∗i Λi}i∈I be T−equivalent. We have Γi = (n∗i Λi)T and
it is easy to see that {n∗i Λi}i∈I is a standard g-Bessel sequence and SΓ = T∗Sn∗·ΛT. Because SΓ, T and T∗ are
invertible, Sn∗·Λ is also invertible. Now we have Mn,Λ,Γx =

∑
i∈I niΛ

∗

i n
∗

i ΛiTx = Sn∗·ΛTx, and

Mn−1 ,̃Γ,Λ̃x =
∑
i∈I

n−1
i T−1S−1

n∗·Λ(T∗)−1Γ∗i ΛiS−1
Λ x

=
∑
i∈I

n−1
i T−1S−1

n∗·Λ(T∗)−1T∗(ni ·Λ
∗

i )ΛiS−1
Λ x = T−1S−1

n∗·Λx.

Hence Mn,Λ,Γ is invertible with M−1
n,Λ,Γ = Mn−1 ,̃Γ,Λ̃. The result for the case that Λ and {niΓi}i∈I are equivalent is

obtained with a similar proof.

The following result is a generalization of Proposition 4.7 in [8] to Hilbert C∗−modules.

Corollary 2.6. Let F and G be standard frames. If G and {ni fi}i∈I or F and {n∗i1i}i∈I are equivalent, then Mn,F ,G is
invertible with M−1

n,F ,G = Mn−1,G̃,F̃
.

3. Inversion of multipliers using perturbed sequences, duals and modular Riesz bases

In this section, we consider the invertibility of multipliers when their Bessel sequences are duals,
modular Riesz bases or stable under small perturbations.
Recall from [18] that two standard g-Bessel sequences Λ and Γ are approximately dual1-frames if ‖IdE−T∗

Λ
TΓ‖ <

1 or equivalently ‖IdE − T∗ΓTΛ‖ < 1. In this case, we say that Γ (resp. Λ) is an approximate g-dual of Λ (resp.
Γ).

Proposition 3.1. [18] Let Λ be a standard g-frame and Λd be a g-dual of Λ. If Γ is a sequence such that Γ − Λ =
{Γi − Λi}i∈I is a standard g-Bessel sequence with BΓ−ΛBΛd < 1, then Γ is a standard g-frame with upper bound
√

BΛ +
√

BΓ−Λ and Γ and Λd are approximately dual g-frames.

Lemma 3.2. Let Λ be a standard g-frame. If Γ is a sequence such that Γ − Λ is a g-Bessel sequence with BΓ−Λ

AΛ
< 1,

then Γ is a standard g-frame and Γ and Λ̃ are approximately dual g-frames.

Proof. It is enough to consider Λd = Λ̃ and BΛd = 1
AΛ

in Proposition 3.1.

Lemma 3.3. [9] Let X and Y be Banach spaces, U : X −→ Y be a bounded, invertible operator. If V : X −→ Y is an
operator such that

‖Ux − Vx‖ ≤ λ1‖Ux‖ + λ2‖Vx‖,

for some 0 ≤ λ1, λ2 < 1 and for each x ∈ X, then V is invertible with ‖V−1y‖ ≤ 1+λ2
1−λ1
‖U−1

‖‖y‖, for each y ∈ Y.

In the following theorem A is a positive number such that A1A ≤ mi, for each i ∈ I.
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Theorem 3.4. Let Λ be a standard g-frame. Suppose that Γ−Λ is a standard g-Bessel sequence with BΓ−Λ <
A2

Λ

BΛ
and

‖m‖∞
A < AΛ

√
BΓ−ΛBΛ

. Then Γ is a standard g-frame and the multipliers Mm,Λ,Γ and Mm,Γ,Λ are invertible with

‖x‖
‖m‖∞(BΛ +

√
BΛBΓ−Λ)

≤ ‖M−1x‖ ≤
‖x‖

AAΛ − ‖m‖∞
√

BΛBΓ−Λ

,

and M−1 =
∑
∞

n=0[S−1

m
1
2 ·Λ

(S
m

1
2 ·Λ
−M)]nS−1

m
1
2 ·Λ

, where M is Mm,Λ,Γ or Mm,Γ,Λ.

Proof. It follows from the first part of the proof of Proposition 3.7 in [14] that

AAΛ〈x, x〉 ≤
∑
i∈I

〈m
1
2
i Λix,m

1
2
i Λix〉 ≤ ‖m‖∞BΛ〈x, x〉.

Thus
AAΛIdE ≤ S

m
1
2 ·Λ
≤ ‖m‖∞BΛIdE

and Theorem 2.2.5 part (4) in [20] implies that

1
‖m‖∞BΛ

IdE ≤ S−1

m
1
2 ·Λ
≤

1
AAΛ

IdE,

so (using Theorem 2.2.5 part (3) in [20])

1
‖m‖∞BΛ

≤ ‖S−1

m
1
2 ·Λ
‖ ≤

1
AAΛ

and AΛA ≤ ‖S−1

m
1
2 ·Λ
‖
−1. Since AΛ ≤ BΛ, we have BΓ−Λ <

A2
Λ

BΛ
≤ AΛ. Because BΓ−Λ

AΛ
< 1, by Lemma 3.2, Γ is a

standard g-frame. We have ‖Mm,Λ,Γ−Λ‖ ≤ ‖m‖∞
√

BΛBΓ−Λ, so for each x ∈ E,

‖Mm,Λ,Γx − S
m

1
2 ·Λ

x‖ = ‖Mm,Λ,Γ−Λx‖ ≤ ‖m‖∞
√

BΛBΓ−Λ‖x‖.

We have
‖m‖∞

√
BΛBΓ−Λ < AΛA ≤ ‖S−1

m
1
2 ·Λ
‖
−1,

(the first inequality is valid because of the relation ‖m‖∞
A < AΛ

√
BΓ−ΛBΛ

stated in the assumption) so

‖Mm,Λ,Γ − S
m

1
2 ·Λ
‖ < ‖S−1

m
1
2 ·Λ
‖
−1.

Thus ‖S−1

m
1
2 ·Λ

Mm,Λ,Γ − IdE‖ < 1, so by Newmann algorithm S−1

m
1
2 ·Λ

Mm,Λ,Γ is invertible with

(S−1

m
1
2 ·Λ

Mm,Λ,Γ)−1 =

∞∑
n=0

(IdE − S−1

m
1
2 ·Λ

Mm,Λ,Γ)n,

consequently Mm,Λ,Γ is invertible with

M−1
m,Λ,Γ =

[ ∞∑
n=0

(IdE − S−1

m
1
2 ·Λ

Mm,Λ,Γ)n
]
S−1

m
1
2 ·Λ

=

∞∑
n=0

[S−1

m
1
2 ·Λ

(S
m

1
2 ·Λ
−Mm,Λ,Γ)]nS−1

m
1
2 ·Λ
,

and the equality Mm,Γ,Λ = M∗m,Λ,Γ yields that Mm,Γ,Λ is also invertible with

M−1
m,Γ,Λ =

∞∑
n=0

[S−1

m
1
2 ·Λ

(S
m

1
2 ·Λ
−Mm,Γ,Λ)]nS−1

m
1
2 ·Λ
.
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By Proposition 3.1,
√

BΛ +
√

BΓ−Λ is an upper bound for Γ, so

‖Mm,Λ,Γ‖ ≤ ‖m‖∞
√

BΛ(
√

BΛ +
√

BΓ−Λ).

Using ‖x‖ = ‖Mm,Λ,ΓM−1
m,Λ,Γx‖ ≤ ‖Mm,Λ,Γ‖‖M−1

m,Λ,Γx‖, we get

‖M−1
m,Λ,Γx‖ ≥

1
‖Mm,Λ,Γ‖

‖x‖ ≥
‖x‖

‖m‖∞
√

BΛ(
√

BΛ +
√

BΓ−Λ)
.

Now the remainder can be obtained from the relation

‖S
m

1
2 ·Λ

x −Mm,Λ,Γx‖ ≤ ‖m‖∞
√

BΛBΓ−Λ‖x‖

≤ ‖m‖∞
√

BΛBΓ−Λ‖S−1

m
1
2 ·Λ
‖‖S

m
1
2 ·Λ

x‖,

Lemma 3.3 with U = S
m

1
2 ·Λ

, V = Mm,Λ,Γ, λ1 = ‖m‖∞
√

BΛBΓ−Λ‖S−1

m
1
2 ·Λ
‖, λ2 = 0 and using the inequality

‖S−1

m
1
2 ·Λ
‖
−1
≥ AAΛ.

Corollary 3.5. Let F be a standard frame. Suppose that G − F = {1i − fi}i∈I is a standard Bessel sequence with

BG−F <
A2
F

BF
and ‖m‖∞A < AF√

BG−F BF
. Then G is a standard frame and the multipliers Mm,F ,G and Mm,G,F are invertible

with
‖x‖

‖m‖∞(BF +
√

BF BG−F )
≤ ‖M−1x‖ ≤

‖x‖

AAF − ‖m‖∞
√

BF BG−F
,

and M−1 =
∑
∞

n=0[S−1

m
1
2 ·F

(S
m

1
2 ·F
−M)]nS−1

m
1
2 ·F

, where M is Mm,F ,G or Mm,G,F .

Corollary 3.6. Let Λ be a standard g-frame. If Γ is a sequence such that there exists λ ∈ [0,
A2

Λ

BΛ
) with

∥∥∥∥∑
i∈I〈(Γi −

Λi)x, (Γi − Λi)x〉
∥∥∥∥ ≤ λ‖x‖2, for each x ∈ E and ‖m‖∞

√
λ

A < AΛ
√

BΛ
, then Γ is a standard g-frame and Mm,Λ,Γ, Mm,Γ,Λ are

invertible with
‖x‖

‖m‖∞(BΛ +
√
λBΛ)

≤ ‖M−1x‖ ≤
‖x‖

AAΛ − ‖m‖∞
√
λBΛ

,

where M is Mm,Λ,Γ or Mm,Γ,Λ.

Proof. It is enough to consider BΓ−Λ = λ in Theorem 3.4.

The following result is a generalization of Proposition 4.1 in [25] to Hilbert C∗−modules.

Corollary 3.7. Let F be a standard frame. If G is a sequence such that there exists λ ∈ [0,
A2
F

BF
) with

∥∥∥∥∥∑
i∈I |〈x, (1i −

fi)〉|2
∥∥∥∥∥ ≤ λ‖x‖2, for each x ∈ E and ‖m‖∞

√
λ

A < AF
√

BF
, then G is a standard frame and Mm,F ,G and Mm,G,F are invertible

with
‖x‖

‖m‖∞(BF +
√
λBF )

≤ ‖M−1x‖ ≤
‖x‖

AAF − ‖m‖∞
√
λBF

,

for each x ∈ E, where M denotes anyone of Mm,F ,G and Mm,G,F .

In the next proposition, we get some results about the stability of a standard g-frame under small perturba-
tions and consider the invertibility of the multiplier generated by the standard g-frame and the perturbed
sequence.
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Proposition 3.8. Let Φ = {φi ∈ L(E,Ei) : i ∈ I} be a standard g-frame. If Ψ = {ψi ∈ L(E,Ei) : i ∈ I} is a sequence

such that there exists λ ∈ [0,
A2

Φ

BΦ
) with

∥∥∥∥∥∑
i∈I〈(niψi − φi)x, (niψi − φi)x〉

∥∥∥∥∥ ≤ λ‖x‖2, for each x ∈ E, then n ·Ψ and Ψ

are standard g-frames and Mn,Φ,Ψ and Mn∗,Ψ,Φ are invertible with

‖x‖
BΦ +

√
λBΦ

≤ ‖M−1x‖ ≤
‖x‖

AΦ −
√
λBΦ

,

for each x ∈ E, where M denotes anyone of Mn,Φ,Ψ and Mn∗,Ψ,Φ.

Proof. Suppose that Λ = Φ, Γ = n ·Ψ, mi = 1A for each i ∈ I and A = 1. Since
∥∥∥∥∥∑

i∈I〈(Γi − Λi)x, (Γi − Λi)x〉
∥∥∥∥∥ ≤

λ‖x‖2 and ‖m‖∞
√
λ

A < AΛ
√

BΛ
, by Corollary 3.6, Γ = n · Ψ is a standard g-frame and Mm,Λ,Γ = Mn,Φ,Ψ and

Mm,Γ,Λ = Mn∗,Ψ,Φ are invertible with

‖x‖
BΦ +

√
λBΦ

≤ ‖M−1x‖ ≤
‖x‖

AΦ −
√
λBΦ

,

for each x ∈ E, where M denotes anyone of Mn,Φ,Ψ and Mn∗,Ψ,Φ. Because n is semi-normalized, there exists
some positive number D such that D1A ≤ |ni| ≤ ‖n‖∞1A, for each i ∈ I. Therefore the relation

D2
∥∥∥∥∥∑

i∈I

〈ψix, ψix〉
∥∥∥∥∥ ≤ ∥∥∥∥∥∑

i∈I

〈niψix,niψix〉
∥∥∥∥∥ ≤ ‖n‖2∞∥∥∥∥∥∑

i∈I

〈ψix, ψix〉
∥∥∥∥∥,

and Theorem 3.1 in [27] yield that Ψ is a standard g-frame.

Corollary 3.9. Let F be a standard frame. IfG is a sequence such that there exists λ ∈ [0,
A2
F

BF
) with

∥∥∥∥∥∑
i∈I |〈x, (n∗i1i−

fi)〉|2
∥∥∥∥∥ ≤ λ‖x‖2, for each x ∈ E, then n∗ · G and G are standard frames and Mn,F ,G and Mn∗,G,F are invertible with

‖x‖

BF +
√
λBF

≤ ‖M−1x‖ ≤
‖x‖

AF −
√
λBF

,

for each x ∈ E, where M denotes anyone of Mn,F ,G and Mn∗,G,F .

Proposition 3.10. Suppose that Φ = {φi ∈ L(E,Ei) : i ∈ I} is a standard g-frame and Ψ = {ψi ∈ L(E,Ei) : i ∈ I}

is a sequence such that there exists λ ∈ [0,
A2

Φ

BΦ
) with

∥∥∥∥∥∑
i∈I〈(ψi − φi)x, (ψi − φi)x〉

∥∥∥∥∥ ≤ λ‖x‖2, for each x ∈ E. Let

α < AΦ−
√
λBΦ

BΦ+
√
λBΦ

with |ni − 1A| ≤ α1A, for each i ∈ I. Then Ψ is a standard g-frame and Mn,Φ,Φ, Mn,Φ,Ψ and Mn,Ψ,Φ are
invertible with

‖x‖
(α + 1)BΦ

≤ ‖M−1
n,Φ,Φx‖ ≤

‖x‖
AΦ − αBΦ

,

‖x‖
(α + 1)(BΦ +

√
λBΦ)

≤ ‖M−1x‖ ≤
‖x‖

AΦ − αBΦ − (α + 1)
√
λBΦ

,

M−1
n,Φ,Φ =

∞∑
n=0

[S−1
Φ (SΦ −Mn,Φ,Φ)]nS−1

Φ

and

M−1 =

∞∑
n=0

[M−1
n,Φ,Φ(Mn,Φ,Φ −M)]nM−1

n.Φ,Φ,

where M is Mn,Φ,Ψ or Mn,Ψ,Φ.
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Proof. First suppose that λ = 0. Then Ψ = Φ. Now let m = {mi}i∈I with mi = 1A, for each i ∈ I, A = 1, Γ = n ·Φ
and Λ = Φ. Then ∥∥∥∥∥∑

i∈I

〈(Γi −Λi)x, (Γi −Λi)x〉
∥∥∥∥∥ ≤ BΦ‖ni − 1A‖2‖x‖2 ≤ BΦα

2
‖x‖2.

Therefore we can set BΓ−Λ = BΦα2. Then

BΓ−Λ = BΦα
2 < BΦ

(AΦ −
√
λBΦ

BΦ +
√
λBΦ

)2
≤ BΦ(

AΦ

BΦ
)2 =

A2
Λ

BΛ
.

Now the result follows from Theorem 3.4 using the equalities Mm,Λ,Γ = M{1A},Φ,n·Φ = Mn,Φ,Φ and S
m

1
2 ·Λ

= SΦ.

Now let λ > 0. By considering BΨ−Φ = λ, we get BΨ−Φ <
A2

Φ

BΦ
. Now similar to the proof of Theorem 3.4, we

get Ψ is a standard g-frame with BΨ =
√

BΦ +
√
λ. For each x ∈ E, we have

‖Mn,Φ,Φx −Mn,Φ,Ψx‖ = ‖Mn,Φ,Φ−Ψx‖ ≤ ‖n‖∞
√

BΦBΨ−Φ‖x‖.

Since |ni − 1A| ≤ α1A, we get ‖ni − 1A‖ ≤ α, for each i ∈ I and ‖n‖∞ ≤ α + 1. Then

‖Mn,Φ,Φx −Mn,Φ,Ψx‖ ≤ (α + 1)
√

BΦλ‖x‖ ≤ (α + 1)
√

BΦλ‖M−1
n,Φ,Φ‖‖Mn,Φ,Φx‖. (1)

Because α < AΦ−
√
λBΦ

BΦ+
√
λBΦ

and ‖M−1
n,Φ,Φ‖ ≤

1
AΦ−αBΦ

, we obtain that

(α + 1)
√

BΦλ < AΦ − αBΦ ≤
1

‖M−1
n,Φ,Φ‖

,

so (α + 1)
√

BΦλ‖M−1
n,Φ,Φ‖ < 1 and ‖Mn,Φ,Φ −Mn,Φ,Ψ‖ < 1

‖M−1
n,Φ,Φ‖

. Now the result is obtained using Newmann

algorithm with ‖IdE −M−1
n,Φ,ΦMn,Φ,Ψ‖ < 1, using (1) by considering λ1 = (α + 1)

√
BΦλ‖M−1

n,Φ,Φ‖, U = Mn,Φ,Φ,

λ2 = 0 and V = Mn,Φ,Ψ in Lemma 3.3 and using the inequalities ‖Mn,Φ,Ψ‖ ≤ (α + 1)
√

BΦ(
√

BΦ +
√
λ) and

1
(α+1)

√
BΦ(
√

BΦ+
√
λ)
≤

1
‖Mn,Φ,Ψ‖

≤ ‖M−1
n,Φ,Ψ‖. The result for Mn,Ψ,Φ is obtained similarly.

The next corollary is a generalization of Proposition 4.2 in [25] to Hilbert C∗−modules.

Corollary 3.11. Suppose that F is a standard frame and G is a sequence such that there exists λ ∈ [0,
A2
F

BF
) with∥∥∥∥∥∑

i∈I |〈x, 1i − fi〉|2
∥∥∥∥∥ ≤ λ‖x‖2, for each x ∈ E. Let α <

AF −
√
λBF

BF +
√
λBF

with |ni − 1A| ≤ α1A, for each i ∈ I. Then G is a

standard frame and Mn,F ,F , Mn,F ,G and Mn,G,F are invertible with

‖x‖
(α + 1)BF

≤ ‖M−1
n,F ,F x‖ ≤

‖x‖
AF − αBF

,

‖x‖

(α + 1)(BF +
√
λBF )

≤ ‖M−1x‖ ≤
‖x‖

AF − αBF − (α + 1)
√
λBF

,

M−1
n,F ,F =

∞∑
n=0

[S−1
F

(SF −Mn,F ,F )]nS−1
F

and

M−1 =

∞∑
n=0

[M−1
n,F ,F (Mn,F ,F −M)]nM−1

n.F ,F ,

where M is Mn,F ,G or Mn,G,F .
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Proposition 3.12. Let Λ be a standard g-frame. Assume that Γ and Λ are T−equivalent and there exists a nonnegative
number α such that |ni − 1A| ≤ α1A <

AΛ

BΛ
1A, for each i ∈ I. Then Γ is a standard g-frame and Mn,Λ,Γ, Mn,Γ,Λ are

invertible with M−1
n,Λ,Γ = T−1M−1

n,Λ,Λ and M−1
n,Γ,Λ = M−1

n,Λ,Λ(T−1)∗.

Proof. By Theorem 2.2, Γ is a standard g-frame. Consider Φ = Ψ = Λ in Proposition 3.10, so we can assume
that λ = 0. Hence by Proposition 3.10, Mn,Λ,Λ is invertible. Now the remainder follows from the equalities
Mn,Λ,Γ = Mn,Λ,ΛT and Mn,Γ,Λ = T∗Mn,Λ,Λ.

The following result is a generalization of Proposition 4.3 in [25] to Hilbert C∗−modules.

Corollary 3.13. Let F be a standard frame. Assume that G and F are T−equivalent and there exists a nonnegative
number α such that |ni − 1A| ≤ α1A <

AF
BF

1A, for each i ∈ I. Then G is a standard frame and Mn,F ,G, Mn,G,F are
invertible with M−1

n,F ,G = (T−1)∗M−1
n,F ,F and M−1

n,G,F = M−1
n,F ,F T−1.

Proposition 3.14. Suppose that Φ is a standard g-frame and Ψ is a sequence such that
∥∥∥∥∥∑

i∈I〈(niψi − φd
i )x, (niψi −

φd
i )x〉

∥∥∥∥∥ ≤ λ‖x‖2, for each x ∈ E, where λ ∈ [0, 1
BΦ

) and Φd = {Φd
i }i∈I is a g-dual of Φ. If M is Mn,Φ,Ψ or Mn∗,Ψ,Φ, then

n ·Ψ is a standard g-frame and M is invertible with

‖x‖
1 +
√
λBΦ

≤ ‖M−1x‖ ≤
‖x‖

1 −
√
λBΦ

,

for each x ∈ E.

Proof. Let Γ = n · Ψ, Λ = Φd, Λd = Φ and BΓ−Λ = λ. Since BΓ−ΛBΛd < 1, then by Proposition 3.1, Γ is a
standard g-frame. For each x ∈ E, we have

‖Mn,Φ,Ψx − x‖ = ‖Mn,Φ,Ψx −M{1A},Φ,Φd x‖

= ‖M{1A},Φ,n.Ψx −M{1A},Φ,Φd‖ = ‖M{1A},Φ,(n.Ψ−Φd)‖ ≤
√

BΦλ‖x‖.

Hence ‖Mn,Φ,Ψ − IdE‖ < 1, so by Newmann algorithm Mn,Φ,Ψ is invertible. Because ‖Mn,Φ,Ψx‖ − ‖x‖ ≤
‖Mn,Φ,Ψx − x‖ ≤

√
BΦλ‖x‖, we get ‖Mn,Φ,Ψ‖ ≤ (1 +

√
BΦλ), so 1

1+
√

BΦλ
≤

1
‖Mn,Φ,Ψ‖

≤ ‖M−1
n,Φ,Ψ‖. The remainder

follows from Lemma 3.3 by considering U = IdE, λ1 =
√

BΦλ, λ2 = 0 and V = Mn,Φ,Ψ. The result for Mn∗,Ψ,Φ
is obtained similarly using

‖Mn∗,Ψ,Φ − IdE‖ = ‖(Mn,Φ,Ψ − IdE)∗‖ = ‖Mn,Φ,Ψ − IdE‖.

The next corollary is a generalization of Proposition 4.5 in [25] to Hilbert C∗−modules.

Corollary 3.15. Suppose that F is a standard frame andG is a sequence such that there exists some λ ∈ [0, 1
BF

) with∥∥∥∥∥∑
i∈I |〈x,n∗i1i − f d

i 〉|
2
∥∥∥∥∥ ≤ λ‖x‖2, for each x ∈ E, where F d = { f d

i }i∈I is a dual of F . If M is Mn,F ,G or Mn∗,G,F , then

n∗ · G is a standard frame and M is invertible with

‖x‖

1 +
√
λBF

≤ ‖M−1x‖ ≤
‖x‖

1 −
√
λBF

,

for each x ∈ E.
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Proposition 3.16. Let Φ be a standard g-frame and let Φd be a g-dual for Φ. If there exists a nonnegative number
α < 1√

BΦB
Φd

such that |ni − 1A| ≤ α1A, then Mn,Φ,Φd and Mn,Φd,Φ are invertible with

‖x‖
1 + α

√
BΦBΦd

≤ ‖M−1x‖ ≤
‖x‖

1 − α
√

BΦBΦd

, (2)

for each x ∈ E, where M is Mn,Φ,Φd or Mn,Φd,Φ and

M−1
n,Φ,Φd =

∞∑
n=0

(M{(1A−ni)}i∈I ,Φ,Φd )n (3)

and

M−1
n,Φd,Φ

=

∞∑
n=0

(M{(1A−ni)}i∈I ,Φd,Φ)n.

Proof. If α = 0, then ni = 1A, for each i ∈ I, so Mn,Φ,Φd = IdE = Mn,Φd,Φ. Let α > 0. Then for each x ∈ E, we
have

‖Mn,Φ,Φd x − x‖ = ‖Mn,Φ,Φd x −M{1A},Φ,Φd x‖

≤ ‖{ni − 1A}i∈I‖∞
√

BΦBΦd‖x‖ ≤ α
√

BΦBΦd‖x‖.

Now (2) is obtained from Lemma 3.3 by considering λ1 = α
√

BΦBΦd , λ2 = 0, U = IdE, V = Mn,Φ,Φd and the
relations

‖Mn,Φ,Φd x‖ ≤ ‖x‖ + ‖Mn,Φ,Φd x − x‖ ≤ (α
√

BΦBΦd + 1)‖x‖

and 1
‖Mn,Φ,Φd ‖

≤ ‖M−1
n,Φ,Φd‖. Since

‖M{(1A−ni)}i∈I ,Φ,Φd‖ = ‖IdE −Mn,Φ,Φd‖ < 1,

Newmann algorithm yields (3). The result for Mn,Φd,Φ can be obtained with a similar proof.

The following result is a generalization of Proposition 4.4 in [25] to Hilbert C∗−modules.

Corollary 3.17. Let F be a standard frame and let F d be a dual for F . If there exists a nonnegative number
α < 1√

BF B
F d

such that |ni − 1A| ≤ α1A, then Mn,F ,F d and Mn,F d,F are invertible with

‖x‖

1 + α
√

BF BF d

≤ ‖M−1x‖ ≤
‖x‖

1 − α
√

BF BF d

,

for each x ∈ E, where M is Mn,F ,F d or Mn,F d,F and

M−1
n,F ,F d =

∞∑
n=0

(M{(1A−ni)}i∈I ,F ,F d )n

and

M−1
n,F d,F

=

∞∑
n=0

(M{(1A−ni)}i∈I ,F d,F )n.

Proposition 3.18. Let Λ and Γ be standard g-frames and let Mn,Λ,Γ be invertible. Then M−1
n,Λ,Γ is a g-Bessel multiplier

for Λd and Γd with symbol n−1, where Γd and Λd are g-duals of Γ and Λ, respectively.
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Proof. Since ni’s are elements of Z(A), the operator niΓi is adjointable with (niΓi)∗ = n∗i Γ
∗

i . Now for each
x ∈ E, we have

∑
i∈I Λ∗i [(niΓi) ◦M−1

n,Λ,Γ]x =
∑

i∈I niΛ
∗

i ΓiM−1
n,Λ,Γx = x, so Λd = {(niΓi) ◦M−1

n,Λ,Γ}i∈I is a g-dual for Λ.
Now for each {xi}i∈I ∈ ⊕i∈IEi, we get

T∗
ΛdMn∗−1 ({xi}i∈I) =

∑
i∈I

[(niΓi) ◦M−1
n,Λ,Γ]∗(n∗i

−1xi) = M−1
n∗,Γ,ΛT∗Γ({xi}i∈I),

so T∗
ΛdMn∗−1 = M−1

n∗,Γ,ΛT∗Γ. Now let Γd be a g-dual of Γ. Then T∗ΓTΓd = IdE, so

T∗
Λd ◦Mn∗−1 ◦ TΓd = M−1

n∗,Γ,ΛT∗ΓTΓd = M−1
n∗,Γ,Λ.

Thus
M−1

n,Λ,Γ = (M−1
n∗,Γ,Λ)∗ = T∗

ΓdMn−1 TΛd = Mn−1,Γd,Λd .

This completes the proof.

The next result is a generalization of Theorem 1.1 in [8] to Hilbert C∗– modules.

Corollary 3.19. Let F and G be standard frames and let Mn,F ,G be invertible. Then M−1
n,F ,G is a Bessel multiplier for

F
d and Gd with symbol n−1 = {n−1

i }i∈I, where Gd and F d are duals of G and F , respectively.

Now we recall the following definition from [13]:

Definition 3.20. A standard g-frame Λ is a modular g-Riesz basis if it has the following property:
if

∑
i∈Ω Λ∗i1i = 0, where 1i ∈ Ei and Ω ⊆ I, then 1i = 0, for each i ∈ Ω.

The following proposition is a generalization of Theorem 4.3 (iii) in [14] to standard g-frames.

Proposition 3.21. Let Λ and Γ be modular g-Riesz bases. Then Mn,Γ,Λ is invertible with M−1
n,Γ,Λ = Mn−1,Λ̃,̃Γ.

Proof. Let x ∈ E. For each i ∈ I, we have
∑

k∈I Γ∗kΓ̃kΓ
∗

i x = Γ∗i x, so
∑

k∈I Γ∗k fk = 0, where fk = Γ̃kΓ
∗

i x, for k , i and
fi = Γ̃iΓ

∗

i x − x. Because Γ is a modular g-Riesz basis, Γ̃kΓ
∗

i x = 0, for k , i and Γ̃iΓ
∗

i x = x. Now we have

Mn−1,Λ̃,̃Γ ◦Mn,Γ,Λx = Mn−1,Λ̃,̃Γ(
∑
k∈I

nkΓ
∗

kΛkx) =
∑
i∈I

∑
k∈I

n−1
i nkΛ̃i

∗

Γ̃iΓ
∗

kΛkx

=
∑
i∈I

n−1
i niΛ̃i

∗

Λix =
∑
i∈I

Λ̃i
∗

Λix = x.

With a similar proof we can get Mn,Γ,Λ ◦Mn−1,Λ̃,̃Γx = x, so M−1
n,Γ,Λ = Mn−1,Λ̃,̃Γ.

Corollary 3.22. Let Λ and Γ be modular g-Riesz bases and let T,S be invertible elements in L(E). Then Mn,ΓS,ΛT is
invertible with M−1

n,ΓS,ΛT = Mn−1,Λ̃T,Γ̃S = T−1Mn−1,Λ̃,̃ΓS∗−1, where ΓS = {ΓiS}i∈I and ΛT = {ΛiT}i∈I.

Proof. Using Theorem 2.2, we obtain that ΛT is a standard g-frame with operator SΛT = T∗SΛT, so
Λ̃T = {(ΛiT)S−1

ΛT}i∈I = {Λ̃iT∗−1
}i∈I. Similarly we have Γ̃S = {Γ̃iS∗−1

}i∈I. It is easy to see that Mn−1,Λ̃T,Γ̃S =

T−1Mn−1,Λ̃,̃ΓS∗−1. Because by the above proposition the operator Mn−1,Λ̃,̃Γ is the inverse of Mn,Γ,Λ, we get
Mn−1,Λ̃T,Γ̃S is the inverse of S∗Mn,Γ,ΛT = Mn,ΓS,ΛT and the proof is completed.
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