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Invertibility of Multipliers in Hilbert C'—~Modules
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Abstract. In this paper, we present some sulfficient conditions under which Bessel multipliers in Hilbert
C*—modules with semi-normalized symbols are invertible and we calculate the inverses. Especially we
consider the invertibility of Bessel multipliers when the elements of their symbols are positive and when
their Bessel sequences are equivalent, duals, modular Riesz bases or stable under small perturbations. We
show that in these cases the inverse of a Bessel multiplier can be represented as a Bessel multiplier.

1. Introduction and preliminaries

Bessel multipliers in Hilbert spaces were introduced by Balazs in [3]. Bessel multipliers are operators de-
fined by a fixed multiplication pattern which is inserted between the analysis and synthesis operators. Bessel
multipliers have useful applications, for example they are used for solving approximation problems and
they are used in acoustics as a way to implement time-varying filters and recently have found applications
in psychoacoustics and denoising. For more information about the stated applications, see [4, 7, 17, 21, 26].
Multipliers have been investigated for Bessel fusion sequences in Hilbert spaces [16] (called Bessel fusion
multipliers) and for generalized Bessel sequences in Hilbert spaces [23] (called g-Bessel multipliers). Also
multipliers were introduced for p-Bessel sequences in Banach spaces [24] and for continuous frames [6].
Recently the present author and A. Khosravi generalized Bessel multipliers, g-Bessel multipliers and Bessel
fusion multipliers to Hilbert C*~modules and many important results obtained for Bessel multipliers in
Hilbert and Banach spaces were generalized to Hilbert C*—modules (see [14]). In this paper, we consider the
invertibility of multipliers in Hilbert C*—modules. As we know, the invertibility of the operators related to
frames has great importance in frame theory mostly because of the reconstruction of signals. Thus studying
the conditions under which Bessel multipliers are invertible can be interesting. As a special case, we see in
[19] that (a, m)—approximate duals generate an invertible multiplier. We mention that (4, m)—approximate
duals are standard frames that imply the distance (with respect to the norm) between the identity operator
on the Hilbert C*—module and the operator defined by multiplying the Bessel multiplier with symbol m
by an element a in the center of the C*—algebra is strictly less than one. Therefore in this case, the inverse
of the multiplier can be calculated using Neumann algorithm. In this paper, we study the invertibility of
multipliers in more general cases.

Suppose that U is a unital C*—algebra and E is a left A-module such that the linear structures of A and E are
compatible. E is a pre-Hilbert 2-module if E is equipped with an A-valued inner product(.,.) : EXE — ¥,
such that
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(i) (ax+ By, z) = alx,z) + f(y,z), foreach o, e Cand x, y,z € E;
(i) (ax,y) = alx,y), foreacha € Aand x,y € E;
(iii) (x,y) = (y,x)", for each x,y € E;
(iv) {x,x) >0, for each x € E and if (x,x) = 0, then x = 0.

For each x € E, we define ||x|| = |Kx, x)ll% and |x| = (x, x)%. If E is complete with ||.||, it is called a Hilbert
A—module or a Hilbert C*—module over A. We call Z(N) = {a € A : ab = ba, Yb € N}, the center of A. Note that
if a € Z(A), then a* € Z(N), and if a is an invertible element of Z(A), then a~! € Z(N), also if a is a positive
element of Z(), since a2 is in the closure of the set of polynomials in 4, we have az € Z(N) (see [20]).

A Hilbert A-module E is finitely generated if there exists some set {xy,...,x,} in E such that every element
x € E can be expressed as an A-linear combination x = Y aixi,a; € A A Hilbert A-module E is countably
generated if there exists a countable set {x;}ic; € E such that E equals the norm-closure of the A-linear hull
of {xi}ier.

Let E and F be Hilbert A-modules. An operator T : E — F is called adjointable if there exists an operator
T* : F — E such that (T(x), y) = {x, T*(y)), for each x € E and y € F. Every adjointable operator T is
bounded and A-linear (that is, T(ax) = aT(x) for each x € E and a € A). We denote the set of all adjointable
operators from E into F by £(E, F). Note that (E, E) is a C*—algebra and it is denoted by £(E). For more
details about Hilbert C*—modules, see [15].

Frames in Hilbert C*—modules were introduced in [10]:

Definition 1.1. Let E be a Hilbert W—module. A family ¥ = {fi}ic C E is a frame for E, if there exist real constants
0 < Ag < Bg < o0, such that for each x € E,

Ar (e, xy < ) (x, i) fiox) < Br(x, ),
iel
i.e., there exist real constants 0 < Ay < By < oo, such that the series ) ;c(x, fi){fi, x) converges in the ultraweak
operator topology to some element in the universal enveloping Von Neumann algebra of U such that the inequality
holds, for each x € E. The numbers A¢ and By are called the lower and upper bound of the frame, respectively. In
this case we call it an (A¢, Bf) frame. If only the second inequality is required, we call it a Bessel sequence. If the
sum converges in norm, the frame is called standard.

Frames in Hilbert C*—modules are not trivial generalizations of Hilbert space frames because of the complex
structure of C*—algebras. As we know, many important results obtained in Hilbert spaces do not hold
in Hilbert C*-~modules. For example, any closed linear subspace in a Hilbert space has an orthogonal
complement. But not every closed submodule of a Hilbert C*'—module is complemented. Moreover,
the Riesz representation theorem for continuous functionals on Hilbert spaces does not hold in Hilbert
C*—modules, and so there exist nonadjointable bounded linear operators on Hilbert C*—modules (see [15]).
Therefore it is expected that problems about frames in Hilbert C*—~modules are more complicated than those
in Hilbert spaces.
Now we recall the definition of g-frames in Hilbert C*—modules from [12]:
A sequence A = {A; € &(E,E)) : i € I} is called a g-frame for E with respect to {E; : i € I} if there exist real
constants Ap, Bo > 0 such that

Aplx, x) < Z(Aix, Aix) < Balx, x),

iel

for each x € E. In this case we call it an (A, By) g-frame. If only the second-hand inequality is required,
then A is called a g-Bessel sequence. Note that standard g-frames are defined similar to the standard frames.
If {E; : i € I} is a sequence of Hilbert A-modules, then ®;¢;E; which is the set

®iciEi = {{xi}iel :x; € E; and Z(x,-,xi) is norm convergent in 91},
i€l
is a Hilbert A-module with pointwise operations and U-valued inner product

(oibien (yikier) = )i, ).

iel
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For a standard g-Bessel sequence A, the operator Ty : E — ®j¢E; which is defined by Ta(x) = {Aix}ie is
called the analysis operator of A. Ty is adjointable with T, ({x;}ie1) = Yier Ai(x;), for each {xi}ies € ®ie/Ei. Now
we define the operator Sy : E — E by Spx = T}, Ta(x) = e AjAi(x). If A is a standard (A, Ba) g-frame,
then AxIdg < Sp < Baldg. The operator S, is called the g-frame operator of A.

Recall that if A = {Aj}ie; and T = {T';};; are standard g—Bessel sequences such that ), I Aix = x or equiv-
alently ) ;¢ ATix = x, for each x € E, then I (resp. A) is called a g-dual of A (resp. T). Let A = {A}ie; be

an (Ax, By) standard g-frame. We call A = {AiSRl}iel the canonical g-dual of A which is an (BLA, ALA) standard
g-frame.

Note that F = {fi}ic is a standard Bessel sequence (resp. frame) if and only if Ay = {Af}ie is a standard
g-Bessel sequence (resp. g-frame), where A(x) = (x, f;), for each x € E (see [12, Example 3.1]). This shows
that each Bessel sequence (resp. frame) generates a g-Bessel sequence (resp. g-frame). For a standard Bessel
sequence ¥ = {fi}ic;, we denote T, and S, by T# and S¢, respectively.

We denote the canonical dual of a standard frame ¥ = {f;}ies by ¥ = {filier, where f; = S,;l fi. Also, duals
for two standard Bessel sequences F = {f}ic1 and G = {gi}ier can be defined using the generated g-Bessel
sequences, so G (resp. ¥) is a dual of F (resp. G) if x = },;c/(x, fi)g; or equivalently x = } ;. (x, g;) f;, for
each x € E (see [11, Proposition 3.8]). For more results about frames and their generalizations in Hilbert
C*-modules, see [1, 10-12, 22, 27].

Recall that £(I, ) is {{a,-},-d C U el = suplllall < i € I} < oo}. If m = {milier is a sequence in

(1, N) with m; € Z(N), for each i € I, then m is called a symbol. If ¢ is an element in Z(A) and m; = c, for
each i € I, then m is denoted by m = {c}.

Proposition 1.2. [14] Let m = {m;};c; be a symbol. Then the operator M,, defined on ®;c1E; by My, ({xi}ier) = {mixilier
is well-defined, adjointable with M, = My and ||Myy|| < [Iml|e, where m* = {m}ier.

Definition 1.3. [14] Let A = {Aj}ier, I = {Ti}ier be standard g-Bessel sequences for E with respect to {E;}ic; and let
m = {m;}ic; be a symbol. Then the operator My, ra : E — E which is defined by M,,r A = T;MmTA is called the
g-Bessel multiplier for the g-Bessel sequences A and T with symbol m. We have My, r a(X) = Yicr miTi Ai(x). Also

My, r All £ VBABrllmlleo and M

m,I,A = MM*'A'F :

Definition 1.4. [14] Let E1, E; be Hilbert W—modules, m = {m;}ic; a symbol and let ¥ = {f;}ie1 € E1, G = {gi}ie1 C Ea
be standard Bessel sequences. We call the operator M,, g : E1 — Ep which is defined by M, g 7 = T;\ngTA’F =
T MuTy, the Bessel multiplier for the Bessel sequences  and G with symbol m. It is easy to see that My, g,#(x) =

Yiermikx, fi)gi.

As we said before, in frame theory, the inverses of the operators related to Bessel sequences and frames
play an important role mostly because of the reconstruction of signals. Note that if the Bessel multiplier
M,, g is invertible, then every x € E is reconstructed as

Z mi(M,,) g %, fi)9i = x = Z milx, )M, 9

iel iel

We can conclude from the above relation that {miM;ng gilier is a dual for { fi}ie, so every invertible multiplier
generates a dual. Our purpose is to obtain some sufficient conditions under which Bessel multipliers are
invertible and find a representation of the inverse of an invertible multiplier as a Bessel multiplier.

In this paper n = {n;};c is a symbol with this property that there exists some positive number A such that
Aly < |ny|, for each i € I. n with these properties is called a semi-normalized symbol. Also in this note
m = {m;}ies is a semi-normalized symbol such that m;’s are positive elements in U (there exists some positive
number A such that Aly < m;, for eachi € I). ¥ = {filiecr and G = {gi}ier are always assumed to be sequences
in a Hilbert C*—module E, so M,,g# € 2(E). All C*—algebras are unital and all Hilbert C*—modules are
finitely or countably generated. All frames, g-frames and Bessel sequences are standard and all index sets
are finite or countable subsets of IN.
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2. Invertibility of Bessel multipliers with equivalent sequences

In this section, we consider the invertibility of Bessel multipliers when their Bessel sequences are
equivalent. First we recall the following definition from [2]:
Definition 2.1. Let T be an invertible operator in (E).
(i) Wesay that T = {I'; € &(E, Ei)}ier and A = {A; € &(E, Ei)}ier are T— equivalent if T; = A;T, for each i € L.
(i) Let G = {gilier, ¥ = {fi}ier € E. We say that G and F are T— equivalent if g; = Tf;, for eachi € I.
Theorem 2.2. Let A be a standard g-frame and let I and A be T— equivalent. Then
(i) T is a standard g-frame and My, o;r, My, r,a are invertible with
Myl =TS and Myl =87, (T, where m* - A = {mf Al
(i) If c € Z(N) is positive and invertible, then M{‘C} A
(iii) M{‘ﬁu}/ an =M

r=Meyrx
{la},AA"

Proof. (i) Let A be an (A, Ba) standard g-frame. It follows from the relation

Anllx]P? 2 20112
1|12 < AlTx|I” < ;(AiTx, AiTx)|| < BAllTIF[Ixll%,
for each x € E, the equality I'; = A;T and Theorem 3.1 in [27] that I is a standard g-frame with bounds —”T/EHZ

and B,||T|[>. Since m is semi-normalized with positive elements and A is a standard g-frame, Proposition
3.7 in [14] implies that M, 4 A is invertible. Now we have

My arx = Y miATix = Y miA;ATx = My ATx.
i€l i€l
Because M, 5 x and T are invertible, M, A r is invertible with M;i Ar = T‘lM;: s and the equality My, . | =
My ar = My, ar yields that My, r 4 is also invertible with M> % = (M1, )", Since My aa = Sy, (see the
proof of [14, Proposition 3.7] and also note that in this case, A is called weighted in the sense of [5]), we get
M= T‘ls;l% L, and M= 5;1% .A(T—l)*.
(ii) It follows from part (i) that T is a standard g-frame. Let m; = ¢, for each i € I. Then |lc!||} 1y < m;, for

eachi € I and S y X = ¢ Yier AJAix = cSpx, s0 S:% LT ¢'S.1. Thus by part (i), M[‘C}’AI =c'T!S 1 Ttis

easy to obtain from I'; = A;T that Sp = T*SAT and ﬁ = FiS;l = KiT*_l. Then

M S FAX = Z c‘lT_ljp\v,'*A,‘lex = c_lT_l.S[_Xlx.

. — ~lp-1g-1 — a1
ThereforeM[C,l}lr,A—C =5, _M{c},A,r'

(iii) The result follows from part (ii) by considering c = 1q. O

Remark 2.3. Let F = {fi}ic; and G = {gi}ie1 C E be standard Bessel sequences. If ¢;,¢; : E —> W are defined by
Qi(x) = (x, fi), Yi(x) = {x,gi), then ® = {Pilier and V = {Y;}ier are standard g-Bessel sequences and in this case
Mywo = My,g s ([14, Remark 3.6]). Also if G and F are T—equivalent, then

Yix) = <x, g0 = X, Tfi) =T"x, fi) = $iT" (%)
Hence WV and ® are T*—equivalent.

The above remark shows that if two standard Bessel sequences are T—equivalent, then the standard g-
Bessel sequences induced by them are T*—equivalent. Now using Theorem 2.2 and Remark 2.3, we get the
following result which is a generalization of Corollary 4.5 and Example 4.1 in [8] to Hilbert C*~modules.
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Corollary 2.4. Let ¥ be a standard frame and let G and F be T— equivalent. Then

(i) G is a standard frame and M, & g, My, g are invertible with
1 _ -1yl 1 _g1 L (3 f)
Mm,;c,g =(T7) Sm%? and Mm,Q,T = Sm%.TT , Wherem? - F = {m? filies.

(ii) If c € Z(N) is positive and invertible, then M{j?g = M{C’l},é,%‘

cee _1 _ o
(i) My, o7 =My 77

Proposition 2.5. Let A and T be standard g-frames. If T and {n: A}ier or A and {n;T;}ie are equivalent, then My s r
is invertible with M;,lA,l" =M, 55, Where nt = {n e
Proof. Since n is a semi-normalized symbol, similar to the first part of the proof of Theorem 4.3 (iii) in [14],
we obtain that n! = {ni’l},-el is a symbol. Let I and {n}A;}ic; be T—equivalent. We have I'; = (n;A;)T and
it is easy to see that {n;A;}ie is a standard g-Bessel sequence and Sy = T*S,-AT. Because Sr, T and T are
invertible, S, is also invertible. Now we have M, orX = i N AiTx = S ATx, and

M

ERY = ) TS (M)A

i€l

Y TS ()T (s ADAS = TS
i€l

Hence M, oy is invertible with M %, . = M
obtained with a similar proof. [

pTA The result for the case that A and {n;I';};c; are equivalent is

The following result is a generalization of Proposition 4.7 in [8] to Hilbert C*~modules.

Corollary 2.6. Let F and G be standard frames. If G and {n;fi}ic or F and {n;gi}ie; are equivalent, then M, 7 g is
invertible with M, ¢=M, g7

3. Inversion of multipliers using perturbed sequences, duals and modular Riesz bases

In this section, we consider the invertibility of multipliers when their Bessel sequences are duals,
modular Riesz bases or stable under small perturbations.
Recall from [18] that two standard g-Bessel sequences A and I are approximately dual g-framesif [[[dg— T/ Tr|| <
1 or equivalently [[Idg — T;T,l| < 1. In this case, we say that I' (resp. A) is an approximate g-dual of A (resp.
I).

Proposition 3.1. [18] Let A be a standard g-frame and A be a g-dual of A. If T is a sequence such that T — A =
{T'i — Ailier is a standard g-Bessel sequence with Br_aBa« < 1, then T is a standard g-frame with upper bound
VB + VBr_a and T and A are approximately dual g-frames.

Lemma 3.2. Let A be a standard g-frame. If T is a sequence such that I — A is a g-Bessel sequence with B{{‘—RA <1,

then T is a standard g-frame and I and Aare approximately dual g-frames.

Proof. Tt is enough to consider A = A and B = 47 in Proposition 3.1. [J

Lemma 3.3. [9] Let X and Y be Banach spaces, U : X — Y be a bounded, invertible operator. If V : X — Y is an
operator such that
IUx = Vx|l < Aql|Ux|| + A2|[Vx]l,

for some 0 < A1, Ay < 1 and for each x € X, then V is invertible with |V"'y|| < }f—ﬁfllll’llﬂlyll,for eachyey.

In the following theorem A is a positive number such that Aly < m;, for eachi € I.
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Theorem 3.4. Let A be a standard g-frame. Suppose that I — A is a standard g-Bessel sequence with Br_, < 1;—‘2: and

22211 A, . .. . . .
e < \/ﬁ. Then T is a standard g-frame and the multipliers My, ar and My, s are invertible with

X _ X
(|| <M 1x|| < [|c]]

Imlle(Ba + VBABr-a) AAA = |lmlleo VBABr_a~
and M~ = Y. )[S7Y A(S L —M)'STL K where M is My, a1 0F My A-
m2- m m2-

2A
Proof. It follows from the first part of the proof of Proposition 3.7 in [14] that
1 1
AAN X, x) < Z(ml?Aix,ml? Aix) < |Im||lBa(x, x).
i€l

Thus
AANIdE < Sm%_[\ < |ImlloBaldg

and Theorem 2.2.5 part (4) in [20] implies that

1 1
— = Jdr <SSt <—1Id ,
ImllwBa B~ Twba T AA, E

so (using Theorem 2.2.5 part (3) in [20])

1 1
- <5t <
miaBa = 15,0 = 22,

2
and AyA < ||IS7L ||7'. Since A, < B, we have Br_, < 12—‘2 < Ap. Because 4 < 1, by Lemma 3.2, T is a
m2-A 2

standard g-frame. We have ||[M,; o r-all < llmllco VBABr-a, so for each x € E,

M arx =5 3 x| = Mo r-axll < llmllo VBABr-allx]l-

We have

lImllee VBABr-a < ApA < I|5_1% All_l,
m?.

limlles A

(the first inequality is valid because of the relation %= < NSV stated in the assumption) so

_ 1 -l
IMiar =S5 4 II< ||5m%~A|| .
Thus [|S™) Muar — Idgll < 1, so by Newmann algorithm S™ M, o r is invertible with
m2-A m2-A
(S;nl% m AF)7 Z(IdE -5 % Mm,A,l")n/
consequently M, A r is invertible with
-1 _ _c-1 n|g-1 _ -1 _ ng-1
Mylpr = | =54 Muarf[S1 =D USTL (6,1, = Muanl'S |

and the equality My,rn = M, , - yields that My, 1, is also invertible with

-1 _ -1 ne-1
Mo = 2 IS7) (S0, ~Mur)I'ST
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By Proposition 3.1, VBa + VBr-, is an upper bound for I', so

My arll < lIllo VBA(VBA + VBr_a).

Using [lxl = 1My, a,r M, Xl < Mo, A MG (]l we get

[ad]

lImllco VBA(VBA + VBr_a)

llxll =

1
ML x| >
mA T |V, Al

Now the remainder can be obtained from the relation

172l v/BaABr—allxl

lImllso VBABr_allS™, IS 3 Xl
m2-A m

Lemma 3.3 with U = Sm% N V = Muar, M = Ml VBABr_AlIS™Y I, A2 = 0 and using the inequality
. m2-A
IS7L I = AAx. O
m2-A

IA

”Sm%-Ax - Min,A,Fx||

IA

Corollary 3.5. Let F be a standard frame. Suppose that G — F = {gi — fi}ier is a standard Bessel sequence with
Ay

VBg-7B#

A2 . L. . .
Bg-5 < g- and % < . Then G is a standard frame and the multipliers M, & g and M,, g & are invertible
with
[l llxl

< ’
lImlle(B# + +/B#Bg-7) AAg —|Imlleo \/BFBg_5+

and M™! = Zf:O[S‘l% T(Sm%.f - M)]"S™Y , where M is My, 5 g 0r My g7

1
mz-F

M~ <

2
Corollary 3.6. Let A be a standard g-frame. If I is a sequence such that there exists A € [0, 2—;:) with ” Yierl@i -

Ax, (T - Ai)x)” < Alx|%, for each x € E and M < %, then T is a standard g-frame and My, ar, My, s are

iTl'Uel tlble wlth
X X
|| ” < ”M_l “ < ” ”

lI1ll(Ba + VABRA) AAA — |Imll VABA

where M is My, ar 0f Myr A-

Proof. It is enough to consider Br_p = A in Theorem 3.4. [

The following result is a generalization of Proposition 4.1 in [25] to Hilbert C*~modules.

2
Corollary 3.7. Let ¥ be a standard frame. If G is a sequence such that there exists A € [0, 2—:) with H Yoier K%, (i —

fz‘)>|2H < Allx|?, for each x € E and M < %, then G is a standard frame and M,, g and M,, g & are invertible
with

(|| 1
<|IM x| < ,
lmlloo (B + +/AB#F) AAg — |Imlle \/ABg

for each x € E, where M denotes anyone of M, & g and M, g &

In the next proposition, we get some results about the stability of a standard g-frame under small perturba-
tions and consider the invertibility of the multiplier generated by the standard g-frame and the perturbed
sequence.
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Proposition 3.8. Let ® = {¢; € &(E,E;) : i € I} be a standard g-frame. If ¥V = {i; € &(E, E;) : i € I} is a sequence
such that there exists A € [0, 1;_3) with " Yier{(nii — Pi)x, (nig; — qb,-)x)” < Allx|l?, for each x € E, then n - W and W

are standard g-frames and M, o w and M, w o are invertible with

X _ X
W gt < —

Bo + VABa Ay — VABy

for each x € E, where M denotes anyone of M, o w and My w o.

Proof. Suppose that A =®, T =n-W, m; = 1y foreachi € I and A = 1. Since || ;e {(Ti — Ai)x, (T; — Ajx)|| <

Allx|> and ”m”“’f \F’ by Corollary 3.6, I' = n - W is a standard g-frame and M,,ar = M, ow and
MyutA = My wo are 1nvert1ble with

R
Bo + VABo Ao — VABo

for each x € E, where M denotes anyone of M, ¢y and M,y ¢. Because n is semi-normalized, there exists

some positive number D such that D1y < || < [|n]|o 1o, for each i € I. Therefore the relation

2
< s

pix, njix)

2 ZI‘@HX, x| <

Z(lpixr BD{.X) 7
iel

and Theorem 3.1 in [27] yield that W is a standard g-frame. O

Corollary 3.9. Let F be a standard frame. If G is a sequence such that there exists A € [0, 1;—;) with H Yier x, (g —

fOP

< Allx|[?, for each x € E, then n* - G and G are standard frames and M, & g and M, g & are invertible with

|||
B7-" + AB¢ h B A7-" - AB¢I

for each x € E, where M denotes anyone of M,, & g and M, g .
Proposition 3.10. Suppose that ® = {¢; € Q(E E;) : i € 1} is a standard g-frame and W = {; € L(E,E;) : i € I}
is a sequence such that there exists A € [0, B_:E) with H YierllQi = Pi)x, (Vi — ¢,-)x>H < Allx|l?, for each x € E. Let

a < Ao=VABo 4uipp |n; — 1ol < aly, for each i € I. Then VY is a standard g-frame and M, o o, My ow and M,y o are
Bo+ VABo o i al

invertible with
el

@B < Mumo¥l = 702050

[l <M < x|
(@ +1)(Bo + VABo) " Ap—aBo — (@ +1)VABy
Mo = Y 1S5S0 — Muoo)l'S;,
n=0

and .
1= Y M o (Moo - MM, L, g,
n=0
where M is My, ¢ w 0 My w .
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Proof. First suppose that A = 0. Then ¥ = ®. Now let m = {m;};; withm; = 1y, foreachi€e [A=1,T =n-®
and A = ®. Then

< Bolln; = TulPllxI* < Boa?|x].

(T = A, (T = A

iel

Therefore we can set Br_, = Boa?. Then
2

-/ A A
BF_AZB(DOC2<B@( /\B(D) <B ( (I)) A

Bo + VABo Ba
Now the result follows from Theorem 3.4 using the equalities Myar = Mpgone = Myoo and S AT So.
Now let A > 0. By considering By_¢ = A, we get By_o < ‘1’ . Now similar to the proof of Theorem 3.4, we

get W is a standard g-frame with By = VBo + VA. For each x € E, we have

(IMy,0,0X = My o wxll = |Myo0-wxll < 1]l VBoBw_ollx]|.

Since |n; — 1y| < aly, we get [[n; — 1al| < a, for each i € I and [|n]|c < a + 1. Then

IMi0,0% = Myowxll < (a + 1) YBoAllxl| < (a + 1) VBoAIM; 4, o Il My,0,0x]- 1)
Because a < \/‘/@ and ”M_q:,q)” < Iabs aB , we obtain that
1
(0( + 1) \/B@A < Ao —aBg £
IIM,,(M,II

so (a+1) \/Bq>/\||M‘1 q:” < land [My00 — Myowl|l < ”Mll & Now the result is obtained using Newmann
n,Dd,0
algorithm with ||[dg — Mnl(D(DMn,cp,\y” < 1, using (1) by considering A; = (a + 1) VBopA ”an><1> [, U= Moo,

Ay =0 and V= Mn(p\p in Lemma 3.3 and using the inequalities ||M, o w|l < (o + 1) VBo(VBo + \/X) and
ey \E( N \F) IIMn ool S IIM;(D‘{,II The result for M,, g ¢ is obtained similarly. [

The next corollary is a generalization of Proposition 4.2 in [25] to Hilbert C*—modules.

2
Corollary 3.11. Suppose that ¥ is a standard frame and G is a sequence such that there exists A € [0, 1;—:) with

Yier %, gi = )P < Allx|l?, for each x € E. Let o < A= ”ABT with |n; — 1y| < aly, for eachi € I. Then G is a

Br+ V
standard frame and M, & 7, M, 7 g and M, g & are invertible wzth
llxl - llx
M <M -
@+ DBy <! wr il < Ay —aBy
] < M < ] ,
(o + 1)(B7: + \/AB}‘) Ag: —aBg — (a+1) VAB#

ML, = 2[5 (S5 = My )1"S;

and

)

M= Y ML (Mo = MM,
n=0

where M is M, 7 g or My g 7.
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Proposition 3.12. Let A beastandard g-frame. Assume that I and A are T—equivalent and there exists a nonnegative
number « such that |n; — 1y| < aly < AA 1m,for each i € I. Then T is a standard g-frame and My r, M, r A are
invertible with M., . =T'M,,  and Mner =M1 (T

Proof. By Theorem 2.2, I' is a standard g-frame. Consider ® = W = A in Proposition 3.10, so we can assume
that A = 0. Hence by Proposition 3.10, M, A A is invertible. Now the remainder follows from the equalities
Muar = MuaaT and My ra = T"Mpyan. O

The following result is a generalization of Proposition 4.3 in [25] to Hilbert C*—~modules.

Corollary 3.13. Let ¥ be a standard frame. Assume that G and ¥ are T—equivalent and there exists a nonnegative
number « such that [n; — 1ly| < aly < ;ﬁlm, foreach i € I. Then G is a standard frame and M, g, M, g are

. . . — 1 . — _ — _1
invertible with Mn =(T) M and Mn GF Mn 7. s

Proposition 3.14. Suppose that © is a standard g-frame and W is a sequence such that || ¥, {(nipi — ¢9)x, (ni; —

qbf)x)H < Allx|?, for each x € E, where A € [0, Bl ) and ® = {CD Yier is a g-dual of ©. If M is M, 0w 0 My w o, then

n - WV is a standard g-frame and M is invertible with

ol gty
ABg 1- VABo

for each x € E.

Proof. LetI' =n-W¥, A = @ A? = @ and Br_, = A. Since Br_aABj« < 1, then by Proposition 3.1, I' is a
standard g-frame. For each x € E, we have

IMpowx —xIl = [[Myowx — Mjyy ool
= IMpy),0n.9% — Mgy o0l = IMy,0,6w-ooll < VBoA|lx]].
Hence [|[Myow — Idgll < 1, so by Newmann algorithm M, ¢ w is invertible Because ||M,,owx|| — [|x|| <

1My 0wx — x| < VBoAllxll, we get |[My 0wl < (1 + VBaA), so 1+ﬁ < ool w\l < IIMMN,H The remainder

follows from Lemma 3.3 by considering U = Idg, A1 = VYBoA, A; = 0and V = M,, o w. The result for M, v ¢
is obtained similarly using

My w0 = Idell = I(My,o0 — 1de)" || = IMy,00 — Idell.
|
The next corollary is a generalization of Proposition 4.5 in [25] to Hilbert C*~modules.

Corollary 3.15. Suppose that F is a standard frame and G is a sequence such that there exists some A € [0, ) with
H Yier Kx, m5g; = f1) |2H < Allxl?, for each x € E, where F = {f?ie; is a dual of F. If M is M5 g or My g5, then

n* - G is a standard frame and M is invertible with

. - |||
<IM 7'y < PRy
1+ ﬂ/\B}‘ ABq—‘

for each x € E.



M. Mirzaee Azandaryani / Filomat 32:17 (2018), 6073-6085 6083

Proposition 3.16. Let ® be a standard g-frame and let @ be a g-dual for ®. If there exists a nonnegative number
a< \/BlT such that |n; — 1y| < aly, then M, g i and M, g ¢ are invertible with
DO pd

]l [l

— <M ————, 2
T+ a VBB avBoba @

for each x € E, where M is M, ¢, gt 0r M, g o and
nCDCDd Z(Ml(ln ni) xezq)@”) (3)

and

nd)d @ Z(M {(Tar=n17)ier, @4, )"

Proof. If @ = 0, then n; = 1y, for each i € I, so M, ¢ = Idg = M, g1 ¢ Let @ > 0. Then for each x € E, we
have

||Mn,c1>,c1>dx | ||Mn o,p1X — M[l,[ @@dxH

11 = Lubieilleo V/BaoBaullxll < o /BoBa|lx]l-

Now (2) is obtained from Lemma 3.3 by considering A1 = a VBoBgi, A2 = 0, U = Idg, V = M, ¢ ¢ and the
relations

IA

1M, 0,0 X1 < ||X]] + [|My, 00,00 — x| < (@@ /BB + 1)]Ix]|
and ——— HM e IIM_ <1>d|| Since
(IM1y-n)tir 0,00l = g = My, g gl < 1,

Newmann algorithm yields (3). The result for M,, ¢4 ¢ can be obtained with a similar proof. [

The following result is a generalization of Proposition 4.4 in [25] to Hilbert C*—modules.

Corollary 3.17. Let F be a standard frame and let 9 be a dual for F. If there exists a nonnegative number
a < such that |n; — 1y| < aly, then M, & 74 and M,, 74 & are invertible with

FPgd

X X
W gty < — I

1+ a /BBy 1-a+BsBss

for each x € E, where M is M, & 71 0r M, 70 & and

nTT"I Z(M{(ln—n ,EITW)

and

M_y:dg.“ Z(M {(1y— n)iGITdT)
n=0

Proposition 3.18. Let A and T be standard g-frames and let M, A v be invertible. Then M", . is a g-Bessel multiplier
for A4 and T with symbol n~", where T% and A? are g-duals of T and A, respectively.
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Proof. Since n;’s are elements of Z(), the operator n,I’; is adjointable with (n,I;)* = n:T. Now for each
x € E, we have } ;. AZ[(nT}) o MnAr]x = Ve i\ T MnArx =x,s0 A= {(nT;) o ML LYier is a g-dual for A.
Now for each {x;}ic € ®icIE;, we get

Mia(ldia) = Y 0Ty o MY (1'0n 7' x) = Myl Tr(lxikien),

iel

o) T M = MnerT*. Now let ¥ be a g-dual of I'. Then T T« = Idg, so
Ty 0 My 0 Tra = ML\ TiTr = ML L

Thus
M:;AI‘ (M; rA) = Mnfl Tht = Mn-l,rd,Ad-

This completes the proof. [
The next result is a generalization of Theorem 1.1 in [8] to Hilbert C*— modules.

Corollary 3.19. Let F and G be standard frames and let M,, & g be invertible. Then M;}F g 1s a Bessel multiplier for
F and G* with symbol n~! = {nlfl},-el, where G* and F° are duals of G and F, respectively.

Now we recall the following definition from [13]:

Definition 3.20. A standard g-frame A is a modular g-Riesz basis if it has the following property:
if Yico Algi = 0, where g; € E;and Q C I, then g; = 0, for each i € Q.

The following proposition is a generalization of Theorem 4.3 (iii) in [14] to standard g-frames.

Proposition 3.21. Let A and I be modular g-Riesz bases. Then My, is invertible with M;lr A=MoRT

Proof Let x € E. For each i € I, we have ) F*ka x =Tix, 50 Ye I} fk = 0, where fi = FkF x, for k # i and
fi= T I[x — x. Because I' is a modular g-Riesz basis, Fkl" x=0,fork#iandT; I'x = x. Now we have

Mn-l,Kf(Z m Ax) = Z Z ni_lnk;\-i ﬁl",:/\kx

Mn‘l,xf o Mn,r,Ax

kel iel kel
1 —_— —
= Z n; niAj Al-x = ZA,‘ Aix =X.
iel iel
. .. 1 _ __
With a similar proof we can get M, a © M, AX =X, 50 Mn I A Mnfl,A,r' O

Corollary 3.22. Let A and I be modular g-Riesz bases and let T, S be invertible elements in &(E). Then M, st is

invertible with M1 =M =T'M 575" U where TS = {T;S}ic; and AT = {A;T)ier.

n,TS,AT n1,AT,TS -1IAT

Proof. Using Theorem 2.2, we obtain that AT is a standard g-frame with operator Sxr = T*SAT, so

AT = {(A; T)SAT el = {A T Vet Similarly we have TS = {F S M. Ttis easy to see that M, == =

-1,AT,TS
]1\"/11M el XFS* 1. Because by the above proposition the operator M, AT is the inverse of M, r, we get

n=1 AT,TS is the inverse of S"M,,r AT = M,,rs AT and the proof is completed O
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