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Abstract. In this paper we consider analytic functions in the unit disc D satisfying the Ozaki’s condition
that

iRe{f@(z)} >0, |zl<1.

We prove some implications of this condition and we estimate the order of strongly starlikeness of f¥=9(z).

1. Introduction

A function f analytic in a domain D € C is called p-valent in D, if for every complex number w, the
equation f(z) = w has at most p roots in D, so that there exists a complex number wy such that the equation
f(z) = wo has exactly p roots in D. We denote by H the class of functions f(z) which are holomorphic in the
open unit unit D = {z € C : |z < 1}. Denote by A,, p € N = {1,2,.. }, the class of functions f(z) € H given

by

flz)=2"+ Z a,7z", (z € D).

n=p+1

Let A = A(1). Let S denote the class of all functions in A which are univalent. Also let S; (a) and Cy(a) be
the subclasses of A(p) consisting of all p-valent functions which are strongly starlike and strongly convex

of order a, 0 < a < 1, defined as
zf'(2) an
arg{ o) }‘ < X zE]D},

{f@) e AQ) : 2f @ /p € Sy(@)}.

Note that S’i(l) = & and Ci(1) = C, where S* and C are usual classes of starlike and convex functions
respectively.

8;(@)

{f (z) € Ap) :

Cp(a‘)
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The known Ozaki’s condition says that
Re{fP2)} >0, (zeD)
follows that f(z) is at most p-valent in ID. We prove that under additional assumption p > 3 the above
condition follows that f(z) is at most p-valent convex in D.
2. Preliminaries

In this paper we need the following lemmas.

Lemma 2.1. [2, Th.5] If f(z) € Ay, then for all z € D, we have

zfP(2) ) 2f®(2)
‘.Re{f(pl)(z)} >0 = Vkefl,...,p}: Re {f(k—l)(z)} > 0. (2.1)
Lemma 2.2. [2, Th.1]If f(z) € A, then for all z € ID, we have
2fr ()
Re {p + W} >0 (Z [S D), (22)

then f(z) is p-valent in D and
Zf(k+1)(z)
f9@)

Lemma 2.3. [4] Let p(z) = 1 + Y.;2,, cn2", cm # 0 be analytic function in |z| < 1 with p(0) = 1, p(z) # 0. If there
exists a point zo, |zo| < 1, such that

Vke(l,...,p—-1}: ERe{k+ }>O, (z € D).

larg {p(2)} | < %ﬁ for |z| < |zol
and
larg {p(z0)} | = %ﬁ

for some B > 0, then we have

zop'(zo) _ 2ikarg{p(zo)}
p(zo) n '

for some k > m(a +a~')/2 > m, where

{p(zo)}l/’S =+ia, and a > 0.

3. Main Results
Theorem 3.1. If f(z) € Ay, p > 2 and

Re{fP(2)} >0, (zeD), (3.1)
then

(-1
arg{fp " (Z)}‘ < %/ (ze D),

where a1 = 0.638322 . ... is the unique root of of the equation

LS
2+’cam 5T % (32)
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Proof. 1f we put

7 = if(”‘”(zx 70 =1, (zeD),
then it follows that
PR = pl5i(2) +29,(2)

zg,(z)
p'g1(z) (1 + n@ )

If there exists a point z; € D, such that

larg (@} < 55, (<)
and
larg g @0} = 5,
then from Lemma we have
219,(z1) _ 2ikarg{g:(z1)}

g1(z1) T

for some k > m(a +a~')/2 > 1, where

{91(21)}1/’)‘1 = +ia, and a > 0.

For the case arg{g1(z1)} = a17/2, we have

arg{fP(z)} = arg{P!gl(Zl)(”Zlgi—Z;))}
= agloe) varg 1+ 220N

219, (z
= %+arg{l+ 191( 1)}

g1(z1)
1Tt

= — +arg {1 + ik}
hon +tan 'y
o

2

v

because of (3.2), but this contradicts hypothesis (3.1). For the case arg {g1(z1)} = —a17/2, we have

arg({f?)(z,)) arg {p!91(21)(1 N 2191(21))}

g1(z1)
z197(z1) }
g1(z1)

a7 2191(21)}
= ——— targql+
2 g{ g1(z1)
= 0&1771 +arg {1 — ik}
—QTT

2
L

2

= arg{gi(z1)} +arg {1 +

—tan™! aq

6109
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because of (3.2) and this contradicts hypothesis too. This shows that

arg{f(p_:(z)}‘ < 0&177'(’ (z € D).

O
Theorem 3.2. If f(z) € Ay, p > 2 and
RelfP@)} >0, (zeD),

then

72

(-2)
arg{flrJ : (Z)}‘ < %, (ze D),

where a; = 0.486434 ... is the unique root of of the equation

am +tan-! a _ omn
2 )

and where ay = 0.638322. ... is the unique solution of the equation (3.2).
Proof. Let us put
2l -2
92(2) = p|_zzfp @), 90)=1, (zeD),
then it follows that f?=2)(z) = p!z2g,(z)/2! and
!
1@ = L@+ )

and so

f70)
p'z

1,
=g(2) + Eng(z).
If there exists a point z; € D, such that

larg g2} < 5=, (il <=2
and

|larg {g2(22)} | = %,
then from Lemma we have

229,(22)  2ikarg{g2(20)}

92(22) Tt

for some k > m(a +a~')/2 > 1, where

{gg(zz)}l/”‘2 = +ig, and a > 0.

6110

(3.3)

(3.4)

(3.5)
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Therefore, applying the same method as in the proof of Theorem 3.1} we can get
-1 -1
{52 - )

p!Zz #2
) 2295(22)
= larg {P!!JZ(ZZ) (1 * 205(22) )}
2295(22)
= l|arg{g2(z2)} + arg {1 * 22{]922(222) }‘

2205 (z
= 0%+arg{l+ 292( 2)}

2g(z2)

k
= ()QTH +arg{1+i0%}

ATt -1 Q2
> — +tan —
2 2

1Tt

2
because of (3.5). On the other hand this contradicts Theorem 3.1} This shows that

(r-2)
arg {f -2 (Z)}

Q

< %” (z e D). (3.6)

|
Theorem 3.3. If f(z) € A,, p > 3 and
RelfP(2)} >0, (zeD), (3.7)

then

arg{W}‘ < Ct:;_n, (Z = D),

z8 2
where a3 = 0.401696 . . . is the unique root of of the equation

an +tan”! a_ Qn
2 37 2

and where a; = 0.486434 . .. is is described in Theorem

(3.8)

Proof. Applying the same method as in the above proofs and putting

g3(2) = %f""‘”(zx 550)=1, (zeD),

follows that

(r-2) 1
% = g3(2) + gzgg(z)
_ 1295(2)
= g3(2) (1 +3 5@ )

If there exists a point z3 € D, such that

larg (ga@)} < 57, (kl < )
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and
larg {g3(z3)} | = %,
then from Lemma we have
2395(z3) _ 2ikarg{gs(z3)}
93(23) 77

for some k > m(a +a~')/2 > 1, where

{93(2'3)}1/“2 =+ig, and a > 0.

Therefore, we have

f(p—Z)(Z3) f(P—2) (z3)
arg{ ———— = |arg{ ———=
& p'z3 & z3
23%(23))}
= |ar 1g3(z3) |1 +
239’3(23)}
= |ar z3)} +arg< 1+
g{gS( 3)} g{ 393(23)
a3 ngé(zs)}
= |— targql+
2 g{ 393(z3)
_ |@T sk
= > + arg {1 +1 3 }
LY
> > + tan 3
_ ar
2
because of (3.8), but this contradicts Theorem 3.2} This shows that
fP3(2) azT
arg{ 3 <5 (z e D).

|
Corollary 3.4. If f(z) € Ay, p = 3 and
RelfP(2)) >0, (zeD),

then we have

(r-2)
arg{%}' < g(az +a3), (zeD).

This means that 3!f#=3)(2)/p! = 2° + ... is in the class S;(a2 + az) of 3-valent strongly starlike functions of order
ar +a3 =0488. ...

Proof. Applying the above results, we have

26 202
Z
a8 o) arg{ =) }
23
z f(P—Z) (z) 7 f(p—S) (2)
< |arg {z—z + |arg —
s
< 5(0{2 + 0(3).
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This completes the proof of Corollary[3.4 O
Theorem 3.5. If f(z) € A,, p = 3 and
RelfP(2)} >0, (zeD). (3.9)
Then f(z) is p-valently starlike in ID and also, f(z) is p-valently convex in ID.

Proof. From Theorem B.T} we have

2f02(z) 2(fP I (z)y
& T 9(z) M8 T3 (z)

g(az + a3)

a

IA

Tt T
< 5089 < 5, (Z (S D)

This shows that
31 £(p-3)
W@ ey
p!
is 3-valently starlike in ID. Applying Lemma to the function f#=3(z) gives
zf'(2)
Re——=>0, (zeD),
o 0 EE

therefore, f(z) is p-valently starlike in ID. On the other hand, it is trivial that

z f(p—Z) (2) z f(p—Z) (2)
fr9) } )

arg {1 +

T
< —(ap +
= 5 (a2 + az)

s

< E, (Z € D)
This shows that 3! f#=3(z) /p! is 3-valently convex in ID. Then it is trivial that
¥-2) (r-2)
3+§Reu >1+2Reu >0, (zeD).
() [

Therefore, applying Lemma 2.2|to the function f%=3(z) gives

zf"(2)
‘Re{l + @) } >0, (zeD).

It completes the proof of Theorem[3.5 [

Notice here the well-known Noshiro-Warschawski theorem and some related results. The Noshiro-
Warschawski theorem [1}[10], says that if f € H satisfies

Relef'(2)} >0, (zeD) (3.10)
for some real a, then f(z) is univalent in ID. Ozaki [5], generalized the above theorem for f € A,: if

Refe®fP(z)} >0, (z€D) (3.11)
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for some real o, then f(z) is at most p-valent in ID. Also in [3, 454] it was shown that if f € A,, p > 2, and
|larg{f?(2)}] < ?’I” (ze D), (3.12)

then f is at most p-valent in ID.
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