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Abstract. The notions of networks and k-networks for topological spaces have played an important role
in general topology. Pytkeev networks, strict Pytkeev networks and cn-networks for topological spaces
are defined by T. Banakh, and S. Gabriyelyan and J. Ka̧kol, respectively. In this paper, we discuss the
relationship among certain Pytkeev networks, strict Pytkeev networks, cn-networks and k-networks in a
topological space, and detect their operational properties.

It is proved that every point-countable Pytkeev network for a topological space is a quasi-k-network,
and every topological space with a point-countable cn-network is a meta-Lindelöf D-space, which give
an affirmative answer to the following problem [25, 29]: Is every Fréchet-Urysohn space with a point-
countable cs′-network a meta-Lindelöf space? Some mapping theorems on the spaces with certain Pytkeev
networks are established and it is showed that (strict) Pytkeev networks are preserved by closed mappings
and finite-to-one pseudo-open mappings, and cn-networks are preserved by pseudo-open mappings, in
particular, spaces with a point-countable Pytkeev network are preserved by closed mappings.

1. Introduction

As we know, metrization theory is the core in the study of general topology, and the theory of generalized
metric spaces is an important generalization of this theory [19, 28]. The ideas and problems of generalized
metric spaces, in particular, the general metrization problem, greatly influenced all domains of set-theoretic
topology [22]. The Bing-Nagata-Smirnov metrization theorem evoked enthusiasm on spaces with various
base-like properties, for example, networks, weak bases, k-networks and cs-networks, etc. On the other
hand, a study of countability is an important task on general topology. In order to generalize certain
countability, all kinds of spaces put forward by topologists, like Lindelöf spaces, Fréchet-Urysohn spaces,
sequential spaces and countable tightness, etc.

In 1983, E.G. Pytkeev [39] proved that every sequential space satisfies the following property, known
actually as the Pytkeev property [30, Definition 0.2], which is stronger than countable tightness: a topological
space X has the Pytkeev property if for each A ⊂ X and each x ∈ A \ A, there exists a sequence {An}n∈N of
infinite subsets of A such that each neighborhood of x contains some An. B. Tsaban and L. Zdomskyy [45,
Definition 5] strengthened this property as follows: a topological space X has the strong Pytkeev property
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if for each x ∈ X, there exists a countable family P of subsets of X, such that for each neighborhood U
of x and each A ⊂ X with x ∈ A \ A, there is a set P ∈ P such that P ⊂ U and P ∩ A is infinite. Clearly,
the strong Pytkeev property implies countable cs∗-character [45, p. 8]. These lead people to research the
relation among the strong Pytkeev property, countability and generalized metric properties.

In 2015, the notions of Pytkeev networks and strict Pytkeev networks were introduced [4]. T. Banakh [6,
Proposition 1.8] proved that each countable (strict) Pytkeev network is a k-network (resp. cs∗-network) in
a topological space, and the converse is also true for a k-space (resp. Fréchet-Urysohn space). At the same
time, the notions of cp-networks, ck-networks and cn-networks were introduced [15]. S. Gabriyelyan and
J. Ka̧kol [15, Proposition 2.3] proved each space with a countable cn-network at each point is of countable
tightness. Various topological spaces have been defined by spaces with certain Pytkeev networks, strict
Pytkeev networks, cp-networks, ck-networks and cn-networks, for example, P0-spaces [4], P-spaces [15],
strict σ-spaces [15] and strict ℵ-spaces [15], which played an important role in generalized metric spaces,
cardinal functions, hyperspaces, function spaces, topological groups and topological vector spaces [4–6, 14–
17, 23, 45].

It was a problem that “It is natural to ask for which topological spaces some of the types of networks
coincide” [15, p. 182]. Partial answers to this problem were given by T. Banakh [4], and S. Gabriyelyan and
J. Ka̧kol [15], etc. They studied the relationship among countable families or σ-locally finite families with
certain Pytkeev networks, k-networks and cs∗-networks. The following problem is discussed continuously
in this paper.

Problem 1.1. Find relationship between some classes of networks in topological spaces.

It is well known that each k-network or each cs∗-network for a topological space is a wcs∗-network [27], and
each cs∗-network for a topological space is a cs′-network [26]. These guide us to discuss the relationship
among Pytkeev networks, wcs∗-networks and cs′-networks for a topological space. On the other hand,
point-countable families of subsets are an essential generalization of σ-locally finite families in topological
spaces. In particular, spaces with a point-countable base have some interesting properties. For example,
spaces with a point-countable base are a meta-Lindelöf D-space [3, Theorem 2], and spaces with a point-
countable base are preserved by perfect mappings [12]. Spaces with certain point-countable families have
also some similar properties. G. Gruenhage, E.A. Michael and Y. Tanaka [21, Proposition 8.6] proved that
regular Fréchet-Urysohn spaces with a point-countable k-network are a meta-Lindelöf space. L.X. Peng [37,
Corollary 22] proved that regular k-spaces with a point-countable k-network are a D-space. D.K. Burke [9,
Corollary 4.5] proved that spaces with a point-countable weak base are a D-space. S. Lin and Z.Y. Cai [26,
Lemma 2.7] proved that sequential spaces with a point-countable cs′-networks are a D-space. The following
problems are interesting.

Problem 1.2. ([25, Question 2.1.24][29, Question 2.1]) Is every Fréchet-Urysohn space with a point-countable
cs′-network a meta-Lindelöf space?

Problem 1.3. ([38, p. 1050]) Is every sequential space with a point-countable wcs∗-network a D-space?

These motivate us to study the spaces with certain Pytkeev networks, in particular, to discuss fur-
ther spaces with certain point-countable Pytkeev networks. Operations over spaces with certain Pytkeev
networks were discussed [4, 6, 15], which contained hereditary properties, topological sum properties,
Tychonoff product properties and box product properties, etc. Mapping properties on spaces with certain
Pytkeev networks are seldom discussed in the literature [30, 46]. It was proved that the Pryteev property is
preserved by a closed mapping [46, Theorem 1], and the Pryteev property is inversely preserved by a perfect
mapping with the fibers of countable tightness [30, Theorem 5.4]. E.A. Michael [32, Theorem 11.4] proved
that a regular space with a countable k-network (i.e., an ℵ0-space) if and only if it is a compact-covering
image of a separable metrizable space; and Z.W. Li [24, Theorem 4] proved that a regular space is with a
σ-locally finite k-network (i.e., anℵ-space) if and only if it is a sequence-covering mssc-image of a metrizable
space.
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Problem 1.4. ([15, Question 6.8]) Find a characterization of regular spaces with a countable strict Pytkeev network
analogous to the characterization of ℵ0-spaces given by E.A. Michael.

Problem 1.5. ([15, Question 6.10]) Characterize regular spaces with a σ-locally finite ck-network and regular spaces
with a σ-locally finite strict Pytkeev networks analogous to the characterization of ℵ-spaces given by Z.W. Li.

The paper is organized as follows. In Section 2, we introduce some notions to be discussed in this paper,
and describe some basic relation among spaces defined by these notions. In Section 3, we discuss Problem
1.1 and obtain the relationship among spaces with certain networks, which involve Pytkeev networks,
strict Pytkeev networks, cn-networks, k-networks, wcs∗-networks and cs′-networks, prove that a space with
a point-countable Pytkeev network is metrizable if and only if it is an M-space. In Section 4, we detect the
covering properties on spaces with certain cn-networks and prove that every space with a point-countable
cn-network is a meta-Lindelöf D-space, which gives an affirmative answer to Problem 1.2 and a partial
answer to Problem 1.3. In Section 5, we establish some mapping theorems on spaces with certain Pytkeev
networks and prove that closed mappings or finite-to-one pseudo-open mappings preserve (strict) Pytkeev
networks, and pseudo-open mappings preserve cn-networks, which will be beneficial to the solution to
Problems 1.4 and 1.5.

2. Preliminaries

In this section, we introduce the necessary notation, terminology, and describe some basic relation
among spaces defined by these notions. Throughout this paper, all topological spaces are assumed to be
Hausdorff, mappings are continuous and onto, unless explicitly stated otherwise. The sets of real numbers,
rational numbers and positive integers are denoted by R, Q andN, respectively.

Definition 2.1. Let P be a family of subsets of a topological space X.
(1) P is a network [11, p. 127] for X, if for any neighborhood U of a point x ∈ X, there exists a set P ∈ P

such that x ∈ P ⊂ U.
(2)P is a k-network [36, Definition 1] (resp. quasi-k-network [21, p. 310]) for X, if whenever K is a compact

(resp. countably compact) subset of an open set U in X, there exists a finite subfamily F of P such that
K ⊂

⋃
F ⊂ U.

(3) P is a cs∗-network [18, Definition 3] (resp. wcs∗-network [27, p. 79]) for X, if for every sequence {xn}n∈N
converging to a point x ∈ U with U open in X, there exists a set P ∈ P such that some subsequence {xni }i∈N
of {xn}n∈N is eventually in P and x ∈ P ⊂ U (resp. P ⊂ U).

(4) P is a cs′-network [26, p. 1065] for X, if for every sequence {xn}n∈N converging to a point x ∈ U with
U open in X, there exists a set P ∈ P such that {x, xm} ⊂ P ⊂ U for some m ∈N.

(5) P is a Pytkeev network (resp. strict Pytkeev network) [4, Definition 1.1] for X, if P is a network for X,
and for each neighborhood U of a point x in X and each subset A of X accumulating at x, there exists a set
P ∈ P such that P ∩ A is infinite and P ⊂ U (resp. x ∈ P ⊂ U).

(6) P is a cn-network [15, Definition 1.1] for X, if for each neighborhood U of a point x in X, the set⋃
{P ∈ P : x ∈ P ⊂ U} is a neighborhood of x.

For a fixed point x ∈ X, a family P of subsets of X is called a network (resp. cs∗-network (wcs∗-network),
cs′-network, Pytkeev network (strict Pytkeev network) or cn-network) of the point x in X, if the family P satisfies
the above mentioned conditions (1) (resp. (3), (4), (5) or (6)) at x.

Remark 2.2. (1) In [4, p. 152], it was said that a subset A of a topological space X accumulates at a point
x ∈ X if each neighborhood of x contains infinitely many points of the set A. It is obvious that for a T1 space
X a point x ∈ X is an accumulation point of a set A ⊂ X if and only if x ∈ A \ {x}.

(2) The notion of cp-networks is introduced in [15, Definition 1.1]. A family P of subsets of a space X
is called a cp-network at a point x ∈ X if either x is an isolated point of X and {x} ∈ P, or for each subset A
of X with x ∈ A \ A and each neighborhood U of x, there exists a set P ∈ P such that P ∩ A is infinite and
x ∈ P ⊂ U. It is easy to check that for a T1 space X a family P of subsets of X is a strict Pytkeev network if
and only if it is a cp-network for X.
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Let X be a topological space and A ⊂ X. The set A is k-closed in X if A ∩ K is relatively closed in K for
each compact subset K of X. A space X is a k-space [11, p. 152] if every k-closed set of X is closed.

Lemma 2.3. ([4, Proposition 1.7]) Each k-network in a k-space is a Pytkeev network.

We will show that each cn-network for a space is a cs′-network, see Corollary 3.8. The following figure
is some basic relationship among spaces with certain networks to be discussed in this paper.
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?

quasi-k-networks - k-networks

?
k-spaces

Pytkeev networks - wcs∗-networks

?

�
��*

strict Pytkeev networks -

?

cs∗-networks
�
��*

?
cn-networks - cs′-networks - networks

Figure 1 The relationship among spaces with certain networks

It is easy to see that every base for a space is a k-network, but a base for a space is not always a quasi-k-
network. Let X = [0, ω1), and it be endowed with the ordered topology. PutP = {U ⊂ X : U is open and U ⊂
[0, α) for some α < ω1}. Then P is a base for X. Since X is a countably compact space and X is not covered
by any finitely many elements of P, P is not a quasi-k-network for X.

By the notions of certain networks, some generalized metrizable spaces were defined, which have played
an important role in the study of general topology.

Definition 2.4. Let X be a regular space.
(1) The space X is a cosmic space [32, p. 993] (resp. anℵ0-space [32, Definition 1.2], aP0-space [4, Definition

1.2]) if it has a countable network (resp. k-network, Pytkeev network).
(2) The space X is a σ-space [35, p. 236] (resp. a strict σ-space [15, Definition 1.5], an ℵ-space [36, Definition

2], a strict ℵ-space [15, Definition 1.5], P-space [15, Definition 1.4]) if it has a σ-locally finite network (resp.
cn-network, k-network, ck-network1), strict Pytkeev network).

The following figure describes the relation among spaces defined by certain networks [15, p. 180].

Separable
metrizable spaces

-
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?

ℵ0-spaces -

?

cosmic spaces

?
metrizable spaces - P-spaces - strict ℵ-spaces -

?

strict σ-spaces

?
ℵ-spaces - σ-spaces

Figure 2 The relationship among spaces defined by certain networks

1)The notion of ck-networks does be discussed in this paper. A familyP of subsets of a topological space X is called a ck-network [15,
Definition 1.1] for X if, for any neighborhood U of a point x in X, there is a neighborhood Ux of x such that for each compact subset K
of Ux there exists a finite subfamily F of P satisfying x ∈

⋂
F and K ⊂

⋃
F ⊂ U.
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The further relationship among spaces with certain networks involves weakly first-countability. Recall
some related notions. Let X be a topological space and A ⊂ X. The set A is sequentially closed in X if S is a
sequence in A converging to a point x ∈ X, then x ∈ A. Obviously, every closed set is k-closed, and every
k-closed set is sequentially closed in a space.

Definition 2.5. Let X be a topological space.
(1) The space X is a sequential space [11, p. 53] if every sequentially closed set of X is closed.
(2) The space X is a Fréchet-Urysohn space [11, p. 53] if, for each A ⊂ X and x ∈ A, there is a sequence in

A converging to the point x in X.
(3) The space X is of countable tightness [33, Proposition 8.5] if, for any subset A ⊂ X and x ∈ A, there is a

countable subset C ⊂ A such that x ∈ C.
(4) The space X is of countable fan-tightness [2, p. 565] if, for every sequence {An}n∈N of subsets in X with

x ∈
⋂

n∈N An, there is a finite subset Bn of An for each n ∈N, such that x ∈
⋃

n∈N Bn.
(5) The space X is of the strong Pytkeev property [45, Definition 5] if it has a countable (strict) Pytkeev

network at each point x ∈ X.
(6) The space X is of countable cn-character [15, Definition 2.11] if it has a countable cn-network at each

point x ∈ X.

The following are known.

Lemma 2.6. (1) A topological space is first-countable if and only if it has the strong Pytkeev property and countable
fan-tightness [6, Proposition 1.6].

(2) Every space with countable cn-character has countable tightness [15, Proposition 2.3].

These notions in Definition 2.5 relate as follows [15]:

First countability -

HHHj

?

Fréchet-Urysohn
space property - sequential space

property -

?

k-space
property

countable fan-tightness
HHHj

strong Pytkeev
property

- countable
cn-character

- countable tightness

Figure 3 The relationship among certain countability

3. Some Relationships Among Spaces with Certain Networks

In this section, we discuss Problem 1.1, obtain the relationship among spaces defined by Pytkeev
networks, k-networks, wcs∗-networks, cs′-networks and cn-networks, and establish a metrizable theorem
as follows: a space is metrizable if and only if it is an M-space with a point-countable Pytkeev network, see
Corollary 3.4.

A family P of subsets of a space X is point-countable [8, p. 350] if the family {P ∈ P : x ∈ P} is countable
for each x ∈ X. T. Banakh [4, Proposition 1.6] proved that each countable Pytkeev network is a k-network.
The following is a stronger form.

Theorem 3.1. Every point-countable Pytkeev network for a space is a quasi-k-network.
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Proof. Let X be a topological space, and P a point-countable Pytkeev network for X. For each open subset
U of X and each countably compact subset K of U, let PU = {P ∈ P : P ⊂ U}. Suppose that we have
K \

⋃
F , ∅, for each finite subfamily F of PU. Clearly, for each x ∈ K, Px = {P ∈ PU : x ∈ P} is countable,

and let Px = {Pi(x)}i∈N. Take a point x1 ∈ K. There exists a point x2 ∈ K such that x2 ∈ K \ P1(x1). By
induction, we can choose a sequence {xk}k∈N ⊂ K such that xk+1 ∈ K \

⋃
i,n≤k Pi(xn) for each k ∈ N. Clearly,

xk < Pi(xn) for each i,n < k. Since K is a countably compact set, the sequence {xk}k∈N has an accumulation
point y ∈ K ⊂ U. The point y is an accumulation point of the set A = {xk : k ∈ N}. Because P is a Pytkeev
network for X, there exists a set P ∈ P such that P ⊂ U and P ∩ A is infinite. Take i ∈ N with xi ∈ P ⊂ U.
Thus we can choose m ∈ N such that P = Pm(xi). But xk < Pm(xi) for each k > m, i. This shows that the set
P ∩ A is finite, which is a contradiction. Thus P is a quasi-k-network for X.

Remark 3.2. The converse of Theorem 3.1 is not true. Let X = N ∪ {p} ⊂ βN, where βN is the Čech-Stone
compactification ofN and p ∈ βN \N. It is easy to check that each countably compact subset of X is finite.
Thus the family {{x} : x ∈ X} is a countable quasi-k-network for X. It was proved that X does not have a
point-countable Pytkeev network [4, Example 1.11].

The point-countability in Theorem 3.1 can not be omitted.

Example 3.3. A strict Pytkeev network for a compact space X which is not a k-network.

Let X = [0, ω1], and it be endowed with the ordered topology. Then X is a compact space. Let L be the
set of all limit ordinals in X. For each α < ω1 and each n < ω, let Pα,n = ({β + n : β ∈ L} ∩ (α,ω1]) ∪ {ω1}.
Clearly, (α,ω1] =

⋃
n<ω Pα,n. For each x ∈ X, define a family Px of subsets of X as follows: if x , ω1, let Px

be a countable local base of x with
⋃
Px ⊂ [0, x]; if x = ω1, let Px = {Pα,n : α < ω1,n < ω}. Put P =

⋃
x∈X Px.

Obviously, |{P ∈ P : ω1 ∈ P}| = ω1. Since X is a compact space and X is not covered by any finitely many
elements of P, P is not a k-network for X. We will prove that P is a strict Pytkeev network for X. Clearly,
P is a network for X. For each x ∈ X, let U be a neighborhood of the point x in X, and A be a subset of X
accumulating at x. Without loss of generality, we may assume that x = ω1, there is an ordinal α < ω1 such
that (α,ω1] ⊂ U. Then A ∩ (α,ω1] is an uncountable set because x is an accumulation point of the set A. By
A ∩ (α,ω1] =

⋃
n<ω A ∩ Pα,n, there exists n < ω such that A ∩ Pα,n is infinite. It is obvious that x ∈ Pα,n ⊂ U.

Therefore, P is a strict Pytkeev network for X.
A space X is an M-space [34, p. 150] if there are a metric space M and a closed mapping f : M → X

such that each f−1(x) is countably compact. Obviously, every metric space and every countably compact
space are an M-space. Since a space is metrizable if and only if it is an M-space with a point-countable
quasi-k-network [21, Corollary 4.2], the following is obtained.

Corollary 3.4. A space is metrizable if and only if it is an M-space with a point-countable Pytkeev network.

Theorem 3.5. Every wcs∗-network in a sequential space is a Pytkeev network.

Proof. Let X be a sequential space, and P a wcs∗-network for X. Take any subset A ⊂ X accumulating at
a point x ∈ X and an open subset O ⊂ X with x ∈ O. Let B = (A \ {x}) ∪ (X \ O). Then x ∈ B \ B. Since
X is a sequential space, the set B is not sequentially closed in X, so there exists a sequence {xn}n∈N in B
converging to a point z < B. We can assume each xn ∈ A because X \O is closed, and all xn differ from each
other. By X \ O ⊂ B, the point z ∈ O. Since P is a wcs∗-network for X, there exists a set P ∈ P such that
{xni : i ∈ N} ⊂ P ⊂ O for some subsequence {xni }i∈N of {xn}n∈N. It shows that P ∩ A is infinite. Thus P is a
Pytkeev network for X.

Remark 3.6. The Čech-Stone compactification βN is a compact space with a point-countable cs∗-network,
and does not have a point-countable Pytkeev network. In fact, since βN has no any non-trivial convergent
sequences [11, Corollary 3.6.15], the family {{x} : x ∈ βN} is a point-countable cs∗-network for βN. By
Corollary 3.4, βN does not have a point-countable Pytkeev network.
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Lemma 3.7. Let P be a family of subsets of a space X. Then P is a cn-network for X if and only if P is a network for
X, and for each neighborhood U of a point x in X and each subset A of X accumulating at x, there exists a set P ∈ P
such that {x, z} ⊂ P ⊂ U for some z ∈ A \ {x}.

Proof. Suppose P is a cn-network for X. Obviously, P is a network for X. For each neighborhood U of a
point x in X and each subset A of X accumulating at x, since the set

⋃
{P ∈ P : x ∈ P ⊂ U} is a neighborhood

of x, there is a point z ∈ (A \ {x}) ∩
⋃
{P ∈ P : x ∈ P ⊂ U}, thus {x, z} ⊂ P ⊂ U for some P ∈ P, i.e., there exists

a set P ∈ P such that {x, z} ⊂ P ⊂ U for some z ∈ A \ {x}.
On the other hand, let U be a neighborhood of a point x in X, and put V =

⋃
{P ∈ P : x ∈ P ⊂ U}. If the

set V is not a neighborhood of x, then x ∈ X \ V. SinceP is a network for X, x ∈ V, thus x is an accumulation
point of the set X \V. By the condition of the sufficiency, there exists a set P ∈ P such that {x, z} ⊂ P ⊂ U for
some z ∈ X \ V, which is a contradiction. Therefore, P is a cn-network for X.

Corollary 3.8. Each cn-network for a space is a cs′-network.

Theorem 3.9. Each cs′-network in a Fréchet-Urysohn space is a cn-network.

Proof. Let X be a Fréchet-Urysohn space, andP a cs′-network for X. For each x ∈ X and each neighborhood
U of x, let V =

⋃
{P ∈ P : x ∈ P ⊂ U}. If x < V◦, then x ∈ X \ V. Because X is a Fréchet-Urysohn space, there

exists a sequence {xn}n∈N ⊂ X \ V converging to the point x in X. Since P is a cs′-network for X, there exist
m ∈N and P ∈ P such that {x, xm} ⊂ P ⊂ U. Thus P ⊂ V and P ∩ (X \V) , ∅, which is a contradiction. Thus
the set V is a neighborhood of the point x in X. Hence P is a cn-network for X.

Remark 3.10. (1) There is a first-countable space X with a point-countable Pytkeev network, but without a
point-countable cs′-network, see Example 4.8.

(2) There is a sequential space with a point-countable cs∗-network, but without a point-countable cn-
network, see the space X in Example 5.13.

(3) There is a Fréchet-Urysohn space with a point-countable cn-network, but without a point-countable
wcs∗-network.

Indeed, there exists a non-first-countable, Fréchet-Urysohn, countable and regular space S [40, Example
2.3]. It was showed that the space S does not have a point-countable k-network [26, Remark 2.10(4)]. By
Theorems 3.1 and 3.5, the space S does not have a point-countable wcs∗-network. Write S = {sn : n ∈N}. Let
P = {{sn, sm} : n,m ∈ N}. Then P is a countable cs′-network for S. Namely, P has a countable cn-network
for S by Theorem 3.9.

A topological space X is a q-space [31, p. 173] if, for each x ∈ X there exists a sequence {Un}n∈N of
neighborhoods of x such that if {xn}n∈N is a sequence in X with xn ∈ Un for each n ∈ N, then {xn}n∈N has an
accumulation point in X. Every M-space, thus every countably compact space, is a q-space. The following
result improves A.V. Arhangel’skiı̌ and A. Bella’s theorem [2, Corollary 2]: a countably compact regular
space has countable tightness if and only if it has countable fan-tightness.

Theorem 3.11. Let X be a regular q-space. If X has countable tightness, then X has countable fan-tightness.

Proof. Fix x ∈ X and let {An}n∈N be a sequence of subsets of X with x ∈
⋂

n∈N An. Without loss of generality,
we may assume that x < An for every n ∈ N. Because X is a q-space, there exists a sequence {Un}n∈N of
neighborhoods of x which satisfies the condition of q-spaces. For each n ∈ N, let Bn = An ∩ Un. Clearly,
x ∈

⋂
n∈N Bn. Since X is a q-space, every sequence {xn}n∈N in X with xn ∈ Bn for each n ∈ N has an

accumulation point in X. Let H = {{xn}n∈N : xn ∈ Bn for each n ∈ N}. For each H ∈ H , let zH be an
accumulation point of the sequence H in X. Let S = {zH : H ∈ H}. We claim that x ∈ S. Assume the contrary.
Then the set U = X \ S is an open neighborhood of x. Since X is a regular space, there is an open set V in
X such that x ∈ V ⊂ V ⊂ U. Clearly, V ∩ Bn , ∅ for each n ∈ ω. Therefore we can choose xn ∈ V ∩ Bn for
each n ∈ N. So there is the accumulation point zC of the sequence C = {xn}n∈N in H . Clearly, zC ∈ S. But
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zC ∈ V ⊂ U = X \ S, which is a contradiction. Since X has countable tightness, there exists a countable set
M ⊂ S such that x ∈M. Put M = {yn : n ∈N}, and for every n ∈N select a sequence Dn = {zn,i}i∈N ∈ H such
that yn = zDn is the accumulation point of the sequence Dn. For every n ∈ N, define Kn = {z1,n, z2,n, ..., zn,n}

and K =
⋃

n∈N Kn. Clearly, Kn ⊂ Bn ⊂ An for each n ∈ N. Let W be an open neighborhood of x. We have
W ∩M , ∅. Then there exists n ∈ N such that yn ∈ W ∩M. Because Dn accumulating at yn, there exists
m > n such that zn,m ∈ W ∩ Km. We conclude that W ∩ K , ∅. It shows that x ∈ K =

⋃
n∈N Kn. Hence X has

countable fan-tightness.

The following is obtained by Lemma 2.6(1).

Corollary 3.12. A regular q-space with the strong Pytkeev property is a first-countable space.

Problem 3.13. Is a q-space with a countable cn-network a first-countable space?

4. Covering Properties on Spaces with Certain cn-Networks

In this section, we discuss covering properties on spaces with certain cn-networks and strict Pytkeev
networks, prove that a topological space with a point-countable cn-network is a meta-Lindelöf D-space,
which give an affirmative answer to Problem 1.2 and a partial answer to Problem 1.3, and obtain some
characterizations of spaces with a locally countable strict Pytkeev network (cn-network).

A topological space X is called a meta-Lindelöf space [8, p. 370] if every open cover of X has a point-
countable open refinement. A neighborhood assignment for a topological space (X, τ) is a function ϕ : X→ τ
satisfying x ∈ ϕ(x) for each x ∈ X. A space X is called a D-space [10] if, for each neighborhood assignment ϕ
for X, there is a discrete closed set D in X such that {ϕ(d) : d ∈ D} covers X. E.K. van Douwen and W. Pfeffer
[10, p. 371] raised several interesting problems on D-spaces. Among them, the problem that whether every
regular Lindelöf space is a D-space is still open. There are some close connections between generalized
metric spaces and D-spaces [20].

A space X is called a hereditarily meta-Lindelöf (resp. hereditary D-) space if every subspace of X is a
meta-Lindelöf (resp. D-) space.

Theorem 4.1. Every space with a point-countable cn-network is a hereditarily meta-Lindelöf space.

Proof. Suppose P is a point-countable cn-network for a topological space X. It is easy to verify that the
property with a point-countable cn-network is hereditary with respect to subspaces, so we only need to
prove that X is a meta-Lindelöf space.

LetU = {Uα}α<γ be an open cover of X, where γ is an ordinal. For every α < γ, let

Vα =
(⋃
{P ∈ P : P ⊂ Uα,P 1 Uβ if β < α}

)◦
.

It is possible that some Vα are empty. Clearly, Vα ⊂ Uα. Next we will show that the familyV = {Vα : α < γ}
is a point-countable open cover of X. For each x ∈ X, let α(x) = min{α < γ : x ∈ Uα}, then x ∈ Uα(x). Since P
is a cn-network for X,

⋃
{P ∈ P : x ∈ P ⊂ Uα(x)} is a neighborhood of x. It is obvious that

{P ∈ P : x ∈ P ⊂ Uα(x)} ⊂ {P ∈ P : P ⊂ Uα(x),P 1 Uβ if β < α(x)}.

It shows that

x ∈
(⋃
{P ∈ P : x ∈ P ⊂ Uα(x)}

)◦
⊂

(⋃
{P ∈ P : P ⊂ Uα(x),P 1 Uβ if β < α(x)}

)◦
= Vα(x).
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SoV is an open cover of X.
We claim thatV is point-countable. Assuming the contrary, there exist a point x ∈ X and an uncountable

subset Γ of γ such that x ∈ Vα for each α ∈ Γ. Let Px = {P ∈ P : x ∈ P}. For each α ∈ Γ, by x ∈ Vα, we can
choose a set Pα ∈ Px such that Pα ⊂ Uα and Pα 1 Uβ for each β < α. Because Px is a countable family and
Γ is an uncountable set, we can assume that Pα = Pβ for each α, β ∈ Γ. Fixed different points α, β ∈ Γ with
β < α, then Uβ ⊃ Pβ = Pα 1 Uβ, which is a contradiction. So V is a point-countable family in X. It shows
that X is a hereditarily meta-Lindelöf space.

By Theorem 3.9 we have the following corollary, which gives an affirmative answer to Problem 1.2.

Corollary 4.2. Every Fréchet-Urysohn space with a point-countable cs′-network is a hereditarily meta-Lindelöf space.

Corollary 4.3. Every space with a point-countable strict Pytkeev network is a hereditarily meta-Lindelöf space.

Corollary 4.4. Every space with a point-countable cn-network consisting of separable subsets is a topological sum of
separable and Lindelöf spaces.

Proof. Let P be a point-countable cn-network consisting of separable subsets for a topological space X. By
Theorem 4.1, X is a meta-Lindelöf space. X is also a locally separable space, because for each x ∈ X, the
set

⋃
{P ∈ P : x ∈ P} is a separable neighborhood of x. By [21, Proposition 8.7], X is a topological sum

of Lindelöf spaces. It is easy to see that every Lindelöf locally separable space is separable. Hence X is a
topological sum of separable and Lindelöf spaces.

Let P be a family of subsets of a topological space X. The family P is said to be star-countable [8, p. 368]
if {P ∈ P : P∩Q , ∅} is countable for each Q ∈ P. The family P is said to be locally countable [8, p. 349] if, for
each x ∈ X, there is a neighborhood V of x such that V meets at most countably many elements of P. The
union of countably many locally countable families is called σ-locally countable.

Theorem 4.5. The following are equivalent for a topological space X.
(1) X has a locally countable strict Pytkeev network.
(2) X has a star-countable strict Pytkeev network.
(3) X has a σ-locally countable strict Pytkeev network consisting of separable subsets.
(4) X is a topological sum of spaces with a countable (strict) Pytkeev network.

Proof. (1) ⇒ (2) Let P be a locally countable strict Pytkeev network for a topological space X. For each
x ∈ X, there exists a neighborhood Vx of x such that Vx meets at most countably many elements of P. Let
P
∗ = {P ∈ P : P ⊂ Vx for some x ∈ X}. It is easy to verify that P∗ is a star-countable strict Pytkeev network

for X.
(2) ⇒ (3) Let P be a star-countable strict Pytkeev network for X. For each P ∈ P, the family P|P =

{Q ∩ P : Q ∈ P} is a countable network for P, thus P is a separable subspace of X. For each x ∈ X, let
U =

⋃
{P ∈ P : x ∈ P}. Then U is a neighborhood of x. Because P is a star-countable family, U meets at most

countably many elements of P. Thus P is a locally countable family. So X has a σ-locally countable strict
Pytkeev network consisting of separable subsets.

(3)⇒ (4) LetP be a σ-locally countable strict Pytkeev network consisting of separable subsets for X. For
each P ∈ P, by Corollary 4.3, P is a meta-Lindelöf space, thus P is a Lindelöf space. Because every locally
countable family in a Lindelöf space is countable,P is a star-countable family in X. ThusP =

⋃
{Pα : α ∈ Λ},

where each Pα is countable and (
⋃
Pα)∩ (

⋃
Pβ) , ∅ if and only if Pα = Pβ [8, Lemma 3.10]. For each α ∈ Λ,

let Xα =
⋃
Pα. If x ∈ Xα, then

⋃
{P ∈ P : x ∈ P} ⊂ Xα. Thus Xα is a neighborhood of x. It shows that Xα is an

open set in X. So we have that X =
⊕

α∈Λ Xα. Clearly, every Pα is a countable strict Pytkeev network for
Xα. Thus X is a topological sum of spaces with a countable strict Pytkeev network.

(4) ⇒ (1) It is well known that each space with a countable Pytkeev network has a countable strict
Pytkeev network [4, p. 152]. Thus, if X is a topological sum of spaces with a countable Pytkeev network,
then X has a locally countable strict Pytkeev network.
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Remark 4.6. By the proof of Theorem 4.5, the results are also true if the strict Pytkeev networks are replaced
by the cn-networks in Theorem 4.5.

Corollary 4.7. Each regular space satisfying one of the following conditions is a topological sum of P0-spaces, thus
it is a paracompact P-space.

(1) A space with a locally countable strict Pytkeev network.
(2) A k-space with a locally countable k-network.

Proof. If a regular space with a locally countable strict Pytkeev network, it is a topological sum ofP0-spaces
by Theorem 4.5. Next, suppose a regular k-space X with a locally countable k-network. By [28, Corollary
2.8.11], X is a topological sum of sequential spaces with a countable cs∗-network. By Theorem 3.5, X is a
topological sum of spaces with a countable Pytkeev network, i.e., X is a topological sum of P0-spaces.

Example 4.8. There is a first-countable space X with a star-countable, locally countable and σ-discrete
Pytkeev network consisting of separable subsets, but without a point-countable cs′-network.

Let S = {(x, y) : x, y ∈ R, y > 0}, L = {(x, 0) : x ∈ R} and X = S ∪ L. Denote the Euclidean subspace
topology on X by τ∗. Define the half-disc topology on X as follows [43, p. 96]:

τ =
{
τ∗

}⋃{
{x} ∪ (S ∩U) : x ∈ L, x ∈ U ∈ τ∗

}
.

Then (X, τ) is called a half-disc topological space. Let X be the half-disc topological space. It is easy to verify
that X is a separable first-countable and non-regular space. But X is not a Lindelöf space. It shows that X
is not a meta-Lindelöf space. By Corollary 4.2, X does not have a point-countable cs′-network.

For every x ∈ R2, r > 0, let B(x, r) be a spherical neighborhood of the point x with a radius r inR2. Define

P =
{
{p} : p ∈ L

}⋃{
B(q, 1/n) ∩ S : q ∈ Q ×Q,n ∈N

}
.

Since L is a discrete closed set in X, P is a star-countable, locally countable and σ-discrete family consisting
of separable subsets for X. We prove P is a wcs∗-network for X. Assume that p ∈ U ∈ τ and a sequence
{pk}k∈N in U converges to the point p in X. Since L is discrete, we may assume all pk ∈ S, and hence {pk}k∈N
also converges to p in the Euclidean subspace topology τ∗ on X. Since {B(q, 1/n) ∩ X : q ∈ Q ×Q,n ∈ N} is
a countable base of τ∗, there exist q ∈ Q × Q and i,m ∈ N such that {p} ∪ {pk : k ≥ i} ⊂ B(q, 1/m) ∩ X ⊂ U,
and hence {pk : k ≥ i} ⊂ B(q, 1/m) ∩ S ⊂ U. Thus, P is a wcs∗-network for X. By Theorem 3.5, P is a Pytkeev
network for X.

By the Bing-Nagata-Smirnov metrization theorem, we have the following problem.

Problem 4.9. Do regular spaces with a σ-locally finite (strict) Pytkeev network have a σ-discrete (strict) Pytkeev
network?

The following interesting result is a corollary of Peng [37, Corollary 18].

Theorem 4.10. Every space with a point-countable cn-network is a hereditary D-space.

Proof. We only need to prove X is a D-space. Let P be a point-countable cn-network for a topological space
X. By Lemma 3.7, the following is satisfied: for each neighborhood U of a point x in X and each subset A
of X with x ∈ A \ A, there exists a set P ∈ P with x ∈ P ⊂ U and P ∩ A , ∅. It was proved by Peng [37,
Corollary 18], X is a D-space.

Since each countably compact D-space is compact [7, Proposition 1.4], the following is obvious.

Corollary 4.11. Every countably compact space with a point-countable cn-network is a compact space.

Corollary 4.12. Every space with a point-countable strict Pytkeev network is a hereditary D-space.
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By Theorem 3.5, Problem 1.3 is equivalent to whether every sequential space with a point-countable
Pytkeev network is a D-space. Corollary 4.12 gives a partial answer to Problem 1.3.

Problem 4.13. Do regular spaces with a σ-locally finite cn-network have a σ-discrete cn-network?

It is known that every monotonically normal D-space is paracompact [7, Theorem 17]. It follows from
Theorem 4.10 that every monotonically normal space with a point-countable cn-network is paracompact.
Moreover, every normal k-and ℵ-space is paracompact [13, Theorem 1.3]. The following problem is posed.

Problem 4.14. Are normal P-spaces paracompact?

5. Mapping Properties on Spaces with Pytkeev Networks

In this section, we prove that (strict) Pytkeev networks are preserved by closed mappings and finite-
to-one pseudo-open mappings, and cn-networks are preserved by pseudo-open mappings, in particular,
spaces with a point-countable Pytkeev network are preserved by closed mappings. Some examples showing
spaces with certain Pytkeev networks are not be preserved by some mappings are constructed.

Recall some concepts relevant to mappings. Let f : X→ Y be a mapping. f is called a quotient mapping
[11, p. 91] if, for each U ⊂ Y with f−1(U) open in X, U is open in Y. f is called a pseudo-open mapping [1] if,
for each y ∈ Y and f−1(y) ⊂ V with V open in X, y ∈ [ f (V)]◦. f is called a countable-to-one (resp. finite-to-one,
compact) mapping if every f−1(y) is a countable (resp. finite, compact) subset of X. f is called a perfect mapping
[11, p. 182] if, f is a closed and compact mapping.

Obviously, every closed mapping or open mapping is a pseudo-open mapping, and every pseudo-open
mapping is a quotient mapping.

Theorem 5.1. Each (strict) Pytkeev network is preserved by a closed mapping.

Proof. Let P be a (strict) Pytkeev network for a topological space X and f : X → Y be a closed mapping.
Take any set A ⊂ Y accumulating at a point y ∈ Y. Given an open neighborhood O ⊂ Y of y, we need to find
a set P ∈ P such that (y ∈) f (P) ⊂ O and f (P) ∩ A is infinite. For each z ∈ A \ {y}, fix a point xz ∈ f−1(z). Let
B = {xz : z ∈ A \ {y}}. Then f (B) = A \ {y}. Since f is a closed mapping, y ∈ A \ {y} = f (B). So we can choose
a point x ∈ f−1(y) ∩ B, then f (x) = y and x < B. Thus x is an accumulation point of the set B. Since f is
continuous and P is a (strict) Pytkeev network for X, there exists a set P ∈ P such that (x ∈)P ⊂ f−1(O) and
P∩B is infinite. Thus (y ∈) f (P) ⊂ O and f (P∩B) ⊂ f (P)∩A is infinite. It shows that the family { f (P) : P ∈ P}
is a (strict) Pytkeev network for Y.

Corollary 5.2. Spaces with a σ-locally finite (strict) Pytkeev network are preserved by perfect mappings. Conse-
quently, P-spaces are preserved by perfect mappings.

Proof. Let f : X → Y be a perfect mapping, and the family P be a σ-locally finite (strict) Pytkeev network
for the space X. By Theorem 5.1, the family f (P) = { f (P) : P ∈ P} is a (strict) Pytkeev network for the space
Y. Since each locally finite family is preserved by a perfect mapping [11, Lemma 3.10.11], f (P) is a σ-locally
finite family of Y. Hence, the space Y has a σ-locally finite (strict) Pytkeev network.

Corollary 5.3. Each point-countable strict Pytkeev network is preserved by a countable-to-one closed mapping.

Proof. Let f : X → Y be a countable-to-one closed mapping, and P be a point-countable strict Pytkeev
network for the space X. By Theorem 5.1, the family { f (P) : P ∈ P} is a strict Pytkeev network for Y.
Because f is a countable-to-one mapping, { f (P) : P ∈ P} is a point-countable family in Y. Thus Y has a
point-countable strict Pytkeev network.

The following example shows that the condition “each f−1(y) is countable” in Corollary 5.3 can not be
replaced by “each f−1(y) is Lindelöf”.
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Example 5.4. Spaces with a point-countable strict Pytkeev network do not be preserved by closed mappings
with Lindelöf fibers.

Let I be the closed unit interval [0, 1] with the usual topology, and B be a Bernstein set in I [11, p. 339].
We denote by IB the space obtained from I by isolating the points of B. Let S1 = {0} ∪ {1/n : n ∈N}with the
usual topology. Put

X = IB × S1, A = IB × {0} and Y = X/A.

Then A is a closed subspace of X and the quotient mapping q : X → Y is a closed mapping. It was proved
that the space X is a regular Lindelöf space with a point-countable base and the space Y does not have any
point-countable cs∗-network [42, Theorem 2.4]. Obviously, X has a point-countable strict Pytkeev network,
and Y does not have any point-countable strict Pytkeev network.

It is known that spaces with a point-countable k-network do not be preserved by closed mappings [41,
Example 1], and spaces with a point-countable cs∗-network do not be preserved by perfect mappings [28,
Example 3.1.20(8)].

Theorem 5.5. Spaces with a point-countable Pytkeev network are preserved by closed mappings.

Proof. Let P be a point-countable Pytkeev network for a topological space X and f : X → Y be a closed
mapping. For each y ∈ Y, take a point xy ∈ f−1(y). Put Q = {xy : y ∈ Y}. Let Q = { f (P ∩ Q) : P ∈ P}. If a
point y ∈ f (P ∩Q) for some P ∈ P, then f−1(y) ∩ P ∩Q , ∅, i.e., xy ∈ P. Since P is point-countable in X, the
family Q is also point-countable in Y. Next, we will show that Q is a Pytkeev network for Y.

Let A be a subset of Y accumulating at a point y ∈ Y and O an open subset with y ∈ O ⊂ Y. Let
B = {xz : z ∈ A \ {y}}. By the proof of Theorem 5.1, there are a point x ∈ f−1(y) ∩ (B \ B) and a neighborhood
V of x such that f (V) ⊂ O. Since P is a Pytkeev network for X, there exists a set P ∈ P such that P ⊂ V and
P ∩ B is infinite. Thus f (P ∩Q) ⊂ f (P) ⊂ f (V) ⊂ O and f (P ∩ B) ∩A ⊂ f (P ∩Q) ∩A is infinite. It shows that
Q is a Pytkeev network for Y.

Corollary 5.6. ([27, Theorem 5]) k-spaces with a point-countable (quasi-)k-network are preserved by closed map-
pings.

Proof. Let f : X → Y be a closed mapping and the space X be a k-space with a point-countable (quasi-)k-
network. Since k-spaces are preserved by quotient mappings [11, Theorem 3.3.23], the space Y is a k-space.
By Lemma 2.3 and Theorem 5.5, the space Y has a point-countable Pytkeev network. It follows from
Theorem 3.1 that Y has a point-countable (quasi-)k-network.

Theorem 5.7. Each (strict) Pytkeev network is preserved by a finite-to-one pseudo-open mapping.

Proof. Let P be a (strict) Pytkeev network for a topological space X and f : X → Y be a finite-to-one
pseudo-open mapping. Take any set A ⊂ Y accumulating at a point y ∈ Y, i.e., y ∈ A \ {y}. Then we
have f−1(y)

⋂
f−1(A \ {y}) , ∅. Otherwise, we have f−1(y) ⊂ X \ f−1(A \ {y}). Because f is a pseudo-open

mapping,
y ∈ [ f (X \ f−1(A \ {y}))]◦ ⊂ Y \ A \ {y},

which is a contradiction. So there exists a point x ∈ f−1(y) ∩ f−1(A \ {y}). Given an open neighborhood
O ⊂ Y of y, there exists a neighborhood V of x such that f (V) ⊂ O. Since P is a (strict) Pytkeev network
for X, there exists a set P ∈ P such that (x ∈)P ⊂ V and P ∩ f−1(A \ {y}) is infinite. Since f is a finite-to-one
mapping, f (P) ∩ A is infinite and (y ∈) f (P) ⊂ O. It shows that the family { f (P) : P ∈ P} is a (strict) Pytkeev
network for Y.

Corollary 5.8. Spaces with a point-countable (strict) Pytkeev network are preserved by finite-to-one pseudo-open
mappings.

Theorem 5.9. Each cn-network is preserved by a pseudo-open mapping.
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Proof. Let f : X → Y be a pseudo-open mapping and the space X have a cn-network P. We prove that the
family f (P) = { f (P) : P ∈ P} is a cn-network for the space Y. For each y ∈ Y and each neighborhood U of
y, let W =

⋃
{ f (P) ∈ f (P) : y ∈ f (P) ⊂ U}. For each x ∈ f−1(y), let Vx =

⋃
{P ∈ P : x ∈ P ⊂ f−1(U)}. Clearly,

f (Vx) ⊂ W, and x ∈ [Vx]◦ because P is a cn-network for X. Then f−1(y) ⊂
⋃
{[Vx]◦ : x ∈ f−1(y)}. Since f is a

pseudo-open mapping,

y ∈
[

f
(⋃{

[Vx]◦ : x ∈ f−1(y)
})]◦
⊂

⋃{
f (Vx) : x ∈ f−1(y)

}
⊂W.

So W is a neighborhood of y. It shows that f (P) is a cn-network for Y.

Corollary 5.10. Spaces with a point-countable cn-network are preserved by countable-to-one pseudo-open mappings.

By Theorem 5.9 and the proof of Corollary 5.2, we have the following corollary.

Corollary 5.11. Spaces with a σ-locally finite cn-network are preserved by perfect mappings. Consequently, strict
σ-spaces are preserved by perfect mappings.

Example 5.12. Spaces with a point-countable cn-network (cs′-network) are not preserved by closed map-
pings.

Let Sω1 be the quotient space obtained by identifying all the limit points of the topological sum of
ω1 many non-trivial convergent sequences. Obviously, Sω1 is a closed image of a metrizable space. It
follows from [26, Remark 2.10(3)] that Sω1 has not any point-countable cs′-network. Thus, Sω1 has not any
point-countable cn-network. Since each metrizable space has a point-countable cn-network, spaces with a
point-countable cn-network (cs′-network) are not preserved by closed mappings.

Let P be a cover of a topological space X. The X is determined by the cover P (or has a weak topology with
respect to P) [21, p. 303], if U ⊂ X is open (closed) in X if and only if U ∩ P is relatively open (relatively
closed) in P for each P ∈ P. It is known that if the family P is a cover of X, then X is determined by P if and
only if the obvious mapping f :

⊕
P → X is quotient, where

⊕
denotes topological sum [21, Lemma 1.8].

Example 5.13. Spaces with a point-countable strict Pytkeev network (cn-network) are not preserved by
finite-to-one quotient mappings.

Let
X = I × S1, Y = I × (S1 \ {0}).

Define a topology for X as follows [21, Example 9.3]: Y is a Euclidean subspace of X and each element of a
neighborhood base of a point (t, 0) ∈ X has the form

{(t, 0)} ∪
(⋃
{V(t, k) : k ≥ n}

)
, n ∈N,

where V(t, k) is an open neighborhood of the point (t, 1/k) in the subspace I × {1/k}.
Let

M =
(⊕

{I × {1/n} : n ∈N}
)
⊕

(⊕
{{t} × S1 : t ∈ I}

)
.

Then M is a locally compact metrizable space, thus M has a point-countable strict Pytkeev network (cn-
network). Let f : M → X be the obvious mapping. Since X is determined by the point-finite cover
{I × {1/n} : n ∈N}

⋃
{{t} × S1 : t ∈ I}, f is a finite-to-one quotient mapping [21, Lemma 1.8].

Obviously, X is a separable regular space. Since I × {0} is an uncountable discrete closed subspace of
X, X is not a Lindelöf space. And since every separable meta-Lindelöf space is Lindelöf, X is not a meta-
Lindelöf space. By Corollary 4.3 (Theorem 4.1), X does not have a point-countable strict Pytkeev network
(cn-network).

The space X is a sequential space with a point-countable cs∗-network, because it is a finite-to-one quotient
image of a metrizable space [44, Lemma 2.2].
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Example 5.14. Spaces with a point-countable Pytkeev network are not preserved by countable-to-one open
mappings.

This example was constructed in [46, Example 1], which shows that the Pytkeev property is not preserved
by a countable-to-one open mapping. Since it was written in Chinese, we give the construction and proof
of the example.

Let X = {0} ∪N2. Denote the family of all functions from N into N by NN. Put V(n,m) = {(n, k) ∈
N2 : k ≥ m} for each n,m ∈ N. For every F ⊂ N and f ∈ NN, let H(F, f ) =

⋃
{V(n, f (n)) : n ∈ F}. Let p

be a free ultrafilter on N. Define a topology of X as follows: if x ∈ X \ {0}, {x} is an open set; if x = 0,
Ux = {{0} ∪H(F, f ) : F ∈ p, f ∈NN} as a neighborhood base of x. Let P = {V(n,m) : n,m ∈N}. Clearly, P is a
countable Pytkeev network at the point 0. Thus X has a countable Pytkeev network.

Let Y =N∪{p}where p ∈ βN\N, and it be endowed with the subspace topology of βN. Since the space
Y does not have a countable Pytkeev network at the point p [4, Example 1.11], Y does not have the strong
Pytkeev property, thus Y does not have a countable Pytkeev network. Define a mapping f : X → Y as
follows: f (0) = p and f ({(n, k) : k ∈ N}) = {n} for each n ∈ N. Clearly, f is a countable-to-one mapping. We
show that f is an open mapping. For each U ∈ τ(X), if 0 < U, then f (U) ⊂N, sinceN is discrete, f (U) ∈ τ(Y);
if 0 ∈ U, then there exist F = {ni : i ∈ N} ∈ p and f ∈ NN such that {0} ∪ H(F, f ) ⊂ U, so {p} ∪ F ⊂ f (U), we
have f (U) ∈ τ(Y). Then f is an open mapping.

Problem 5.15. Are spaces with a point-countable strict Pytkeev network preserved by perfect mappings.
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