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Shift Commutator Algebras and Multipliers

A. L. Barrenecheaa

aUNCPBA. FCExactas, Dpto. de Matemáticas, NUCOMPA. Argentina.

Abstract. We determine the precise structure of all multipliers on the commutator algebra associated to
the shift operator on a Hilbert space. The problem has its own interest by its connection with the theory of
Toeplitz and Laurent operators.

1. Preliminar

If U is a vector space L(U) will denote the class of linear endomorphisms of U. Further, if U is an
algebra letM (U) be the set of multipliers of U. Precisely, an element M ∈ L(U) is called a multiplier if
M(a)b = aM(b) for all a, b ∈ U. The notion of multiplier was introduced by S. Helgason in 1956 [5]. IfU is a
Banach algebra then any multiplier onU is bounded andM(U) is a closed subalgebra ofB(U) [6]. Our aim
in this paper is to determine the multipliers of the commutator of the algebra generated by the unilateral
or the bilateral shift on an underlying Hilbert space. Whence U will be Banach subalgebra of operators
or a C∗-algebra of operators respectively. In the first case, the elements ofU will be represented by (finite
or infinite) lower triangular (scalar or operator) matrices with constant diagonals, while the second case
(in infinite dimension) allows infinite matrices with constant diagonals. Thus, there is a close connection
with the theory of Toeplitz and Laurent operators which are of special interest to researches of Asymptotic
Linear Algebra and Functional Analysis [2].

As usual, if r ∈ N by Mr (C) we shall denote the set of r × r matrices over C endowed with the
Hilbert-Schmidt norm defined for

(
zi, j

)r

i, j=1
∈Mr (C) as

∥∥∥∥(zi, j

)r

i, j=1

∥∥∥∥
2
,

 r∑
i, j=1

∣∣∣zi, j

∣∣∣2
1/2

.

As a consequence of the Cauchy-Schwartz inequalityMr (C) is a Banach algebra. If n ∈ N and z ∈Mr (C)n

let ‖z‖1 ,
∑n

k=1 ‖zk‖2. Then
(
Mr (C)n , ‖◦‖1

)
becomes an nr2-dimensional Banach space on C. Indeed,Mr (C)n

is also an associative Banach algebra if for z,w ∈Mr (C)n we define z · w ∈Mr (C)n as

z · w , (z1w1, z1w2 + z2w1, ..., z1wn + ... + znw1) .
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So, Mr (C)n is unitary and it is abelian if and only if r = 1. If L ∈ L
(
Mr (C)n) we will write ‖L‖ ,

sup
‖z‖1=1 ‖L(z)‖1 . Certainly,

(
L

(
Mr (C)n) , ‖◦‖) is a Banach space. More generally, let H be a separable

complex Hilbert space. Then, let the unilateral shift S+
∈ B(⊕∞1 H) and the bilateral shift S ∈ B

(
⊕

+∞
−∞H

)
be

given as

S+( f1, f2, ...) , (0, f1, f2, ...) i f ( f1, f2, ...) ∈ ⊕∞1 H ,
S(

{
fm

}
m∈Z) =

{
fm−1

}
m∈Z i f

{
fm

}
m∈Z ∈ ⊕

+∞
−∞
H .

Clearly, ⊕∞1 H can be identified with a Hilbert subspace of ⊕+∞
−∞H . If i, j ∈ Z let πi : ⊕+∞

−∞H →H be the
natural projection of ⊕+∞

−∞H onto H and and let ι j : H ↪→ ⊕+∞
−∞H be the natural injection of H into ⊕+∞

−∞
H .

By {S+
}
c and {S}c we will denote the commutators of {S+

} and {S} respectively.
The following is a well known consequence of the Putnam-Fuglede theorem: If µ is a compactly

supported measure onC then
{
Nµ

}c
≈

{
Mφ : φ ∈ L∞

(
µ
)}
,where Nµ,Mφ ∈ B

(
L2 (

µ
))

are given as Nµ
(

f
)

= z f ,
Mφ = φ f for f ∈ L2 (

µ
)
, φ ∈ L∞

(
µ
)

(cf. [3], Corollary 6.9; [4], [8]). Precisely, operators like Nµ behaves
similarly to shift ones and they constitute a central tool to the multiplicity theory of normal operators.
Particularly, our interest in multipliers was motivated in previous studies concerning about the structure
of derivations on nonamenable nuclear Banach algebras, X-Hadamard and B-derivations [1], [7].

The article is organized in two sections: Section 2 in the context of finite dimensionality, and Section 3
for the infinite dimensional case. ThenM

(
{S+
}
c) is characterized in the Corollary 2.7 of the Section 2 and

in Prop. 3.1 of the Section 3, while the multipliers on {S}c will be described in Corollary 3.7.

2. Multipliers on finite matrix algebras

Proposition 2.1. Let M ∈ L
(
Mr (C)n). Then M ∈ M

(
Mr (C)n) if and only if there is a unique a ∈ Z

[
Mr (C)n] so

that M(z) = a · z.

Proof. If M ∈ M
(
Mr (C)n) we put a , M (e), where e = (1r×r, 0, ..., 0) and 1r×r is the unit matrix of Mr (C) .

Then e is the unit ofMr (C)n and if z ∈Mr (C)n we see that

a · z = M(e) · z = e ·M(z) = M(z) = M(z) · e = z ·M(e) = z · a,

i.e. a ∈ Z
[
Mr (C)n] . By the associativity ofMr (C)n it is immediate that the condition is also sufficient.

Remark 2.2. It is readily seen that

Z
[
Mr (C)n] = Z [Mr (C)]n = (C · 1r×r)

n .

Corollary 2.3. If M ∈ M
(
Mr (C)n) there are unique a1, ..., an

∈ C so that M(e) =
(
a11r×r, ..., an1r×r

)
and

Mυ (z) =

υ∑
j=1

aυ− j+1z j, 1 ≤ υ ≤ n, z ∈Mr (C)n .

Corollary 2.4. Let m : Cn
→M

(
Mr (C)n) so that

m(a1, ..., an) (z) ,
(
a11r×r, ..., an1r×r

)
· z, z ∈Mr (C)n .

Then m defines an isomorfism of Banach algebras and ‖m(a)‖ = r1/2
‖a‖1 for all a ∈ Cn.

Proposition 2.5. LetH = ⊕n
1C

r, and let S+
∈ L (H) be the shift operator

S+( f1, ..., fn) =
(
0, f1, ..., fn−1

)
, ( f1, ..., fn) ∈ H .
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If T ∈ L(H), T commutates with S+ if and only if there exists a matrix∥∥∥Ti, j

∥∥∥
1≤i, j≤n ∈Mn (L (Cr))

so that

Ti, j =

{
0 i f 1 ≤ i < j ≤ n,

Ti+1, j+1 i f 1 ≤ j ≤ i < n

and given f ∈ H is

T
(

f
)

=
(
T1,1 f1,T2,1 f1 + T1,1 f2, ...,Tn,1 f1 + Tn−1,1 f2 + ... + T1,1 fn

)
.

Proposition 2.6. Let λ :Mr (C)n
→ {S+

}
c be given as

λ (z) ( f ) ,
(
z1 f1, z2 f1 + z1 f2, ..., zn f1 + zn−1 f2 + ... + z1 fn

)
,

where z ∈Mr (C)n and f ∈ H . Then λ is an isomorphism of algebras.

Corollary 2.7. With the notation of Prop. 2.5, any multiplier µ ∈ M
(
{S+
}
c) is uniquely determined by a set of

scalars a1, ..., an
∈ C so that if T ∈ {S+

}
c, 1 ≤ k ≤ n and f ∈ H then

µ (T)k
(

f
)

=

k∑
j=1

j∑
i=1

a j−i+1Ti,1( fk− j+1). (1)

3. Multipliers on infinite matrix algebras

Proposition 3.1. Any multiplier µ ∈ M
(
{S+
}
c) is uniquely determined by a sequence of scalars a= {an

}n∈N so that

sup
f∈[⊕∞1 H]1


∞∑

k=1

∥∥∥∥∥∥∥∥
k∑

j=1

ak− j+1 f j

∥∥∥∥∥∥∥∥
2

1/2

< +∞ (2)

and the following equalities

µ (T)k
(

f
)

=

k∑
j=1

ak− j+1
j∑

i=1

T j−i+1,1( fi) =

k∑
j=1

Tk− j+1,1

 j∑
i=1

a j−i+1 fi

 (3)

hold if T ∈ {S+
}
c, k ∈N and f ∈ ⊕∞1 H .

Proof. It is straightforward to see that any T ∈ B
(
⊕
∞

1 H
)

is performed by the infinite matrix
∥∥∥Ti, j

∥∥∥
i, j∈N with

coefficients in B(H), where

Ti, j , πi |⊕∞1 H
◦T ◦ ι j |⊕

∞

1 H ,

and T = s-
∑
∞

i=1
∑
∞

j=1 ιi |
⊕
∞

1 H ◦Ti, j ◦ π j |⊕∞1 H
(cf. [3], §6, p. 276). Moreover, if T ∈ {S+

}
c then Ti, j = Ti+1, j+1 if

1 ≤ j ≤ i and Ti, j = 0 if j > i ≥ 1. Hence, if µ ∈ M
(
{S+
}
c) then µ

(
Id⊕∞1 H

)
∈ Z

(
{S+
}
c) and it is easy to deduce

the existence of a sequence of scalars a = {an
}
∞

n=1 so that µ
(
Id⊕∞1 H

)
j,1

= a jIdH if j ∈ N. Now, given T ∈ {S+
}
c,



A. L. Barrenechea / Filomat 32:17 (2018), 5837–5843 5840

k ∈N and f ∈ ⊕∞1 H we write

µ (T)k
(

f
)

=
(
Id⊕∞1 H ◦ µ (T)

)
k

(
f
)

=
(
µ
(
Id⊕∞1 H

)
◦ T

)
k

(
f
)

= µ
(
Id⊕∞1 H

)
k

(
T f

)
=

k∑
j=1

µ
(
Id⊕∞1 H

)
k− j+1,1

(
T f

)
j

=

k∑
j=1

ak− j+1
j∑

i=1

T j−i+1,1( fi).

The second equality of (3) is always true, and it follows similarly because

µ (T) = µ (T) ◦ Id⊕∞1 H = T ◦ µ
(
Id⊕∞1 H

)
.

Indeed,

∥∥∥µ∥∥∥ =
∥∥∥∥µ (

Id⊕∞1 H
)∥∥∥∥ = sup

f∈[⊕∞1 H]1


∞∑

k=1

∥∥∥∥∥∥∥∥
k∑

j=1

ak− j+1 f j

∥∥∥∥∥∥∥∥
2

1/2

< +∞.

On the other hand, let a= {an
}n∈N be a sequence of scalars so that (2) holds. Hence, if f ∈ ⊕∞1 H then

µa
(

f
)
,

{∑k
j=1 ak− j+1 f j

}
k∈N

is a well defined element of ⊕∞1 H and µa becomes a continuous linear operator
on ⊕∞1 H . Further, by (3) we deduce that µa ∈ Z

(
{S+
}
c). Therefore, if we set µ (T) = µa ◦ T for T ∈ {S+

} then
µ ∈ M

(
{S+
}
c) and our claim follows.

Remark 3.2. If a multiplier µ on {S+
}
c is implemented by a sequence a it is easy to see that a ∈ l2 (N) and

‖a‖2 ≤
∥∥∥µ∥∥∥ . In general, this inequality is strict. For instance, letH = C and consider a =

{
2−1/2, 2−1/2, 0, 0, ...

}
. If µa

is the multiplier performed by a on the subalgebra {S+
}
c of B

(
l2 (N)

)
then

∥∥∥µa

∥∥∥ =
∥∥∥∥µa

(
Idl2(N)

)∥∥∥∥ = sup
f∈[l2(N)]1

1 + Re
∞∑

n=1

fn fn+1


1/2

.

Consequently, taking f =
{
2−n/2

}
n≥1

we conclude that
∥∥∥µa

∥∥∥ > ‖a‖2 = 1.

Lemma 3.3. Let A ∈ B
(
⊕

+∞
−∞H

)
. Then A ∈ {S}c if and only if there is a unique bounded sequence {Am}m∈Z inB (H)

so that A f =
{∑

m∈Z Aq−m fm
}

q∈Z
and the extended number

η , η ({Am}m∈Z) , sup
f∈[⊕+∞

−∞
H]1

∑
q∈Z

∥∥∥∥∥∥∥∑m∈ZAq−m fm

∥∥∥∥∥∥∥
2

1/2

(4)

is finite.

Proof. It is readily seen that Id⊕+∞
−∞
H = s −

∑
m∈Z ιmπm. So, if A ∈ B

(
⊕

+∞
−∞
H

)
then

A = s −
∑
m∈Z

Aιmπm = s −
∑
m∈Z

s −
∑
n∈Z

ιnπnAιmπm. (5)
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Hence, if An,m , πnAιm for n,m ∈ Z then An,m ∈ B(H) and
∥∥∥An,m

∥∥∥ ≤ ‖A‖. If q ∈ Z we see that πqA =
s −

∑
m∈Z Aq,mπm. Now, let us suppose that A ∈ {S}c. Then if f ∈ ⊕+∞

−∞H we obtain∑
m∈Z

Aq,m
(

fm−1
)

= πqAS( f ) = πqSA( f ) = πq−1A( f ) =
∑
m∈Z

Aq−1,m−1 f (m−1) .

It is immediate that Aq,m = Aq−1,m−1 for all m, q ∈ Z and we can write Aq,m , Aq−m. In particular, η = ‖A‖ < +∞

and the condition is necessary. Now, for q ∈ Z and f ∈ H (Z) let Aq( f ) ,
∑

m∈Z Aq−m fm. By (4) we have∥∥∥Aq( f )
∥∥∥ ≤ η ∥∥∥ f

∥∥∥ and so Aq extends to an element Aq
∈ B

(
⊕

+∞
−∞H ;H

)
. If we set A( f ) ,

{
Aq( f )

}
q∈Z by (4) we

see that A ∈ B( ⊕+∞
−∞
H). Finally, if f ∈ ⊕+∞

−∞
H and q ∈ Z then

πqAS( f ) =
∑
m∈Z

Aq−m( fm−1) =
∑
m∈Z

A(q−1)−m( fm) = Aq−1( f ) = πqSA( f ),

i.e. A ∈ {S}c .

Corollary 3.4. Let T (H) be the set of bounded sequences
{
Aq

}
q∈Z

of bounded linear operators on H so that the

extended number η
({

Aq

}
q∈Z

)
in (4) is finite. Then

(
T (H) , η

)
has a natural norm space structure. Moreover, it is a

Banach algebra isometrically isomorphic with {S}c.

Proof. Clearly
(
T (H) , η

)
is a norm space. As in Prop. 2.6, we consider the following assignment induced

by the Lemma 3.3:

Λ : T (H)→ {S}c , Λ
({

Aq

}
q∈Z

)
, A.

In particular, Λ
({
δm,0IdH

}
m∈Z

)
= IdH and Λ

({
δm,1IdH

}
m∈Z

)
= S. Indeed, η

(
Λ

({
Aq

}
q∈Z

))
= ‖A‖, i.e. Λ is an

isometry. If α, β ∈ T (H) we set

α · β , Λ−1 (
Λ (α) ◦Λ

(
β
))
.

Therefore, if α =
{
Aq

}
q∈Z

and β = {Br}r∈Z then

α · β =

s −
∑
m∈Z

Aq−mBm


q∈Z

.

Remark 3.5. Let T : |z| = 1 be the complex unitary circumference endowed with the normalized Lebesgue measure.
If a ∈ L1 (T) and m ∈ Z the m-th Fourier coefficient of a is given as

â (m) =
1

2πi

∫
T

a(z)zm dz
z
.

Let Mp be the collection of all a ∈ L1(T) so that â ∗ z ∈ lp (Z) whenever z ∈ C(Z) and supz∈C(Z):‖z‖=1

∥∥∥̂a ∗ z
∥∥∥

p < +∞,

where â ∗ z =
{∑

m∈Z â(q −m)zm
}
q∈Z . Given a ∈ Mp the operator C(Z)

→ lp (Z), z → a ∗ z extends to an operator
L(a) ∈ B (lp (C)) . Usually, L(a) is known as the Laurent operator generated by a. On the other hand, given A ∈
B (lp (C)) there is an a ∈Mp so that A = L(a) and â(n−m) = An (em) for all n,m ∈ Z (cf. [2], Prop. 2.4). Indeed, the
following generalization of a well known Toeplitz theorem holds: Let 1 ≤ p < +∞ and let A ∈ B (Lp (T)) so that there
is a sequence of complex numbers {am}m∈Z so that 〈Azm, zn

〉 = an−m. Thus there is an a ∈ L∞ (T) so that A f = a f for
all f ∈ Lp (T), {am}m∈Z becomes to be the Fourier coefficient sequence of a and ‖A‖ = ‖a‖∞ (cf. [9] and Prop. 2.2 of
[2]). As besides there is an isometric isomorphism l2 (Z) ≈ L2 (T) then M2 = L∞ (T) .



A. L. Barrenechea / Filomat 32:17 (2018), 5837–5843 5842

Proposition 3.6. If A ∈ B
(
⊕

+∞
−∞H

)
, A ∈ Z ({S}c) if and only if there exists a ∈ L∞ (T) so that{̂

a (m) IdH
}
m∈Z ∈ T (H) (6)

and

A f =

∑
m∈Z

â(q −m) fm


q∈Z

if f ∈ ⊕+∞
−∞H . (7)

Proof. (⇒) First, Λ−1(A) ⊆ Z (B(H)). For, if b ∈ B(H) then

η
({
δm,0b

}
m∈Z

)
≤ ‖b‖ < +∞.

So, B , Λ
({
δm,0b

}
m∈Z

)
is well defined in {S}c . If f ∈ ⊕+∞

−∞
H and q ∈ Zwe have∑

m∈Z

Am

(
b
(

fq−m

))
= πq(AB f ) = πq

(
BA f

)
=

∑
m∈Z

b(Am fq−m).

Thus Am ◦ b = b ◦ Am for all m ∈ Z and the claim holds. We can write Λ−1(A) = {amIdH }m∈Z for some
unique complex sequence {am}m∈Z. Now, let f0 ∈ [H]1 and z ∈ l2 (Z) . Then

{
zm f0

}
m∈Z ∈ ⊕

+∞
−∞H and∑

q∈Z

∣∣∣∣∣∣∣∑m∈Z aq−mzm

∣∣∣∣∣∣∣
2

1/2

=
∥∥∥∥A

({
zm f0

}
m∈Z

)∥∥∥∥
≤ ‖A‖

∥∥∥{zm f0
}
m∈Z

∥∥∥
= ‖A‖ ‖z‖2 ,

i.e. {am}m∈Z induces an element of B
(
l2 (Z)

)
. The claim now follows by Remark 3.5.

(⇐) Let a ∈ M2 be given so that (6) holds and let A ∈ B
(
⊕

+∞
−∞
H

)
be defined by (7). If B ∈ {S}c and

Λ−1 (B) = {Bm}m∈Z , given f ∈ H (Z) we set F ,
{
m ∈ Z : fm , 0

}
. Thus F is a finite set and given q ∈ Z

we have

πq
(
AB f

)
=

∑
p∈Z

â
(
q − p

)∑
m∈F

Bp−m( fm)

=
∑
m∈F

∑
p∈Z

â
(
q − p

)
Bp−m

 ( fm
)

=
∑
m∈F

∑
r∈Z

â (r −m) Bq−r

 ( fm
)

=
∑
r∈Z

Bq−r

∑
m∈F

â (r −m) fm

= πq(BA f ).

Thus AB = BA onH (Z). SinceH (Z) is dense in⊕+∞
−∞H and A and B are bounded operators we conclude

that AB = BA, i.e. A ∈ Z ({S}c) .

Corollary 3.7. If µ ∈ M ({S}c) there is a ∈ L∞ (T) so that (6) holds and

(
Λ−1
◦ µ ◦Λ

)
({Am}m∈Z) =

s −
∑
q∈Z

â(m − q)Aq


m∈Z

if {Am}m∈Z ∈ T (H) .



A. L. Barrenechea / Filomat 32:17 (2018), 5837–5843 5843

References

[1] A. L. Barrenechea, Peña, C. C.: On the structure of derivations on certain nonamenable nuclear Banach algebras. New York J. of
Maths., Vol. 15 (2009),199-210. Zbl pre05561324.
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