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Abstract. In this paper, we study warped product semi-slant submanifold of type M = Nr Xy Ny with
slant fiber, isometrically immersed in a nearly Trans-Sasakian manifold by finding necessary and sufficient
conditions in terms of Weingarten map. A characterization theorem is proved as main result.

1. Introduction

The study on warped product submanifolds got momentum after B.-Y. Chen’s papers on CR-warped
product [13, 14]. A contact CR-warped product submanifold is the Riemannian product of invariant and
anti-invariant submanifold. It was proved in [21] that there does not exist any contact CR-warped product
of type M = N, Xy Nr, of nearly Trans-Sasakian manifolds in both cases when structure field tangent to
either base manifold or fiber. Also, it was also found in the same paper, the non-trivial contact CR-warped
product of the form M = Nt X; N, in a nearly Trans-Sasakian manifold such that Nt invariant tangent
to Reeb vector field. Similarly, the Riemannian product of invariant and slant submanifolds with non
constant warping function is called warped product semi-slant submanifold. The non-existence of the
warped product semi-slant submanifold M = Ny X; N, isometrically immersed in a nearly Trans-Sasakian
manifold with structure vector field is tangent Ny and Nt has discussed in [22]. On the other hand, the
existence case of the non-trivial warped product semi-slant submanifold of type M = Nt X; Ng, in a nearly
Trans-Sasakian manifold has been proved in [22] with N7 is an invariant submanifold which is tangent to
the Reeb vector field and constructed a geometric inequality for the extrinsic invariant in terms of warping
function. Therefore, it is natural to see that the warped product semi-slant submanifold is a generalized
version of contact CR-warped product submanifold in case of a nearly Trans-Sasakian manifold. Similar
notions have been studied in the series of articles [1-8, 17, 21, 22, 24-29]. In this paper, we prove a
characterization theorem involving the shape operator under which a semi-slant submanifold of a nearly
Trans-Sasakian manifold reduces to a warped product.
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2. Preliminaries

An almost contact manifold is an odd-dimensional manifold M which carries a field ¢ of endomorphisms
of tangent space, vector field &, called characteristic or Reeb vector field and a 1-form 1 satisfying

P’ =-1+n®& nE) =1, (2.1)

where [ : TM — TM is the identity mapping. Now from definition it follows that p 0 & = 0and o ¢ =0,
then the (1, 1) tensor field ¢ has constant rank 27 (cf. [9]). An almost contact manifold (M, ¢, 7, &) is said to
be normal when the tensor field N, = [¢, ¢] + 2dn @ & vanishes identically, where [¢, ¢] is the Nijenhuis of ¢.
An almost contact metric structure (¢, &, ) is said to be a normal in the form of almost complex structure if
almost complex structure J on a product manifold M X R given by

r8)- - e

where f is a smooth function on M X R, has no torsion, i.e., ] is integrable. Every almost contact manifold
(M, ¢, 1, &) admits a Riemannian metric g which is satisfying

gl V) = g(U, V) = n(X)n(Y), n(U) =gl <), (2.2)

for all U, V € I'(TM). This metric g is called compatible metric and the manifold M endowed with the
structure (¢, 7, &, g) is called an almost contact metric manifold. As an immediate consequence of (2.1), we
have g(pU, V) = —g(U, V). Hence, the second fundamental 2-form @ is defined by ®(U, V) = g(U, pV).
Almost contact manifold such that both 7 and @ are closed is called almost cosymplectic manifold and those for
which dn = ® are called contact metric manifolds. Finally, a normal almost cosymplectic manifold is called
cosymplectic manifold and a normal contact manifold is called Sasakian manifold. In term of the covariant
derivative of ¢ the cosymplectic and the Sasakian manifolds conditions can be expressed respectively by

(Vup)V =0, and (Vup)V = g(U, V)< - n(V)U,

for all U, V € I(TM) (see [9]). It should be noted that both in cosymplectic and Sasakian manifolds ¢ is killing
vector field. On the other hand, the Sasakian and the cosymplectic manifolds represent the two external cases

of the larger class of quasi-Sasakian manifolds. An almost contact metric structure (¢, 1, £) is said to be nearly
Trans-Sasakian manifold (cf. [19]) i.e., if

(Tug)V + (V@ = a(20(U V)E = WDV = (V) ) - B(n(V)pU + (V) 3)

for any U, V tangent to M, where V is the Riemannian connection metric g on M. If we replace U = &, V = &
in (2.3), we find that (V:¢)& = 0 which is implies that ¢V:& = 0. Now applying ¢ and using (2.1), we get,
V& = 0. Since from Gauss formula finally, we get V:& = 0 and h(&, &) = 0. For more classification (see [? ? ]).

Note2.1. If « = Oand, B = 0 in (2.3), then nearly Trans-Sasakian becomes nearly cosymplectic manifold, if
a =1and, B = 0in (2.3), thus its called nearly Sasakian manifold. Let « = 0 and, p = 1 in (2.3), then nearly
Trans-Sasakian turn into nearly Kenmotsu manifold. Similarly nearly a-Sasakian manifold and nearly f—Kenmotsu
manifold can be defined from the nearly Trans-Sasakian manifold by substituting f = 0 and a = 0in (2.3), respectively.

Now let M be a submanifold of M, then we will denote by V is the induced Riemannian connection
on M and g is the Riemannian metric on M as well as the metric induced on M. Let TM and T*M be the
Lie algebra of vector fields tangent to M and normal to M, respectively and V* the induced connection on
T+M. Denote by ¥ (M) the algebra of smooth functions on M and by I'(TM) the ¥ (M)-module of smooth
sections of TM over M. Then the Gauss and Weingarten formulas are given by

VuV = VyV + kU, V) (2.4)
VuN = —AyU + VN, 2.5)
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for each U, V € I(TM) and N € I'(T*M), where h and Ay are the second fundamental form and the shape
operator (corresponding to the normal vector field N) respectively for the immersion of M into M. They are
related as:

Now, for any U € I'(TM), we defined as:
U =TU+FU, 27)

where TU and FU are the tangential and normal components of U, respectively. If M is invariant and
anti-invariant, then FU and TU are identically zero, respectively. Similarly for any N € I'(T*M), we have

@N = tN + fN, (2.8)

where tN (resp. fN) is the tangential (resp. normal) components of pN. From (2.2) and (2.7), it is
easy to observe that for each U,V € I'(TM) g(TU, V) = —g(U, TV). Further, the covariant derivative of the
endomorphism ¢ is defined as

(Vup)V = VueV — Vv, YU,V € T(TM). (2.9)

7

Proposition 2.1. On a nearly Trans-Sasakian manifold, the following condition is satisfied

g(Vvé, U) + g(Vug, V) = 2g(eX, oY),
for any vector fields U, V tangent to M, where M is a nearly Trans-Sasakian manifold
Proof. Setting U = & in (2.3), then we find

(Vep)V + (Vvp)e = a{29(E, V)E =V = n(V)E} - poV.
Taking the inner product with @U in the above equation we get

9((Vep)V,pU) = =g(Vvp)E, oU) = ag(V,pU) = Bg(pV, pU). (2.10)
Interchanging U and V in the above equation, we derive

g(Vep)U V) = =g(Vup)E, @V) = ag(U, @V) = Bg(eV, pU). (211)
Adding equation (2.10) and (2.11), we find

g((Vep)V, o) + g(Vep) V) = =g(Vvp)E, oU) = 9(Vup)E, @V) = 2g(pV, pU)-

As left hand side of the above equation should be zero from the fact that Vs¢ = 0, for almost contact metric
manifold, hence

—9(Vv@)E, oU) = 9(Vup), V) = 2890V, pU).
The proof follows from the above equations and this complete the proof of the Proposition. [
We denote the tangential and normal parts of (Vy¢)V by PV and Q;V such that

(vu(p)v = PuV + QuV
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Then in a nearly Trans-Sasakian manifold, we have

PuV + Pyl =af2g(U, V)E — n(U)V — n(V)U} — B{n(V)TU + n(U)TV}, (2.12)
QuV +QyU = - Bin(V)EU + n(U)FV}, (2.13)

for any U, V are tangent to M. It is straightforward to verify the following properties of  and Q,

(@) PusvW = PuW + Py W,

(i) QusvW = QuIW + Qv W,
(iil) Pu(W + Z) = PuW + PuZ,
(i) QuW + Z) = QuW + Qi Z, (2.14)
(@) gPuV, W) = —g(V,PulW),

(i) 9(QuV,N) = —g(V,PuN),

(id) PugV + QuepV = ~pPuV + QuV).

Next we will give the definition of slant submanifold as follows:

Definition 2.1. [11] For each non zero vector U tangent to M at p, such that U is not proportional to &y, we denote
by 0 < O(U) < 7t/2, the angle between @U and T,M is called the Wirtinger angle. If the angle O(U) is constant for
allU € TpM— < & > and p € M. Then M is said to be a slant submanifold and the angle O is called slant angle of M.
Obviously if 6 = 0, M is invariant and if 0 = 1/2, M is anti-invariant submanifold. A slant submanifold is said to
be proper slant if it is neither invariant nor anti-invariant.

In a contact metric manifold, J. L Cabrerizo (cf. [11]) obtained the following theorem.

Theorem 2.1. Let M be a submanifold of an almost contact metric manifold M such that & € TM. Then M is slant
if and only if there exists a constant A € [0, 1] such that

T = M-I+ 1n®&). (2.15)
Furthermore, in such a case, if O is slant angle, then it satisfies that A = cos? 6.

Hence, for a slant submanifold M of an almost contact metric manifold M, the following relations are
consequences of the above theorem.

g(TX, TY) = cos® 0{g(X, Y) — n(X)n(Y)}. (2.16)
g(FX, FY) = sin® 0{g(X, Y) = n(X)n(Y)} (2.17)

for any X,Y € I'(TM). Another characterization of consequence of the Theorem 2.1 is easily derived as
follows:

Theorem 2.2. Let M be a slant submanifold of an almost contact metric manifold M such that & € TM. Then
(a) tFX = sin®0(-X + n(X)¢&), and (b) fFX = —FTX, (2.18)

for any X € T(TM).

3. Warped Product Semi-Slant Submanifolds

A natural generalization of CR-submanifolds of almost Hermitian manifolds in terms of slant distribu-
tion was described by N. Papaghiuc (cf. [23]). These submanifolds are known as semi-slant submanifolds.
The semi-slant submanifolds of almost contact metric manifolds were defined and studied by Cabererizo.
They defined these submanfolds as:
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Definition 3.1. [12] A Riemannian submanifold M of an almost contact manifold M is said to be a semi-slant
submanifold if there exist two orthogonal distributions O and D° such that

(i) TM = D ® D & (&), where < & > is 1-dimensional distribution spanned by &.
(ii) D is invariant distribution under ¢ i.e., D C D.
(iii) DY is slant distribution with slant angle 6 # 0, %.

If we denote the dimension of D; by d; for i = 1,2, then it is clear that contact CR-submanifolds and
slant submanifolds are semi-slant submanifolds with 6 = ©/2 and d; = 0, respectively. It is called proper
semi-slant if slant angle is different from 0 and /2. Moreover, if p is an invariant subspace under ¢ of
normal bundle T+M, then in case of semi-slant submanifold, the normal bundle T*M can be decomposed
as T*M = FDY @ . A semi-slant submanifold is said to be a mixed totally geodesic if (X, Z) = 0, for any
X e (DY and Z € T(D).

Let f be a positive differentiable function on N; of two Riemannian manifolds N; and N, endowed
with two Riemannian metrics g1 and g, respectively. Then warped product M = Ny X¢ N> is the manifold
N1 x N equipped with the Riemannian metric g = g1 + f2¢>. The function f is called warping function of
the warped product. If for any X, Y € I'(TN;) and Z, W € I'(T'N), then

VzX = VxZ = (XIn f)Z, (3.1)

where V denote the Levi-Civitas connection on M. On the other hand, V In f is the gradient of In f is defined
asg(VIn f, X) = XIn f. A warped product manifold M = Ni XN is said to be trivial if the warping function
f is constant.

There are two types of warped products between proper slant and invariant submanifolds. Now we
study warped product semi-slant submanifolds and its characterization of type of M = Nt Xy Ng. For first
case, we recall the following result which was obtained by Mustafa, et.al (cf. [22]) for warped product
semi-slant submanifolds of nearly Trans-Sasakian manifolds as:

Theorem 3.1. [22] There do not exist warped product semi-slant submanifolds M = Ng Xy Nt in a nearly Trans-
Sasakian manifold M, where Ng and Nt are proper slant and invariant submanifolds of M, respectively.

First, we give the following definition which based on the results S. Hiepk[20].

Definition 3.2. Assume that M be a semi-slant submanifold of a nearly-Trans Sasakian manifold M, then we say
that M is a locally warped product manifold semi-slant submanifold of M if D defines a totally geodesic foliation on
M and DY defines a spherical foliation on M, that is each leaf of D is totally umbilical with parallel mean curvature
vector field in M.

Now we give following results for later use given in (cf. [22]) for warped product semi-slant subman-
ifold of nearly-Trans Sasakian manifolds as:

Lemma 3.1. [22] Assume that M = N1 X¢Ng be a warped product semi-slant submanifold of a nearly Trans-Sasakian
manifold M. Then

Eln f =p, (3.2)

g(h(X, Y),FZ) =0, (3.3)
g(h(Z,X),FZ) = - («pXA) + an(X))IIZIIQ, (3.4)
9(h(X, 2), FTZ) =§ cos? 9(<X Inf) - ﬁn(X))IIZIIZ, (35)

forany Z € I'(TNg) and X,Y € T(TNr).
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Following relations are the particular case, of above lemma. By interchanging X by ¢X in (3.5), we find

1
g(h(pX, 2),FTZ) = 3 cos’ 6(pX In f)lIZI, (3.6)
Now we prove our main result

Theorem 3.2. Let a proper semi-slant submanifold M of nearly Trans-Sasakian manifold M such that the normal
component QxU of (Vxp)U lies in ¢p—invariant normal subbundle of M. Then M is locally a non-trivial warped
product submanifold of type M = Nt X Ng if and only if the following condition is satisfied

AprzX — ApzX = —%(z +sin? 0)(XA)Z + B(X)(1 - % cos? 0)Z, (3.7)

forany U € T(TM), X € T(D & &) and Z € T(DY). Moreover, for a differentiable function A on M such that ZA = 0,
for any Z € T(DO).

Proof. Assume that M = Nt X; N be a non-trivial warped product semi-slant submanifold of a nearly
Trans-Sasakian manifold M such that Ny and Nr are proper slant and ¢—invariant submanifolds of M,
respectively. Thus from (3.3) and (2.6), we get g(ArzX,Y) = 0, for any X, Y € I'(TNt) and Z € I'(TNp). Since,
Nr is an invariant submanifold, then rearranging X by ¢X, we find that g(Arz¢X,Y) = 0, which indicates
that the components of linear operator Arz@X are not lying in TNr. Similarly, rearranging Z by TZ in (3.3)
and from (2.6), it is easily see that g(ArrzX,Y) = 0, which again shows that ArzX has no components in
TNr. Hence, this means that Arz¢pX — ArrzX lies in TNy. Therefore, from the Lemmas 3.2-(3.5), we have

g(W(X,Z),FTZ) = % cos? O(X1n f)||Z|* - % cos? OBn(X)||1Z|1>. (3.8)
On the other hand, replacing X by ¢X in the Eqs (3.3) and using (2.1)(i), we derive

g(h(Z, 9X),FZ) = (XIn HIIZI? = n(X)(E n HIZIP + an(eX)NIZIP.
Since, from (3.2) and the fact that n(¢X) = g(¢X, &) = 0, we obtain

g(h(Z, X),FZ) = (XIn HIZI? - pn(X)IIZIP, (3.9)
for any X € I'(TNr) and Z € I'(TNg). We get the following relation by follows (3.8), (3.9) and (2.6) as:

Ar29 X~ Arez,2) = 1= 3 cos?O)(Xin AIZIF + 05 cos? 0 - 1)z, 310)

Thus ArzpX — ArrzX lies in TNy and from (3.10), we get the required result (3.7). Hence, the first part is
proved completely.

Conwversely Let M be a semi-slant submanifold of nearly Trans-Sasakian manifold with the condition
(3.7) holds. For any X, Y € (D @ &) and Z € (DY), we obtain

9(VxY, Z) = ggVxY,9Z) + 1VxIN(@) = g(VxpY, 92) = 9((Vx)Y, ¢ Z).

From the structure Egs (2.3) and from the property of Riemannian connection, one obtains
9(VxY,Z) = —9(9Y, Vx9Z) - g(PxY, TZ) + 9(QxY, FZ)

Taking the help of Eqgs (2.8) and the property of covariant derivative of ¢, we find
g(VxY,Z) = g(pVxTZ,Y) — g(VxFZ, oY) + g(Y, PxTZ) — 9(QxY, FZ).
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Using (2.4), (2.5) and (2.12), we derive
9(VxY, Z) =g(VxT?Z,Y) + g(VxFTZ,Y) - g(Vx9)TZ,Y)
+ 9(FZ WX, 9Y)) + g, PxTZ) - g(QxY, FZ).
Following the Theorem 2.1 and (2.5), it is easy to see that
sin? 09(VxY, Z) = —g(ArrzX — ArzpX, Y) — g(PxTZ,Y) — g(Qx Y, FZ) + g(PxTZ,Y).

Therefore, from the hypothesis of the Theorem 3.2, we know that QxY lies in u and from the Eqs (3.7), we
get

sin? 0g(VxY, Z) = %(2 + sin? 6)(X/\)g(Z, Y) + ﬁn(X)(% cos®> 6 — 1)g(Z, Y),

which implies that
sin? 0g(VxY, Z) = 0. (3.11)

But M is a proper semi-slant submanifold, i.e, sin?6 # 0. From (3.11) we know that g(VxY,Z) = 0, this
means that VxY e I(D® &), forevery X, Y € (D@ E). Therefore, D@ E is integrable and its leaves are totally
geodesic in M. Moreover, for any Z, W € [(D?) and X € T(D & &), we have

9(Z, W1, X) = g(pVwZ, ¢X) + n(VwZ)n(X) — g(eVz W, X) — n(VzW)n(X)

From the covariant derivative property, we get

902, W), X) =9(VweZ, X) = 9(Vwe)Z, ¢X) — 9(VzeW, 9X) + 9(Vwp)Z, 9 X)
+n(VwZ)n(X) = n(VzW)n(X)
=g(VwTZ, ¢X) + g(VwEZ, pX) — g(PzW, pX) — g(VzTW, pX) — g(VwFZ, pX)
+ 9(PwZ, X) + n(VwZ)n(X) — n(VzW)n(X).
It is implies from the Eqs (2.5), i.e.,
9(1Z, W1, X) = = glpVwTZ, X) = g(ArzpX, W) = 9Pz W, pX) + g(pV2TW, X)
+ 9(ArweX, Z) + gPwZ, 9X) + n(VwZ)n(X) — n(VzW)n(X)
=9(Vwp)TZ, X) - gVwT?Z, X) - g(VwFTZ, X)
= 9PV, 9X) = 9(Vz)TW, X) + g(V2T*W, X)
+ g(VZFTW, X) + g(PwZ, pX) + g(ArweX, Z) + n(VwZ)n(X)
- U(VZW)n(X) - g(ArzpX, W).
From Theorem 2.1 and Eq. (2.5) one derives
9g([Z, W], X) =g(PwTZ,X) + cos? Qg(vWZ, X) + g(ArrzX, W) = (PzW, pX) — g(P2TW, X)
- cos? 0g(VzW, X) + g(ArweX, Z) + g(PwZ, 9X) — g(ArrwX, Z)
+n(VwZ)n(X) = n(VzW)n(X) — g(ArzpX, W). (3.12)
Using the properties of £ — Q from (2.14), we find
gJPwTZ,X) — g PzTW, X) =g(Pw(pZ — FZ), X) — g(Pz(eW — FW), X)
=9(PwopZ, X) — g(PwFZ, X) — g(PzeW, X) + g(PzFW, X)
= — g(pPwZ, X) + g(QwX, FZ) + g(pPwZ,X) — 9(QzX, FW)
=9(PwZ, ¢X) + 9@QwX, FZ) — g(Pz W, pX) — g(QzX, FW).
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Therefore, using the above relation in the Eqs (3.12), we get

sin® 0g9(1Z, W1, X) = g(ArrzX — ArzX, W) + 29(PwZ, X) + 9(QwX, FZ) — g(ArrwX — ApwX, Z)
- 29(PzW, pX) — g(QzX, FW) + n(VwZ)n(X) — n(VzW)n(X).

Using properties (2.12)-(2.13) and (2.17), we arrive at

sin? 0g(1Z, W], X) =g(ArrzX — Arz9pX, W) + 29(PwZ + Pz W, pX) — g(QxW, FZ)
—sin? OBN(X)9(Z, W) — g(ArrwX — ApweX, Z) + 9(QxZ, FW)
+sin? OBn(X)g(Z, W) + n(VwZ)n(X) — n(VzW)n(X).

By assumption of the Theorem 3.2 that QxZ lies in i and again using (2.12) we derive

sin? 09([Z, W1, X) =g(ArrzX — ArzX, W) + n(VwZ)n(X)
- n(V2Wn(X) - g(ArrwX — ApweX, Z). (3.13)

Applying Egs (3.7) in the Eqgs (3.13), one obtains
sin® 0g([Z, W], X) = — %(2 + sin? 6)(X/\)g(Z, W) - ﬁn(X)(% cos? 6 — 1)g(Z, W)
+n(VwZ)n(X) — n(VzW)n(X) + %(2 + sin® 9)(XA)9(Z, W)

+ ﬁq(X)(% cos? 6 — 1)g(Z, W),

which means that
sin? 0g(1Z, W1, X) = n(VwZ)n(X) = n(VzW)(X).

Now interchanging X by ¢X in the above equation and using the fact that n(¢X) = 0, we derive
sin? 0g9([Z, W], X) = 0.

Since, M is a proper semi-slant submanifold, then from previous Eq, we deduce that the slant distribution
DY is integrable. Therefore, we can assume that Ny be a leaf of DY and h? be a the second fundamental
form (extrinsic invariant) of Ng into M. Then from Gauss formula (2.4), we have

g(h°(Z, W), X) = g(VzW, X) =g(@Vz W, 9X) + n(VzW)n(X)
=9(VzeW,9X) - 9(Vze)W, 9X) + n(VzW)n(X).

From (2.8) and tangential components of (Vz(p)W, it is easily seen that

g(h (2, W), X) = g(V2TW,X) + g(VZEW,9X) = 9Pz W, 9 X) + (V2 W)n(X).
Using the covariant differentiation property of ¢ and (2.5), we obtain

g(h*(Z, W), X) = g(V20)TW, X) - g(V2T2W, X) - g(VZFTW, X)

— 9(AwZ, ¢X) + g(@Pz W, X) + n(VzW)n(X).

Then using the Theorem 2.1 and (2.5), we derive

g(h%(Z, W), X) = g(PzTW, X) + cos® 09(Vz W, X) + g(ArrwZ, X) — g(ArwZ, 9X) — g(PzTW, X)
— g(PFW, X) + n(V 7 W)n(X),
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its implies that
sin? 0g(h’(Z, W), X) = g(ArrwX — ApwpX, Z) + 9(@QzX, FW) + n(VZzW)n(X).

Using Eq. (2.13) in the second term of the above Egs. Then from (3.7) and (2.17), we arrive at
1 1
sin® Bg(h%(Z, W), X) = — 5(2 + sin? 6)(X/\)g(Z, W) — ﬁn(X)g cos? 0g(Z, W)

+ Bn(X)g(Z, W) = g(QxZ, FW) — p1(X) sin* 0g(Z, W) + n(VzW)n(X).

As we have assumed that QxZ lies in , finally we get

sin? 0g(h°(Z, W), X) = - %(2 + sin? 9)(X/\)g(Z, W) + gcosz OBN(X)g(Z, W) — n(X)g(VzE, W).

Interchanging Z by W in (3.14), we find

sin® 0g(h%(Z, W), X) = —%(2 + sin? 6)(X/\)g(Z, W) + % cos? 0pn(X)g(Z, W) — n(X)g(V &, W).

From the symmetry of extrinsic invariant 1%, then (3.15) and (3.14) implies that

_2
3

= n(X)(9(V2&, W) + g(V2E, W)).

2sin® 0g(h%(Z, W), X) = (2 + sin? 6)(XA)g(Z, W) + g cos® 0Bn(X)g(Z, W)

Applying the Proposition 2.1 in last Eq. then easily get the following

2sin? Og(h°(Z, W), X) = —%(2 + sin? 9)(XA)g(Z, W) + g cos? 0pn(X)g(Z, W) - 281(X)g(Z, W),

which implies that

2sin g(h°(Z, W), X) = —%(2 + sin? 9)(XA)g(Z, W) + (% cos? 6 — 2)ﬁn(X)g(Z, W)

5853

(3.14)

(3.15)

(3.16)

(3.17)

Hence, replacing X by ¢X in the above relation (3.17) and using fact that n(¢X) = g(¢X, &) = —g(X, p&) =0,

which gives
g(h®(Z, W), pX) = — %(2 + csc? 6 + cot? 6)((pX/\)g(Z, W)
Finally, from the property of gradient of In f, simplification gives
g(h°(Z, W), pX) = — %(2 +csc? 6 + cot? Q)g(Z, W)g(VA, pX)
It follows that

Wz, W) = —g(Z, W)%(Z + csc? O + cot? e)w.

(3.18)
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Therefore, Eq. (3.18) indicate that Ny is totally umbilical submanifold into M with its mean curvature vector
field HY = —%(2 + csc? 0 + cot? G)V)L Further, we will prove that the mean curvature H? is parallel along
the normal connection V9 of Ny into M. For this object, we choose X € (D) and Z € ['(D?), i.e.,

1

g(VIH?, X) = 3

(2 + csc? 6 + cot? G)g(VggmdA, Y) = —%(2 + csc? 6 + cot? G)g(Vzgmd/\, Y)

=— %(2 + csc? 6 + cot? G)g(Zg(gmd/\, X)) + %(2 + csc? O + cot? G)g(gmdA, VzX)
=— %(2 + csc? 6 + cot? 6)(Z(X)\)) + %(2 + csc? 6 + cot? E))g([X, Z], gradA)
1 2 2
-3 2 4 csc” 0 + cot” O|g(VxZ, gradA)
1 2 2 1 2 2
=-3 2 +csc” 0 + cot” O |(X(ZA)) — 3 2 +csc” 0 + cot” 0 |g(VxgradA, Z)

From the hypothesis of the Theorem 3.2 (ZA = 0), for each Z € T(D?) and VgradA lies in D, thus last equation
becomes

g(ViH?, X) =0, (3.19)

which means that VPHY € T(DY). This implies that the mean curvature H% of Ny is parallel. Hence,
the condition of spherical is satisfied. Follows the Definition 3.2, thus M becomes the warped product
manifold of Ny and N1, where Ny and Nt are integral manifolds corresponding to DY and D, respectively.
This complete the proof of the Theorem. [J

Similarly, we gives another characterization theorem, .i.e,

Theorem 3.3. Every proper semi-slant submanifold M of nearly Trans-Sasakian manifold M such that the normal

components of (Vx@)U lies in invariant normal subbundle of M is locally a non-trivial warped product submanifold
of type M = Nt X7 Ng such that Ng proper slant and Nt q—invariant submanifolds if and only if the following
condition is satisfied

ArrzpX — ApzX = %(2 — sin? 6)((pX)\)Z +an(X)Z, (3.20)

forany U € T(TM), X € T(D & &) and Z € T(DY). Moreover, for a differentiable function A on M such that ZA = 0,
for any Z € T(DY).

Proof. Directly part follows from (3.6) and (3.4). Moreover, converse part can be easily proved as the
Theorem 3.2. [0

The abbreviations of manifolds are: nearly Sasakian manifold, nearly Kenmotsu, nearly cosymplectic,
a—nearly Sasakian, f—nearly Kenmotsu which are classes of (a, f)—nearly-Trans Sasakian manifold. The
following table shows that the necessary and sufficient condition for the existence of warped product
semi-slant submanifolds in almost contact manifolds with & tangent to the first factor which are directly
generalizing from (a, f)—nearly-Trans Sasakian manifold i.e.,

Case 3.1. If we substitute o = 0, and, f = 0in Egs.(2.3), we immediately get the following result from the Theorem
3.2, 1e.,
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Theorem 3.4. A proper semi-slant submanifold M of a nearly cosymplectic manifold M such that the normal
components of (Vx(p)ll lies in p—invariant normal subbundle of M for any X € I'(D) and U € I'(TM). Then M is

locally a non-trivial warped product submanifold of the type M = Nt Xy Ng such that Ng is proper slant and Nt is
@—invariant submanifolds if and only if the following condition is satisfied

AprzX — ApzpX = — %(2 +sin? 0)(XA)Z, (3.21)

forany X € T(D & &) and Z € T(DY). Moreover, for a differentiable function A on M such that ZA = 0, for any
Z eT(DY).

Case 3.2. Rearranging &« = 1and B = 0 in Egs. (2.3), then nearly-Trans Sasakian manifold turn into nearly
Sasakian manifold. Thus, we find the following Theorem which is a direct consequence of the Theorem 3.3, that is,

Theorem 3.5. Assume that M be a proper semi-slant submanifold of a nearly Sasakian manifold M such that the
normal components of (ngo)u lies in p—invariant normal subbundle of M for any X € T'(D) and U € T(TM). Then

M is locally a non-trivial warped product submanifold of the type M = Nt X Ng such that Ng is proper slant and
Nr is p—invariant submanifolds if and only if the following condition is satisfied

AprzpX — ApzX = (% cos® 6 + 1)((pX/\)Z +n(X)Z, (3.22)

for any X € T(D & &) and Z € T(DY). Moreover, for a differentiable function A on M such that ZA = 0, for any
Z eT(DY).

Equivalently, we give others necessary and sufficient conditions in the following table for a semi-slant
submanifold to be a warped product semi-slant in numerous ambient manifolds, i.e.,

Generalizing the different types characterization results
Manifolds Name and | Necessary and sufficient | Cases to
warped product of the || conditions with for a dif- | substitute in
form M = Nt X¢ Ng ferentiable function A on | Egs. (2.3)

M such that ZA = 0.
Nearly Kenmotsu ArrzX — ApzpX =|a=0p=1
~1(2 + sin®0)(XN)Z

n(X)(% cos? 0 — 1)Z.

Nearly a—Sasakian ArrzpX — ArpzX =|p=0
(% cos? 0 + 1)(qu/\)Z +
an(X)Z.

Nearly f—Kenmotsu ArrzX - ApzepX =|la=0

-2 + sin?0)(XA)Z
pn(x)(§ sin® 0 +2)Z.
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