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Abstract. In this paper, we study warped product semi-slant submanifold of type M = NT × f Nθ with
slant fiber, isometrically immersed in a nearly Trans-Sasakian manifold by finding necessary and sufficient
conditions in terms of Weingarten map. A characterization theorem is proved as main result.

1. Introduction

The study on warped product submanifolds got momentum after B.-Y. Chen’s papers on CR-warped
product [13, 14]. A contact CR-warped product submanifold is the Riemannian product of invariant and
anti-invariant submanifold. It was proved in [21] that there does not exist any contact CR-warped product
of type M = N⊥ × f NT, of nearly Trans-Sasakian manifolds in both cases when structure field tangent to
either base manifold or fiber. Also, it was also found in the same paper, the non-trivial contact CR-warped
product of the form M = NT × f N⊥, in a nearly Trans-Sasakian manifold such that NT invariant tangent
to Reeb vector field. Similarly, the Riemannian product of invariant and slant submanifolds with non
constant warping function is called warped product semi-slant submanifold. The non-existence of the
warped product semi-slant submanifold M = Nθ × f NT, isometrically immersed in a nearly Trans-Sasakian
manifold with structure vector field is tangent Nθ and NT has discussed in [22]. On the other hand, the
existence case of the non-trivial warped product semi-slant submanifold of type M = NT × f Nθ, in a nearly
Trans-Sasakian manifold has been proved in [22] with NT is an invariant submanifold which is tangent to
the Reeb vector field and constructed a geometric inequality for the extrinsic invariant in terms of warping
function. Therefore, it is natural to see that the warped product semi-slant submanifold is a generalized
version of contact CR-warped product submanifold in case of a nearly Trans-Sasakian manifold. Similar
notions have been studied in the series of articles [1–8, 17, 21, 22, 24–29]. In this paper, we prove a
characterization theorem involving the shape operator under which a semi-slant submanifold of a nearly
Trans-Sasakian manifold reduces to a warped product.
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2. Preliminaries

An almost contact manifold is an odd-dimensional manifold M̄ which carries a fieldϕof endomorphisms
of tangent space, vector field ξ, called characteristic or Reeb vector field and a 1-form η satisfying

ϕ2 = −I + η ⊕ ξ, η(ξ) = 1, (2.1)

where I : TM̃ → TM̃ is the identity mapping. Now from definition it follows that ϕ ◦ ξ = 0 and η ◦ ϕ = 0,
then the (1, 1) tensor field ϕ has constant rank 2n (cf. [9]). An almost contact manifold (M̄, ϕ, η, ξ) is said to
be normal when the tensor field Nϕ = [ϕ,ϕ] + 2dη⊕ ξ vanishes identically, where [ϕ,ϕ] is the Nijenhuis of ϕ.
An almost contact metric structure (ϕ, ξ, η) is said to be a normal in the form of almost complex structure if
almost complex structure J on a product manifold M̄ × R given by

J
(
U, f

d
dt

)
=

(
ϕU − fξ, η(U)

d
dt

)
,

where f is a smooth function on M̄ × R, has no torsion, i.e., J is integrable. Every almost contact manifold
(M̄, ϕ, η, ξ) admits a Riemannian metric 1which is satisfying

1(ϕU, ϕV) = 1(U,V) − η(X)η(Y), η(U) = 1(U, ξ), (2.2)

for all U,V ∈ Γ(TM̄). This metric 1 is called compatible metric and the manifold M̄ endowed with the
structure (ϕ, η, ξ, 1) is called an almost contact metric manifold. As an immediate consequence of (2.1), we
have 1(ϕU,V) = −1(U, ϕV). Hence, the second fundamental 2-form Φ is defined by Φ(U,V) = 1(U, ϕV).
Almost contact manifold such that both η and Φ are closed is called almost cosymplectic manifold and those for
which dη = Φ are called contact metric manifolds. Finally, a normal almost cosymplectic manifold is called
cosymplectic manifold and a normal contact manifold is called Sasakian manifold. In term of the covariant
derivative of ϕ the cosymplectic and the Sasakian manifolds conditions can be expressed respectively by

(∇Uϕ)V = 0, and (∇Uϕ)V = 1(U,V)ξ − η(V)U,

for all U,V ∈ Γ(TM) (see [9]). It should be noted that both in cosymplectic and Sasakian manifolds ξ is killing
vector field. On the other hand, the Sasakian and the cosymplectic manifolds represent the two external cases
of the larger class of quasi-Sasakian manifolds. An almost contact metric structure (ϕ, η, ξ) is said to be nearly
Trans-Sasakian manifold (cf. [19]) i.e., if

(∇̄Uϕ)V + (∇̄Vϕ)U = α
(
21(U,V)ξ − η(U)V − η(V)U

)
− β

(
η(V)ϕU + η(U)ϕV

)
, (2.3)

for any U,V tangent to M̃, where ∇̃ is the Riemannian connection metric 1 on M̄. If we replace U = ξ, V = ξ
in (2.3), we find that (∇̄ξϕ)ξ = 0 which is implies that ϕ∇̄ξξ = 0. Now applying ϕ and using (2.1), we get,
∇̄ξξ = 0. Since from Gauss formula finally, we get ∇ξξ = 0 and h(ξ, ξ) = 0. For more classification (see [? ? ]).

Note 2.1. If α = 0 and, β = 0 in (2.3), then nearly Trans-Sasakian becomes nearly cosymplectic manifold, if
α = 1 and, β = 0 in (2.3), thus its called nearly Sasakian manifold. Let α = 0 and, β = 1 in (2.3), then nearly
Trans-Sasakian turn into nearly Kenmotsu manifold. Similarly nearly α-Sasakian manifold and nearly β−Kenmotsu
manifold can be defined from the nearly Trans-Sasakian manifold by substituting β = 0 andα = 0 in (2.3), respectively.

Now let M be a submanifold of M̃, then we will denote by ∇ is the induced Riemannian connection
on M and 1 is the Riemannian metric on M̄ as well as the metric induced on M. Let TM and T⊥M be the
Lie algebra of vector fields tangent to M and normal to M, respectively and ∇⊥ the induced connection on
T⊥M. Denote by F (M) the algebra of smooth functions on M and by Γ(TM) the F (M)-module of smooth
sections of TM over M. Then the Gauss and Weingarten formulas are given by

∇̄UV = ∇UV + h(U,V) (2.4)
∇̄UN = −ANU + ∇⊥UN, (2.5)
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for each U, V ∈ Γ(TM) and N ∈ Γ(T⊥M), where h and AN are the second fundamental form and the shape
operator (corresponding to the normal vector field N) respectively for the immersion of M into M̄. They are
related as:

1(h(U,V),N) = 1(ANU,V). (2.6)

Now, for any U ∈ Γ(TM), we defined as:

ϕU = TU + FU, (2.7)

where TU and FU are the tangential and normal components of ϕU, respectively. If M is invariant and
anti-invariant, then FU and TU are identically zero, respectively. Similarly for any N ∈ Γ(T⊥M), we have

ϕN = tN + f N, (2.8)

where tN (resp. f N) is the tangential (resp. normal) components of ϕN. From (2.2) and (2.7), it is
easy to observe that for each U,V ∈ Γ(TM) 1(TU,V) = −1(U,TV). Further, the covariant derivative of the
endomorphism ϕ is defined as

(∇̄Uϕ)V = ∇̄UϕV − ϕ∇̄UV, ∀U,V ∈ Γ(TM̄). (2.9)

,

Proposition 2.1. On a nearly Trans-Sasakian manifold, the following condition is satisfied

1(∇̄Vξ,U) + 1(∇̄Uξ,V) = 2β1(ϕX, ϕY),

for any vector fields U,V tangent to M̃, where M̃ is a nearly Trans-Sasakian manifold

Proof. Setting U = ξ in (2.3), then we find

(∇̄ξϕ)V + (∇̄Vϕ)ξ = α{21(ξ,V)ξ − V − η(V)ξ} − βϕV.

Taking the inner product with ϕU in the above equation we get

1((∇̄ξϕ)V, ϕU) = −1((∇̄Vϕ)ξ, ϕU) − α1(V, ϕU) − β1(ϕV, ϕU). (2.10)

Interchanging U and V in the above equation, we derive

1((∇̄ξϕ)U, ϕV) = −1((∇̄Uϕ)ξ, ϕV) − α1(U, ϕV) − β1(ϕV, ϕU). (2.11)

Adding equation (2.10) and (2.11), we find

1((∇̄ξϕ)V, ϕU) + 1((∇̄ξϕ)U, ϕV) = −1((∇̄Vϕ)ξ, ϕU) − 1((∇̄Uϕ)ξ, ϕV) − 2β1(ϕV, ϕU).

As left hand side of the above equation should be zero from the fact that ∇ξϕ = 0, for almost contact metric
manifold, hence

−1((∇̄Vϕ)ξ, ϕU) − 1((∇̄Uϕ)ξ, ϕV) = 2β1(ϕV, ϕU).

The proof follows from the above equations and this complete the proof of the Proposition.

We denote the tangential and normal parts of (∇̃Uϕ)V by PUV and QUV such that

(∇̃Uϕ)V = PUV + QUV
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Then in a nearly Trans-Sasakian manifold, we have

PUV +PVU =α{21(U,V)ξ − η(U)V − η(V)U} − β{η(V)TU + η(U)TV}, (2.12)
QUV + QVU = − β{η(V)FU + η(U)FV}, (2.13)

for any U,V are tangent to M̃. It is straightforward to verify the following properties of P and Q,

(i) PU+VW = PUW +PVW,
(ii) QU+VW = QUW + QVW,
(iii) PU(W + Z) = PUW +PUZ,
(iv) QU(W + Z) = QUW + QUZ,
(v) 1(PUV,W) = −1(V,PUW),
(vi) 1(QUV,N) = −1(V,PUN),
(vii) PUϕV + QUϕV = −ϕ(PUV + QUV).


(2.14)

Next we will give the definition of slant submanifold as follows:

Definition 2.1. [11] For each non zero vector U tangent to M at p, such that U is not proportional to ξp, we denote
by 0 ≤ θ(U) ≤ π/2, the angle between ϕU and TpM is called the Wirtinger angle. If the angle θ(U) is constant for
all U ∈ TPM− < ξ > and p ∈M. Then M is said to be a slant submanifold and the angle θ is called slant angle of M.
Obviously if θ = 0, M is invariant and if θ = π/2, M is anti-invariant submanifold. A slant submanifold is said to
be proper slant if it is neither invariant nor anti-invariant.

In a contact metric manifold, J. L Cabrerizo (cf. [11]) obtained the following theorem.

Theorem 2.1. Let M be a submanifold of an almost contact metric manifold M̄ such that ξ ∈ TM. Then M is slant
if and only if there exists a constant λ ∈ [0, 1] such that

T2 = λ(−I + η ⊗ ξ). (2.15)

Furthermore, in such a case, if θ is slant angle, then it satisfies that λ = cos2 θ.

Hence, for a slant submanifold M of an almost contact metric manifold M̄, the following relations are
consequences of the above theorem.

1(TX,TY) = cos2 θ{1(X,Y) − η(X)η(Y)}. (2.16)

1(FX,FY) = sin2 θ{1(X,Y) − η(X)η(Y)} (2.17)

for any X,Y ∈ Γ(TM). Another characterization of consequence of the Theorem 2.1 is easily derived as
follows:

Theorem 2.2. Let M be a slant submanifold of an almost contact metric manifold M̄ such that ξ ∈ TM. Then

(a) tFX = sin2θ(−X + η(X)ξ), and (b) f FX = −FTX, (2.18)

for any X ∈ Γ(TM).

3. Warped Product Semi-Slant Submanifolds

A natural generalization of CR-submanifolds of almost Hermitian manifolds in terms of slant distribu-
tion was described by N. Papaghiuc (cf. [23]). These submanifolds are known as semi-slant submanifolds.
The semi-slant submanifolds of almost contact metric manifolds were defined and studied by Cabererizo.
They defined these submanfolds as:
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Definition 3.1. [12] A Riemannian submanifold M of an almost contact manifold M̃ is said to be a semi-slant
submanifold if there exist two orthogonal distributionsD andDθ such that

(i) TM = Dθ
⊕D ⊕ 〈ξ〉, where < ξ > is 1-dimensional distribution spanned by ξ.

(ii) D is invariant distribution under ϕ i.e., ϕD ⊆ D.
(iii) Dθ is slant distribution with slant angle θ , 0, π2 .

If we denote the dimension of Di by di for i = 1, 2, then it is clear that contact CR-submanifolds and
slant submanifolds are semi-slant submanifolds with θ = π/2 and d1 = 0, respectively. It is called proper
semi-slant if slant angle is different from 0 and π/2. Moreover, if µ is an invariant subspace under ϕ of
normal bundle T⊥M, then in case of semi-slant submanifold, the normal bundle T⊥M can be decomposed
as T⊥M = FDθ

⊕ µ. A semi-slant submanifold is said to be a mixed totally geodesic if h(X,Z) = 0, for any
X ∈ Γ(Dθ) and Z ∈ Γ(D).

Let f be a positive differentiable function on N1 of two Riemannian manifolds N1 and N2 endowed
with two Riemannian metrics 11 and 12, respectively. Then warped product M = N1 × f N2 is the manifold
N1 ×N2 equipped with the Riemannian metric 1 = 11 + f 212. The function f is called warping function of
the warped product. If for any X,Y ∈ Γ(TN1) and Z,W ∈ Γ(TN2), then

∇ZX = ∇XZ = (X ln f )Z, (3.1)

where∇ denote the Levi-Civitas connection on M. On the other hand, ∇ ln f is the gradient of ln f is defined
as 1(∇ ln f ,X) = X ln f . A warped product manifold M = N1× f N2 is said to be trivial if the warping function
f is constant.

There are two types of warped products between proper slant and invariant submanifolds. Now we
study warped product semi-slant submanifolds and its characterization of type of M = NT × f Nθ. For first
case, we recall the following result which was obtained by Mustafa, et.al (cf. [22]) for warped product
semi-slant submanifolds of nearly Trans-Sasakian manifolds as:

Theorem 3.1. [22] There do not exist warped product semi-slant submanifolds M = Nθ × f NT in a nearly Trans-
Sasakian manifold M̃, where Nθ and NT are proper slant and invariant submanifolds of M̃, respectively.

First, we give the following definition which based on the results S. Hiepk[20].

Definition 3.2. Assume that M be a semi-slant submanifold of a nearly-Trans Sasakian manifold M̃, then we say
that M is a locally warped product manifold semi-slant submanifold of M̃ if D defines a totally geodesic foliation on
M andDθ defines a spherical foliation on M, that is each leaf ofDθ is totally umbilical with parallel mean curvature
vector field in M.

Now we give following results for later use given in (cf. [22]) for warped product semi-slant subman-
ifold of nearly-Trans Sasakian manifolds as:

Lemma 3.1. [22] Assume that M = NT× f Nθ be a warped product semi-slant submanifold of a nearly Trans-Sasakian
manifold M̄. Then

ξ ln f =β, (3.2)
1(h(X,Y),FZ) =0, (3.3)

1(h(Z,X),FZ) = −

(
(ϕXλ) + αη(X)

)
||Z||2, (3.4)

1(h(X,Z),FTZ) =
1
3

cos2 θ

(
(X ln f ) − βη(X)

)
||Z||2, (3.5)

for any Z ∈ Γ(TNθ) and X,Y ∈ Γ(TNT).
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Following relations are the particular case, of above lemma. By interchanging X by ϕX in (3.5), we find

1(h(ϕX,Z),FTZ) =
1
3

cos2 θ(ϕX ln f )||Z||2, (3.6)

Now we prove our main result

Theorem 3.2. Let a proper semi-slant submanifold M of nearly Trans-Sasakian manifold M̂ such that the normal
component QXU of (∇̃Xϕ)U lies in ϕ−invariant normal subbundle of M. Then M is locally a non-trivial warped
product submanifold of type M = NT × f Nθ if and only if the following condition is satisfied

AFTZX − AFZϕX = −
1
3

(
2 + sin2 θ

)
(Xλ)Z + βη(X)

(
1 −

1
3

cos2 θ
)
Z, (3.7)

for any U ∈ Γ(TM), X ∈ Γ(D⊕ ξ) and Z ∈ Γ(Dθ). Moreover, for a differentiable function λ on M such that Zλ = 0,
for any Z ∈ Γ(Dθ).

Proof. Assume that M = NT × f Nθ be a non-trivial warped product semi-slant submanifold of a nearly
Trans-Sasakian manifold M̃ such that Nθ and NT are proper slant and ϕ−invariant submanifolds of M̃,
respectively. Thus from (3.3) and (2.6), we get 1(AFZX,Y) = 0, for any X,Y ∈ Γ(TNT) and Z ∈ Γ(TNθ). Since,
NT is an invariant submanifold, then rearranging X by ϕX, we find that 1(AFZϕX,Y) = 0, which indicates
that the components of linear operator AFZϕX are not lying in TNT. Similarly, rearranging Z by TZ in (3.3)
and from (2.6), it is easily see that 1(AFTZX,Y) = 0, which again shows that AFZX has no components in
TNT. Hence, this means that AFZϕX − AFTZX lies in TNθ. Therefore, from the Lemmas 3.2-(3.5), we have

1(h(X,Z),FTZ) =
1
3

cos2 θ(X ln f )||Z||2 −
1
3

cos2 θβη(X)||Z||2. (3.8)

On the other hand, replacing X by ϕX in the Eqs (3.3) and using (2.1)(i), we derive

1(h(Z, ϕX),FZ) = (X ln f )||Z||2 − η(X)(ξ ln f )||Z||2 + αη(ϕX)||Z||2.

Since, from (3.2) and the fact that η(ϕX) = 1(ϕX, ξ) = 0, we obtain

1(h(Z, ϕX),FZ) = (X ln f )||Z||2 − βη(X)||Z||2, (3.9)

for any X ∈ Γ(TNT) and Z ∈ Γ(TNθ). We get the following relation by follows (3.8), (3.9) and (2.6) as:

1(AFZϕX − AFTZX,Z) =

(
1 −

1
3

cos2 θ

)
(X ln f )||Z||2 + βη(X)

(
1
3

cos2 θ − 1
)
||Z||2. (3.10)

Thus AFZϕX − AFTZX lies in TNθ and from (3.10), we get the required result (3.7). Hence, the first part is
proved completely.

Conversely Let M be a semi-slant submanifold of nearly Trans-Sasakian manifold with the condition
(3.7) holds. For any X,Y ∈ Γ(D⊕ ξ) and Z ∈ Γ(Dθ), we obtain

1(∇XY,Z) = 1(ϕ∇XY, ϕZ) + η(∇̂XY)η(Z) = 1(∇̂XϕY, ϕZ) − 1((∇̂Xϕ)Y, ϕZ).

From the structure Eqs (2.3) and from the property of Riemannian connection, one obtains

1(∇XY,Z) = −1(ϕY, ∇̃XϕZ) − 1(PXY,TZ) + 1(QXY,FZ)

Taking the help of Eqs (2.8) and the property of covariant derivative of ϕ, we find

1(∇XY,Z) = 1(ϕ∇̃XTZ,Y) − 1(∇̃XFZ, ϕY) + 1(Y,PXTZ) − 1(QXY,FZ).
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Using (2.4), (2.5) and (2.12), we derive

1(∇XY,Z) =1(∇̃XT2Z,Y) + 1(∇̃XFTZ,Y) − 1((∇̃Xϕ)TZ,Y)
+ 1(FZ, h(X, ϕY)) + 1(Y,PXTZ) − 1(QXY,FZ).

Following the Theorem 2.1 and (2.5), it is easy to see that

sin2 θ1(∇XY,Z) = −1(AFTZX − AFZϕX,Y) − 1(PXTZ,Y) − 1(QXY,FZ) + 1(PXTZ,Y).

Therefore, from the hypothesis of the Theorem 3.2, we know that QXY lies in µ and from the Eqs (3.7), we
get

sin2 θ1(∇XY,Z) =
1
3

(
2 + sin2 θ

)
(Xλ)1(Z,Y) + βη(X)

(
1
3

cos2 θ − 1
)
1(Z,Y),

which implies that

sin2 θ1(∇XY,Z) = 0. (3.11)

But M is a proper semi-slant submanifold, i.e, sin2 θ , 0. From (3.11) we know that 1(∇XY,Z) = 0, this
means that ∇XY ∈ Γ(D⊕ξ), for every X,Y ∈ Γ(D⊕ξ). Therefore,D⊕ξ is integrable and its leaves are totally
geodesic in M. Moreover, for any Z,W ∈ Γ(Dθ) and X ∈ Γ(D⊕ ξ), we have

1([Z,W],X) = 1(ϕ∇̃WZ, ϕX) + η(∇̃WZ)η(X) − 1(ϕ∇̃ZW, ϕX) − η(∇̃ZW)η(X)

From the covariant derivative property, we get

1([Z,W],X) =1(∇̃WϕZ, ϕX) − 1((∇̃Wϕ)Z, ϕX) − 1(∇̃ZϕW, ϕX) + 1((∇̃Wϕ)Z, ϕX)

+ η(∇̃WZ)η(X) − η(∇̃ZW)η(X)

=1(∇̃WTZ, ϕX) + 1(∇̃WFZ, ϕX) − 1(PZW, ϕX) − 1(∇̃ZTW, ϕX) − 1(∇̃WFZ, ϕX)

+ 1(PWZ, ϕX) + η(∇̃WZ)η(X) − η(∇̃ZW)η(X).

It is implies from the Eqs (2.5), i.e.,

1([Z,W],X) = − 1(ϕ∇̃WTZ,X) − 1(AFZϕX,W) − 1(PZW, ϕX) + 1(ϕ∇̃ZTW,X)

+ 1(AFWϕX,Z) + 1(PWZ, ϕX) + η(∇̃WZ)η(X) − η(∇̃ZW)η(X)

=1((∇̃Wϕ)TZ,X) − 1(∇̃WT2Z,X) − 1(∇̃WFTZ,X)

− 1(PZW, ϕX) − 1((∇̃Zϕ)TW,X) + 1(∇̃ZT2W,X)

+ 1(∇̃ZFTW,X) + 1(PWZ, ϕX) + 1(AFWϕX,Z) + η(∇̃WZ)η(X)

− η(∇̃ZW)η(X) − 1(AFZϕX,W).

From Theorem 2.1 and Eq. (2.5) one derives

1([Z,W],X) =1(PWTZ,X) + cos2 θ1(∇̃WZ,X) + 1(AFTZX,W) − (PZW, ϕX) − 1(PZTW,X)

− cos2 θ1(∇̃ZW,X) + 1(AFWϕX,Z) + 1(PWZ, ϕX) − 1(AFTWX,Z)

+ η(∇̃WZ)η(X) − η(∇̃ZW)η(X) − 1(AFZϕX,W). (3.12)

Using the properties of P − Q from (2.14), we find

1(PWTZ,X) − 1(PZTW,X) =1(PW(ϕZ − FZ),X) − 1(PZ(ϕW − FW),X)
=1(PWϕZ,X) − 1(PWFZ,X) − 1(PZϕW,X) + 1(PZFW,X)
= − 1(ϕPWZ,X) + 1(QWX,FZ) + 1(ϕPWZ,X) − 1(QZX,FW)
=1(PWZ, ϕX) + 1(QWX,FZ) − 1(PZW, ϕX) − 1(QZX,FW).
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Therefore, using the above relation in the Eqs (3.12), we get

sin2 θ1([Z,W],X) = 1(AFTZX − AFZϕX,W) + 21(PWZ, ϕX) + 1(QWX,FZ) − 1(AFTWX − AFWϕX,Z)

− 21(PZW, ϕX) − 1(QZX,FW) + η(∇̃WZ)η(X) − η(∇̃ZW)η(X).

Using properties (2.12)-(2.13) and (2.17), we arrive at

sin2 θ1([Z,W],X) =1(AFTZX − AFZϕX,W) + 21(PWZ +PZW, ϕX) − 1(QXW,FZ)

− sin2 θβη(X)1(Z,W) − 1(AFTWX − AFWϕX,Z) + 1(QXZ,FW)

+ sin2 θβη(X)1(Z,W) + η(∇̃WZ)η(X) − η(∇̃ZW)η(X).

By assumption of the Theorem 3.2 that QXZ lies in µ and again using (2.12) we derive

sin2 θ1([Z,W],X) =1(AFTZX − AFZϕX,W) + η(∇̃WZ)η(X)

− η(∇̃ZW)η(X) − 1(AFTWX − AFWϕX,Z). (3.13)

Applying Eqs (3.7) in the Eqs (3.13), one obtains

sin2 θ1([Z,W],X) = −
1
3

(
2 + sin2 θ

)
(Xλ)1(Z,W) − βη(X)

(
1
3

cos2 θ − 1
)
1(Z,W)

+ η(∇̃WZ)η(X) − η(∇̃ZW)η(X) +
1
3

(
2 + sin2 θ

)
(Xλ)1(Z,W)

+ βη(X)
(

1
3

cos2 θ − 1
)
1(Z,W),

which means that

sin2 θ1([Z,W],X) = η(∇̃WZ)η(X) − η(∇̃ZW)η(X).

Now interchanging X by ϕX in the above equation and using the fact that η(ϕX) = 0, we derive

sin2 θ1([Z,W], ϕX) = 0.

Since, M is a proper semi-slant submanifold, then from previous Eq, we deduce that the slant distribution
D
θ is integrable. Therefore, we can assume that Nθ be a leaf of Dθ and hθ be a the second fundamental

form (extrinsic invariant) of Nθ into M. Then from Gauss formula (2.4), we have

1(hθ(Z,W),X) = 1(∇̃ZW,X) =1(ϕ∇̃ZW, ϕX) + η(∇̃ZW)η(X)

=1(∇̃ZϕW, ϕX) − 1((∇̃Zϕ)W, ϕX) + η(∇̃ZW)η(X).

From (2.8) and tangential components of (∇̃Zϕ)W, it is easily seen that

1(hθ(Z,W),X) = 1(∇̂ZTW, ϕX) + 1(∇̂ZFW, ϕX) − 1(PZW, ϕX) + η(∇̃ZW)η(X).

Using the covariant differentiation property of ϕ and (2.5), we obtain

1(hθ(Z,W),X) = 1((∇̃Zϕ)TW,X) − 1(∇̃ZT2W,X) − 1(∇̂ZFTW,X)

− 1(AFWZ, ϕX) + 1(ϕPZW,X) + η(∇̃ZW)η(X).

Then using the Theorem 2.1 and (2.5), we derive

1(hθ(Z,W),X) = 1((PZTW,X) + cos2 θ1(∇ZW,X) + 1(AFTWZ,X) − 1(AFWZ, ϕX) − 1(PZTW,X)

− 1(PZFW,X) + η(∇̃ZW)η(X),



A. Ali et al. / Filomat 32:17 (2018), 5845–5856 5853

its implies that

sin2 θ1(hθ(Z,W),X) = 1(AFTWX − AFWϕX,Z) + 1(QZX,FW) + η(∇̃ZW)η(X).

Using Eq. (2.13) in the second term of the above Eqs. Then from (3.7) and (2.17), we arrive at

sin2 θ1(hθ(Z,W),X) = −
1
3

(
2 + sin2 θ

)
(Xλ)1(Z,W) − βη(X)

1
3

cos2 θ1(Z,W)

+ βη(X)1(Z,W) − 1(QXZ,FW) − βη(X) sin2 θ1(Z,W) + η(∇̃ZW)η(X).

As we have assumed that QXZ lies in µ, finally we get

sin2 θ1(hθ(Z,W),X) = −
1
3

(
2 + sin2 θ

)
(Xλ)1(Z,W) +

2
3

cos2 θβη(X)1(Z,W) − η(X)1(∇̃Zξ,W). (3.14)

Interchanging Z by W in (3.14), we find

sin2 θ1(hθ(Z,W),X) = −
1
3

(
2 + sin2 θ

)
(Xλ)1(Z,W) +

2
3

cos2 θβη(X)1(Z,W) − η(X)1(∇̃Zξ,W). (3.15)

From the symmetry of extrinsic invariant hθ, then (3.15) and (3.14) implies that

2 sin2 θ1(hθ(Z,W),X) = −
2
3

(
2 + sin2 θ

)
(Xλ)1(Z,W) +

4
3

cos2 θβη(X)1(Z,W)

− η(X)
(
1(∇̃Zξ,W) + 1(∇̃Zξ,W)

)
. (3.16)

Applying the Proposition 2.1 in last Eq. then easily get the following

2 sin2 θ1(hθ(Z,W),X) = −
2
3

(
2 + sin2 θ

)
(Xλ)1(Z,W) +

4
3

cos2 θβη(X)1(Z,W) − 2βη(X)1(Z,W),

which implies that

2 sin2 θ1(hθ(Z,W),X) = −
2
3

(
2 + sin2 θ

)
(Xλ)1(Z,W) +

(4
3

cos2 θ − 2
)
βη(X)1(Z,W) (3.17)

Hence, replacing X by ϕX in the above relation (3.17) and using fact that η(ϕX) = 1(ϕX, ξ) = −1(X, ϕξ) = 0,
which gives

1(hθ(Z,W), ϕX) = −
1
3

(
2 + csc2 θ + cot2 θ

)
(ϕXλ)1(Z,W)

Finally, from the property of gradient of ln f , simplification gives

1(hθ(Z,W), ϕX) = −
1
3

(
2 + csc2 θ + cot2 θ

)
1(Z,W)1(∇λ,ϕX)

It follows that

hθ(Z,W) = −1(Z,W)
1
3

(
2 + csc2 θ + cot2 θ

)
∇λ. (3.18)
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Therefore, Eq. (3.18) indicate that Nθ is totally umbilical submanifold into M with its mean curvature vector
field Hθ = − 1

3

(
2 + csc2 θ + cot2 θ

)
∇λ. Further, we will prove that the mean curvature Hθ is parallel along

the normal connection ∇θ of Nθ into M. For this object, we choose X ∈ Γ(D) and Z ∈ Γ(Dθ), i.e.,

1(∇θZHθ,X) = −
1
3

(
2 + csc2 θ + cot2 θ

)
1(∇θZ1radλ,Y) = −

1
3

(
2 + csc2 θ + cot2 θ

)
1(∇Z1radλ,Y)

= −
1
3

(
2 + csc2 θ + cot2 θ

)
1(Z1(1radλ,X)) +

1
3

(
2 + csc2 θ + cot2 θ

)
1(1radλ,∇ZX)

= −
1
3

(
2 + csc2 θ + cot2 θ

)
(Z(Xλ)) +

1
3

(
2 + csc2 θ + cot2 θ

)
1([X,Z], 1radλ)

−
1
3

(
2 + csc2 θ + cot2 θ

)
1(∇XZ, 1radλ)

= −
1
3

(
2 + csc2 θ + cot2 θ

)
(X(Zλ)) −

1
3

(
2 + csc2 θ + cot2 θ

)
1(∇X1radλ,Z)

From the hypothesis of the Theorem 3.2 (Zλ = 0), for each Z ∈ Γ(Dθ) and∇1radλ lies inD, thus last equation
becomes

1(∇θZHθ,X) = 0, (3.19)

which means that ∇θHθ
∈ Γ(Dθ). This implies that the mean curvature Hθ of Nθ is parallel. Hence,

the condition of spherical is satisfied. Follows the Definition 3.2, thus M becomes the warped product
manifold of Nθ and NT, where Nθ and NT are integral manifolds corresponding toDθ andD, respectively.
This complete the proof of the Theorem.

Similarly, we gives another characterization theorem, .i.e,

Theorem 3.3. Every proper semi-slant submanifold M of nearly Trans-Sasakian manifold M̂ such that the normal
components of (∇̂Xϕ)U lies in invariant normal subbundle of M is locally a non-trivial warped product submanifold
of type M = NT × f Nθ such that Nθ proper slant and NT ϕ−invariant submanifolds if and only if the following
condition is satisfied

AFTZϕX − AFZX =
1
3

(
2 − sin2 θ

)
(ϕXλ)Z + αη(X)Z, (3.20)

for any U ∈ Γ(TM), X ∈ Γ(D⊕ ξ) and Z ∈ Γ(Dθ). Moreover, for a differentiable function λ on M such that Zλ = 0,
for any Z ∈ Γ(Dθ).

Proof. Directly part follows from (3.6) and (3.4). Moreover, converse part can be easily proved as the
Theorem 3.2.

The abbreviations of manifolds are: nearly Sasakian manifold, nearly Kenmotsu, nearly cosymplectic,
α−nearly Sasakian, β−nearly Kenmotsu which are classes of (α, β)−nearly-Trans Sasakian manifold. The
following table shows that the necessary and sufficient condition for the existence of warped product
semi-slant submanifolds in almost contact manifolds with ξ tangent to the first factor which are directly
generalizing from (α, β)−nearly-Trans Sasakian manifold i.e.,

Case 3.1. If we substitute α = 0, and, β = 0 in Eqs.(2.3), we immediately get the following result from the Theorem
3.2, i.e.,
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Theorem 3.4. A proper semi-slant submanifold M of a nearly cosymplectic manifold M̂ such that the normal
components of

(
∇̂Xϕ

)
U lies in ϕ−invariant normal subbundle of M for any X ∈ Γ(D) and U ∈ Γ(TM). Then M is

locally a non-trivial warped product submanifold of the type M = NT × f Nθ such that Nθ is proper slant and NT is
ϕ−invariant submanifolds if and only if the following condition is satisfied

AFTZX − AFZϕX = −
1
3

(
2 + sin2 θ

)
(Xλ)Z, (3.21)

for any X ∈ Γ(D ⊕ ξ) and Z ∈ Γ(Dθ). Moreover, for a differentiable function λ on M such that Zλ = 0, for any
Z ∈ Γ(Dθ).

Case 3.2. Rearranging α = 1 and β = 0 in Eqs. (2.3), then nearly-Trans Sasakian manifold turn into nearly
Sasakian manifold. Thus, we find the following Theorem which is a direct consequence of the Theorem 3.3, that is,

Theorem 3.5. Assume that M be a proper semi-slant submanifold of a nearly Sasakian manifold M̂ such that the
normal components of

(
∇̂Xϕ

)
U lies in ϕ−invariant normal subbundle of M for any X ∈ Γ(D) and U ∈ Γ(TM). Then

M is locally a non-trivial warped product submanifold of the type M = NT × f Nθ such that Nθ is proper slant and
NT is ϕ−invariant submanifolds if and only if the following condition is satisfied

AFTZϕX − AFZX =

(
1
3

cos2 θ + 1
)
(ϕXλ)Z + η(X)Z, (3.22)

for any X ∈ Γ(D ⊕ ξ) and Z ∈ Γ(Dθ). Moreover, for a differentiable function λ on M such that Zλ = 0, for any
Z ∈ Γ(Dθ).

Equivalently, we give others necessary and sufficient conditions in the following table for a semi-slant
submanifold to be a warped product semi-slant in numerous ambient manifolds, i.e.,

Generalizing the different types characterization results
Manifolds Name and
warped product of the
form M = NT × f Nθ

Necessary and sufficient
conditions with for a dif-
ferentiable function λ on
M such that Zλ = 0.

Cases to
substitute in
Eqs. (2.3)

Nearly Kenmotsu AFTZX − AFZϕX =

−
1
3

(
2 + sin2 θ

)
(Xλ)Z −

η(X)
(

1
3 cos2 θ − 1

)
Z.

α = 0, β = 1.

Nearly α−Sasakian AFTZϕX − AFZX =(
1
3 cos2 θ + 1

)
(ϕXλ)Z +

αη(X)Z.

β = 0.

Nearly β−Kenmotsu AFTZX − AFZϕX =

−
1
3

(
2 + sin2 θ

)
(Xλ)Z −

βη(X)
(

1
3 sin2 θ + 2

)
Z.

α = 0.
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