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Abstract. This paper is related to the dynamical behaviors of a discrete-time fractional-order predator-
prey model. We have investigated existence of positive fixed points and parametric conditions for local
asymptotic stability of positive fixed points of this model. Moreover, it is also proved that the system
undergoes Flip bifurcation and Neimark-Sacker bifurcation for positive fixed point. Various chaos control
strategies are implemented for controlling the chaos due to Flip and Neimark-Sacker bifurcations. Finally,
numerical simulations are provided to verify theoretical results. These results of numerical simulations
demonstrate chaotic behaviors over a broad range of parameters. The computation of the maximum
Lyapunov exponents confirms the presence of chaotic behaviors in the model.

1. Introduction

Gupta and Chandra [1] had proposed the following predator-prey system
ẋ = rx

(
1 −

x
K

)
−

a1xy
n + x

−
qEx

m1E + m2x
,

ẏ = sy
(
1 −

a2y
n + x

)
,

(1)

subjected to positive initial conditions x(0) > 0, y(0) > 0. Here x and y are the densities of the prey species
and the predator species at time t, respectively; r and K are intrinsic growth rate and environmental carrying
capacity for the prey population, respectively; a1 is the maximum value of the per capita reduction rate
of the prey; n measures the extent to which the environment provides protection for the predator and the
prey (see [1–4]); s is intrinsic growth rate of the predator species; sa2 is the maximum value of the per
capita reduction rate of the predator; q is the catch-ability coefficient; E is the effort applied to harvest the
prey species; and m1, m2 are suitable constants. All the model parameters are assumed to be only positive
constants due to biological considerations. By considering the following non-dimensional scheme

t̄ = rt, x̄ =
x
K
, ȳ =
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K
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1
r
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a2
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, γ =
s
r
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and dropping the bars, then we obtain
ẋ = x (1 − x) −

ωxy
k + x

−
σx

l + x
,

ẏ = γy
(
1 −

βy
k + x

)
.

(2)

This is a system with Michaelis-Menten type prey harvesting and modified Leslie-Gower functional re-
sponse. And this model is further studied by many authors [1, 5–8]. For example, The authors [1] have
investigated that local bifurcations of the system consisting of saddle-node and Hopf bifurcations. Suffi-
cient conditions for the existence and stability of Hopf bifurcation near positive constant equilibrium has
been given to this model with diffusive effect by Li and Wang [5]. The existence of stationary distribution
has been discussed in [6] by constructing a suitable Lyapunov function for this model with stochastic
perturbation.

In recent decades, many authors [9–13] has pointed out that fractional-order models are more suit-
able than integer-order models in biology due to good memory and hereditary properties of fractional
derivatives. Hence study and use the fractional-order differential equations (FDEs) help us have a better
understanding of the biological system behaviors. In [7], the authors give the fractional-order predator-prey
model

Dα
t x = x (1 − x) −

ωxy
k + x

−
σx

l + x
,

Dα
t y = γy

(
1 −

βy
k + x

)
,

(3)

with the initial conditions
x(0) = x0 > 0, y(0) = y0 > 0,

where α ∈ (0, 1). The rest of parameters is similar to that of model (2).
In the research of nonlinear dynamical systems, bifurcation and chaos have become an important topic

and appears naturally in several important biological models [14–17]. Furthermore, Freedman [18] pointed
out that the discrete time models governed by difference equations would indeed be more realistic than the
continuous ones, when the population numbers are small or births and deaths all occur at discrete times, or
with in certain intervals of time. Some dynamical systems generated by piecewise constant arguments were
studied in [19–24]. They revealed far richer dynamics in discrete system compared with the continuous
model. For example, in [23], authors proved that transcritical bifurcation, Flip bifurcation, Neimark-Sacker
bifurcation and chaos are obtained in the discretized system. However, the dynamics of fractional-order
counterpart is included only stable (unstable) equilibria. Moustafa [24] studied the globally stable of the
positive fixed point for a fractional-order model of palm tree and its discretization. It is shown that the
discretized system exhibits much richer dynamical behaviors than its corresponding fractional-order forms.

And motivated by the above-mentioned works, we are interested in applying the discretizations method
of piecewise constant arguments to the fractional predator-prey dynamics model (3) yields

xn+1 = xn +
hα

Γ(α + 1)

[
xn − x2

n −
ωynxn

k + xn
−

σxn

l + xn

]
,

yn+1 = yn +
hα

Γ(α + 1)

[
γyn −

γβy2
n

k + xn

]
.

(4)

Where h > 0 represents the time interval of production.
In this paper, the discrete system (4) is further investigated in detail. And the rest of the paper is organized

as follows. Sufficient conditions for the existence and stability of the fixed point of the discretized system
(4) are investigated in Section 2. In Section 3, some conditions on the existence of Flip bifurcation and
Neimark-Sacker bifurcation of system (4) are presented by using bifurcation theory [25]. Moreover, two
different chaos control strategies are implemented for controlling the chaos due to Flip and Neimark-Sacker
bifurcations in Section 4. Finally, numerical simulations verify the theoretical analysis results, including
bifurcation diagrams, phase portraits and Lyapunov exponents. A brief summary is given in the last section.
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2. Existence and Stability of the Fixed Points of the Discretized Fractional-Order Predator-Prey Model

2.1. Existence of the fixed points of the discretized system

In this section, we discuss the existence of the discrete predator-prey dynamics system (4). The fixed
points of system (4) are solutions to the systemx∗ +

ωy∗
k + x∗

+
σ

l + x∗
= 1,

βy∗ = k + x∗.
(5)

Direct calculation yields that the system (4) has at most five non-negative fixed points,

E0 = (0, 0), ET = (0, yT), EA = (xA, 0), EB = (xB, 0), E1 = (x1, y1), E2 = (x2, y2),

where

yT =
k
β
, xA =

1
2

(
1 − l −

√
(1 − l)2 − 4(σ − l)

)
, xB =

1
2

(
1 − l +

√
(1 − l)2 − 4(σ − l)

)
,

x1 =
1
2

1 − l −
ω
β
−

√(
l − 1 +

ω
β

)2

− 4
(
σ − l +

lω
β

) , y1 =
k + x1

β

and

x2 =
1
2

1 − l −
ω
β

+

√(
l − 1 +

ω
β

)2

− 4
(
σ − l +

lω
β

) , y2 =
k + x2

β
.

By simple calculation, we have the following result about the existence of positive fixed point of system
(4).

Theorem 2.1. The existence of boundary fixed points satisfies:
(1). The point E0 and ET always exists.
(2). If 4σ ≤ (l + 1)2, l < min{1, σ}, then EA and EB exists.
(3). If 4σ ≤ (l + 1)2, σ < l, then EB exists.

Since the number of fixed points depends upon the quantityω/β+σ/l−1, thus we come to the following
results.

Theorem 2.2. Suppose that ω/β + σ/l > 1.
(1). If ω/β + l < 1 and (ω/β + l − 1)2 > 4l(ω/β + σ/l − 1), then there exists two interior fixed points E1 and E2.
(2). If ω/β + l < 1 and (ω/β + l − 1)2 = 4l(ω/β + σ/l − 1), then the two interior fixed points E1 and E2 collide at
Ē = (x̄, ȳ) where x̄ = (1 − l − ω/β)/2.
(3). If ω/β + l > 1 or (ω/β + l − 1)2 < 4l(ω/β + σ/l − 1), then no interior fixed point exists.

Theorem 2.3. Suppose that ω/β + σ/l < 1. Then only one interior fixed point exists, which is denoted by E3 =
(x3, y3) ≡ (x2, y2).

Theorem 2.4. Suppose that ω/β + σ/l = 1.
(1). If ω/β+ l < 1 then 4l(ω/β+ σ/l− 1) = 0 and x2 = 2(1− l−ω/β) > 0, which means only one interior fixed point
(x2, y2) exists.
(2). If ω/β + l > 1 then no interior fixed point exists.
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2.2. Stability of the fixed points of the discretized system

In the following, we study the asymptotic stability of the fixed points of the system (4). The Jacobian
matrix of system (4) evaluated at (x, y) is given by

J(x, y) =


1 +

hα

Γ(α + 1)

(
1 − 2x −

ωky
(k + x)2 −

lσ
(l + x)2

)
−

hα

Γ(α + 1)
ωx

k + x
hα

Γ(α + 1)
γβy2

(k + x)2 1 +
hαγ

Γ(α + 1)

(
1 −

2βy
k + x

)
 . (6)

The characteristic equation of the Jacobian matrix (6) can be written as

F(λ) = λ2
− λTr + Det, (7)

where Tr is the trace and Det is the determinant of the Jacobian matrix (6).
In order to study stability analysis of the fixed points of system (4), we need the following lemma.

Lemma 2.5. [25] Suppose that F(1) > 0 in (7), λ1 and λ2 are the two roots of F(λ) = 0. Then,
(1). |λ1| < 1 and |λ2| < 1 if and only if F(−1) > 0 and Det < 1,
(2). |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1) if and only if F(−1) < 0,
(3). |λ1| > 1 and |λ2| > 1 if and only if F(−1) > 0 and Det > 1,
(4). λ1 = −1 and |λ2| , 1 if and only if F(−1) = 0 and Tr , 0,−2,
(5). λ1 and λ2 are conjugate complex and |λ1| = |λ2| = 1 if and only if Tr2

− 4Det < 0 and Det = 1.

Let λ1 and λ2 be the two roots of the characteristic equation of Jacobian matrix J[E∗(x∗, y∗)], which are called
eigenvalues of the fixed point (x∗, y∗), then we have the following definitions.

Lemma 2.6. [25]
(1) A fixed point E∗ is called a sink if |λ1| < 1 and |λ2| < 1, so the sink is locally asymptotically stable.
(2) A fixed point E∗ is called a source if |λ1| > 1 and |λ2| > 1, so the source is locally unstable.
(3) A fixed point E∗ is called a saddle if |λ1| > 1 and |λ2| < 1 (or |λ1| < 1 and |λ2| > 1).
(4) A fixed point E∗ is called non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

Using the lemma 2.6, we can obtain the following results.

Theorem 2.7. For system (4), the following statements hold true
(1). The fixed point E0 is always unstable.
(2). The fixed points EA and EB are always unstable.
(3). The fixed point ET is locally asymptotically stable if and only if ω/β + σ/l > 1 and

h < min


 2Γ(1 + α)
ω
β + σ

l − 1


1
α

,

(
2Γ(1 + α)

γ

) 1
α

 .
Proof. (1). The Jacobian matrix (4) evaluated at the fixed point E0 is

J(E0) =


1 +

hα

Γ(α + 1)

(
1 −

σ
l

)
0

0 1 +
hαγ

Γ(α + 1)

 . (8)

The eigenvalues of J(E0) are

λ1 = 1 +
hα

Γ(α + 1)

(
1 −

σ
l

)
, λ2 = 1 +

hαγ
Γ(α + 1)

.
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Since 0 < α 6 1, h > 0 and γ > 0, then λ2 > 1 which implies that fixed point E0 is unstable.
(2). The Jacobian matrix (4) evaluated at the fixed point EA,B is

J(EA,B) =


1 +

hα

Γ(α + 1)

(
1 − 2xA,B −

lσ
(l + xA,B)2

)
−

hα

Γ(α + 1)
ωxA,B

k + xA,B

0 1 +
hαγ

Γ(α + 1)

 . (9)

The eigenvalues of J(EA,B) are

λ1 = 1 +
hα

Γ(α + 1)

(
1 − 2x −

lσ
(l + x)2

)
, λ2 = 1 +

hαγ
Γ(α + 1)

.

And that λ2 is larger than one. Therefore, EA,B are unstable according to the lemma 2.6.
(3). The Jacobian matrix (4) evaluated at the fixed point ET is

J(ET) =


1 +

hα

Γ(α + 1)

(
1 −

ω
β
−
σ
l

)
0

hα

Γ(α + 1)
γ

β
1 −

hαγ
Γ(α + 1)

 , (10)

which the eigenvalues are

λ1 = 1 +
hα

Γ(α + 1)

(
1 −

ω
β
−
σ
l

)
, λ2 = 1 −

hαγ
Γ(α + 1)

.

Applying the stability conditions |λ1| < 1 and |λ2| < 1, implies that the fixed point E1 is locally asymptotically
stable if ω/β + σ/l > 1 and

h < min


 2Γ(1 + α)
ω
β + σ

l − 1


1
α

,

(
2Γ(1 + α)

γ

) 1
α

 .
Otherwise it is unstable point.

Finally, let us discuss the stability of the fixed points E1,2. The Jacobian matrix (4) evaluated at these
fixed points is

J(E1,2) =

(
1 + Aa11 Aa12

Aa21 1 + Aa22

)
, (11)

where

A =
hα

Γ(α + 1)
, a11 = 1 − 2x1,2 −

ωky1,2

(k + x1,2)2 −
lσ

(l + x1,2)2 ,

a12 = −
ωx1,2

k + x1,2
, a21 =

γβy2
1,2

(k + x1,2)2 , a22 = γ

(
1 −

2βy1,2

k + x1,2

)
,

(12)

the variables x1,2 and y1,2 are defined in equation (5). The characteristic equation of J(E1,2) is given by

F(λ) = λ2
− λ (AM + 2) +

(
A2N + AM + 1

)
, (13)

where M = a11 + a22 and N = a11a22 − a12a21.

Theorem 2.8. The equilibrium point E1 is always unstable.
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Proof. Now using the value of E1, we get

F(1) = A2N

= −A2γβx1y1

k + x1

(
−1 +

σ

(l + x1)2

)

= −A2 γx1y1

(k + x1)(l + x1)

√(
ω
β

+ l − 1
)2

− 4l
(
ω
β

+
σ
l
− 1

)
< 0,

which implies that at least one characteristic root is greater than one, thus the fixed point E1 is unstable.

Theorem 2.9. The fixed point E2 of system (4) has at least four different topological types for all permissible values
of parameters:

(i) E2 is asymptotically stable (sink) if one of the following conditions holds:
(i.1) M2 < 4N and 0 < h < h2,
(i.2) M2

≥ 4N and 0 < h < h1,
(ii) E2 is unstable (saddle) if one of the following conditions holds:

(ii.1) M2
≥ 4N and h1 < h < h3,

(iii) E2 is unstable (source) if one of the following conditions holds:
(iii.1) M2 < 4N and h > h2,
(iii.2) M2

≥ 4N and h > h3,
(iv) E2 is non-hyperbolic if one of the following conditions holds:

(iv.1) M2 > 4N and h = h1 or h3,
(iv.2) M2 < 4N and h = h2,

h1 =

Γ(1 + α)
−M −

√

M2 − 4N
N


1
α

, h2 =

(
−Γ(1 + α)M

N

) 1
α

, h3 =

Γ(1 + α)
−M +

√

M2 − 4N
N


1
α

.

Proof. By applying lemma 2.6 and lemma 2.5, we can easily get the stability conditions (i)-(iii). For (iv), if
M2 > 4N, then equation (13) has two real roots. And if F(−1) = 0, i.e.,

F(−1) = 1 + (AM + 2) + (A2N + AM + 1) = A2N + 2AM + 4 = 0.

By simply calculation, we can get h = h1 or h3. On the other hand, the eigenvalues λ1,2 are complex roots if
(AM + 2)2

− 4(A2N + AM + 1) < 0, which leads to

M2 < 4N.

Let h = h2, we get

λ1,2 =
AM + 2

2
±

A
√

4N −M2

2
i,

then equation (13) has two conjugate eigenvalue and the modulus of each of them equals to one.

3. Bifurcations of the Discretized Fractional-Order Predator-Prey Model

In this section, we will analyze the Flip bifurcation and Neimark-Sacker bifurcation behaviors of the
positive fixed point E2 of model (4).
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3.1. Flip bifurcation of the discretized fractional-order predator-prey model
First, we discuss Flip bifurcation by choosing h as the bifurcation parameter. We can see that E2

undergoes Flip bifurcation when one of the eigenvalues of Jacobian matrix at a fixed point is −1 and
another eigenvalues is neither 1 nor −1.

The Jacobian matrix J of system (4) at the positive fixed point E2 is shown as Equation (11). The
characteristic equation of Jacobian matrix J is be written as (13), i.e.,

F(λ) = λ2
− λ (AM + 2) +

(
A2N + AM + 1

)
. (14)

By theorem 2.9, we known that, if M2 > 4N and h∗ = h1 or h3, then the eigenvalues of the fixed point E2 are

λ1 = −1, λ2 = AM + 3.

Meanwhile, the occurrence of Flip bifurcation requires |λ2| , 1, thus h∗ , h4 and h∗ , h5, where

h4 =

(
−2Γ(1 + α)

M

) 1
α

, h5 =

(
−4Γ(1 + α)

M

) 1
α

. (15)

Summarize the above analysis into the following theorem.

Theorem 3.1. The fixed point E2 loses its stability, via a Flip bifurcation when M2
≥ 4N and h = h1 or h = h3 and

h , h4, h5, where

h1 =

Γ(1 + α)
−M −

√

M2 − 4N
N


1
α

, h3 =

Γ(1 + α)
−M +

√

M2 − 4N
N


1
α

,

h4 =

(
−2Γ(1 + α)

M

) 1
α

, h5 =

(
−4Γ(1 + α)

M

) 1
α

.

3.2. Nerimark-Sacker bifurcation of the discretized fractional-order predator-prey model
We next give the conditions of existence of Neimark-Sacker bifurcation by using the bifurcation theorem

[25], where h is chosen as a bifurcation parameter. Neimark-Sacker bifurcation occurs when two eigenvalues
of the Jacobian matrix at a fixed point are a pair of complex conjugate numbers with module one. The
characteristic equation of Jacobian matrix J is be written as (13), i.e.,

F(λ) = λ2
− λ (AM + 2) +

(
A2N + AM + 1

)
.

By theorem 2.9, the eigenvalues λ1,2 are complex conjugate eigenvalue and the modulus of each of them
equals to one for M2 < 4N and h = h2. Under these conditions, there are

λ1,2 =
AM + 2

2
±

A
√

4N −M2

2
i.

Moreover, the occurrence of Neimark-Sacker bifurcation also requires the following conditions,

d =
d|λ(h)|2

dh

∣∣∣∣∣
h=h2

=
αM2

N
h−1

2 > 0, (16)

and
(λ(h2))θ , 1, θ = 1, 2, 3, 4.

In addition, λ2 , 0 and λ4 , 0 equals to
(2 + MA)2

− 2 , 0
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and
(2 + MA)2

− 4 , 0.

Obviously, (16) is right unconditionally and conditions M2 < 4N ensure λ2 , 0 and λ4 , 0 are right
unconditionally. on the other hands, if 2 + MA , 0,−1, i.e.,

AM , −2,−3, (17)

then λ3 , 0. So, we obtain λk
1,2 , 1, k = 1, 2, 3, 4, when AM , −2,−3 holds. Analyzing above and

Neimark-Sacker bifurcation conditions given in [25], we write the theorem as below:

Theorem 3.2. The system (4) undergoes a Neimark-Sacker bifurcation at fixed point E2, if the conditions M2 < 4N,
h = h2 and h , h4, h6 hold, where

h2 =

(
−

MΓ(1 + α)
N

) 1
α

, h4 =

(
−

2Γ(1 + α)
M

) 1
α

, h6 =

(
−

3Γ(1 + α)
M

) 1
α

.

4. Chaos Control

In this section, we study two control strategies in order to move the unstable fractional periodic orbits
or the fractional chaotic orbits towards the stable one. Firstly, we apply the linear feedback control method
[26] to system (4). For this, we assume that the fractional-order controller of (4) is defined by

xn+1 = xn +
hα

Γ(α + 1)

[
xn − x2

n −
ωynxn

k + xn
−

σxn

l + xn

]
+ Sn,

yn+1 = yn +
hα

Γ(α + 1)

[
γyn −

γβy2
n

k + xn

]
,

(18)

where Sn = −p1(xn − x∗) − p2(yn − y∗) is feedback controlling force, p1,2 stands for the feedback gains, and
(x∗, y∗) be unique positive fixed point of system (4). The Jacobian matrix of system (18) evaluated at unique
positive fixed point (x∗, y∗) is given as

J1(x∗, y∗) =

(
1 + Aa11 − p1 Aa12 − p2

Aa21 1 + Aa22

)
, (19)

the variables A, a11, a12, a21, a22 are defined in equation (12). The corresponding characteristic equation of
the Jacobian matrix J1(x∗, y∗) as follow

λ2
− λ

(
AM + 2 − p1

)
+

(
A2N + AM + 1 + Aa21p2 − Aa22p1 − p1

)
= 0, (20)

where M = a11 + a22 and N = a11a22 − a12a21. Let λ1 and λ2 are the eigenvalues of the characteristic equation
(20), then we have

λ1λ2 = (1 + Aa22)(1 + Aa11 − p1) − Aa21(Aa12 − p2). (21)

The lines of marginal stability are determined by solving equations λ1 = ±1 and λ1λ2 = 1. These restrictions
guarantee that the eigenvalues λ1 and λ2 have absolute value less than 1. Suppose that λ1λ2 = 1, then
equation (21) implies that

l1 : (Aa22 + 1)p1 − Aa21p2 = A2N + AM. (22)

We then suppose that λ1 = 1 or −1, then from the equation (20) we obtain

l2 : a22p1 − a21p2 = AN, (23)
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l3 : (Aa22 + 2)p1 − Aa21p2 = A2N + 2AM + 4. (24)

The stable eigenvalues lie within the triangular region bounded by the lines l1, l2 and l3.
Next, in order to control the chaos produced by Neimark-Sacker bifurcation in system (4), we introduce

hybrid control strategy [27]. Assuming that system (4) undergoes Neimark-Sacker bifurcation at fixed point
(x∗, y∗), then corresponding fractional-order controlled system can be written as

xn+1 = ρxn +
ρhα

Γ(α + 1)

[
xn − x2

n −
ωynxn

k + xn
−

σxn

l + xn

]
+ (1 − ρ)xn,

yn+1 = ρyn +
ρhα

Γ(α + 1)

[
γyn −

γβy2
n

k + xn

]
+ (1 − ρ)yn,

(25)

where 0 < ρ < 1 and controlled strategy in (25) is a combination of both parameter perturbation and
feedback control. Moreover, by suitable choice of controlled parameter ρ, the Neimark-Sacker bifurcation
of the fixed point (x∗, y∗) of controlled system (25) can be advanced (delayed) or even completely eliminated.
The Jacobian matrix of controlled system (25) evaluated at positive fixed point (x∗, y∗) is given by

J2(x∗, y∗) =

(
1 + Aρa11 Aρa12

Aρa21 1 + Aρa22

)
, (26)

where the variables A, a11, a12, a21, a22 are defined in equation (12). Then, positive equilibrium (x∗, y∗) of the
controlled system (25) is locally asymptotically stable if roots of the characteristic polynomial of (26) lie in
an open unit disk.

5. Numerical Experiments

In this section, by considering some special cases of system (4), we can confirm above theoretical
analysis, and find some new interesting complex dynamics behaviors. Moreover, linear feedback technique
and hybrid control strategy for chaos control are also supported by numerical simulations.

Example 5.1. We take ω = 0.751, β = 1.571, l = 1.52, σ = 0.485, k = 0.263, γ = 1.362, α = 0.8 and 1.9 ≤ h ≤ 2.9
in system (4), here we discuss Flip bifurcation. By calculation, we know that the system (4) have unique positive fixed
point E2 = (x2, y2) = (0.2476, 0.3250). Moreover, we verify the conditions of Theorem 3.1 as follows: M = −1.3393,
N = 0.2849, M2

− 4N = 0.6544 > 0, h1 = 1.9900, h3 = 11.4357, h4 = 1.5104, h5 = 3.5923. And the characteristic
polynomial evaluated at E2 with h1 = 1.9900 is given by

F(λ) = λ2 + 0.4938λ − 0.5062 = 0. (27)

The roots of (27) are λ1 = −1 and λ2 = 0.5062. Hence, according to Theorem 3.1, the conditions of Flip bifurcation
are obtained near the fixed point E2 at the bifurcation critical value h1.

Furthermore, the predator population and prey population undergo Flip bifurcation diagram are given
in Figures 1(a) and 1(b) and corresponding maximum Lyapunov exponents (MLEs) are shown in Figure
1(c). Meanwhile the phase portraits of system (4) for different values of h are shown in Figure 2.

From Figure 1(a), Figure 1(b) and Figure 2, we can observe that the fixed point E2 is stable for h < h1,
lose its stability at h = h1 and then a cascade of period 2, 4, 8, 16 orbits emerge, finally follow irregular
chaotic orbits with some uncertain period-windows. For example, Figure 2(f) illustrate that orbits of period
6 for h = 2.79, and chaotic attractors for h = 2.79 and h = 2.83 in Figure 2(g) and Figure 2(h). In general, the
positive MLEs is considered to be one of the characteristics implying the existence of chaos. From Figure
1(c), we can see that the MLEs is negative when h < h1, so system (4) is stable at this region. MLE equals to
0 when h = h1, so system (4) is unstable at fixed point E2. And as the increasing of h, MLEs greater than 0
confirm the existence of the chaotic sets.
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Example 5.2. We take

ω = 0.14, β = 2.5, l = 2, σ = 0.01, k = 0.1, γ = 599/422, α = 0.8, h ∈ [1.78, 1.95],

then we get

M = −2.3083, N = 1.3336, M2
− 4N = −0.0059 < 0, h2 = 1.8166, h4 = 0.7649, h6 = 1.2697.

The coefficients of system (4) satisfy Theorem 3.2. By calculation, we known that at h = h2 = 1.8166 the system (4)
have unique positive fixed point E2 = (x2, y2) = (0.9406, 0.4162). The characteristic polynomial evaluated at E2 is
given by

F(λ) = λ2 + 1.9956λ + 1 = 0. (28)

The roots of (28) are λ1,2 = −0.9978 ± 0.066296002896102265691683258835366i with |λ1,2| = 1 and transversality
condition d = 1.7596 > 0. Hence, according to Theorem 3.2, the conditions of Neimark-Sacker bifurcation are
obtained near the positive fixed point E2 at the bifurcation critical value h2.

The Neimark-Sacker bifurcation diagrams in (h, x) plane, (h, y) plane and in (h, x, y) space are shown in
Figure 3(a), 3(b) and 3(c), respectively. Moreover, the corresponding MLEs of Figure 3(a) is shown in Figure
3(d). And the phase portraits of system (4) for different values of h are shown in Figure 4.

From Figure 3 and Figure 4, it is easy to observe that unique positive fixed point of system (4) is locally
asymptotically stable for h < h2 = 1.8166, lose its stability at h = h2 and a stable invariant cycle bifurcates
from the fixed point E2 for h > h2. We also see that quasi-periodic orbits on the invariant cycle arise for
h > h2, some period orbits emerge in the period-windows, for example, period-13 orbits for h = 1.87 in
Figure 4(c), period-11 orbits for h = 1.896 in Figure 4(d), period-9 orbits for h = 1.92 in Figure 4(e), and
period-18 orbits for h = 1.925 in Figure 4(f). The orbits approach to chaos with the increasing of h. Figure 4
(a)-(h) display how a smooth invariant circle bifurcates from the fixed point E2 when h > h2, then the stable
circle disappears and period-13, period-11, period-9, period-18 orbits, quasi-period orbits and chaotic orbits
appear. The MLEs confirm the existence of the chaotic sets in Figure 3(d).

Example 5.3. Next, we take ω = 0.751, β = 1.571, l = 1.52, σ = 0.485, k = 0.263, γ = 1.362, α = 0.8 and
h = 1.9900. In this case, the unique positive fixed point E2 = (x2, y2) = (0.2476, 0.3250) of system (4) is unstable.
The plot of xn is shown in Figure 6(a), and the plot of yn is shown in Figure 6(b) for system (4). Then, the stable
triangular region bounded by the marginal lines l1, l2 and l3 for the controlled system (18) is shown in Figure
5. In order to make the fixed point E2 locally asymptotically stable, we use the linear feedback control strategy.
For this, we consider the corresponding controlled system (18) in which the feedback controlling force is taken as
Sn = −p1(xn − 0.2476) − p2(yn − 0.3250) with feedback gains p1 = −2.171 and p2 = 3.00. The plot of xn is shown
in Figure 7(a) and the plot of yn is shown in Figure 7(b) for system (18). The results of our theoretical analysis are
confirmed.

Example 5.4. Finally, let ω = 0.14, β = 2.5, l = 2, σ = 0.01, k = 0.1, γ = 599/422, α = 0.8 and with initial values
(x0, y0) = (0.9, 0.4), then the second example shows that system (4) undergoes Neimark-Sacker bifurcation as h varies
in [1.78, 1.95]. Moreover, Figure 8 shows that a closed invariant circle appears at h = 1.817 enclosing this unstable
positive fixed point E2 = (x2, y2) = (0.9406, 0.4162). For these parametric values, the controlled system (25) can be
written as

xn+1 = xn +
ρhα

Γ(α + 1)

[
xn − x2

n −
ωynxn

k + xn
−

σxn

l + xn

]
,

yn+1 = yn +
ρhα

Γ(α + 1)

[
γyn −

γβy2
n

k + xn

]
,

(29)

where ω = 0.14, β = 2.5, l = 2, σ = 0.01, k = 0.1, γ = 599/422, α = 0.8, h = 1.817 and 0 < ρ < 1. Then Jacobian
matrix of controlled system (29) evaluated at E2 is given by(

1 − 1.53888ρ −0.21908ρ
0.98276ρ 1 − 2.45689ρ

)
. (30)
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The characteristic polynomial of (30) is given by

λ2
− (2 − 3.99577ρ)λ + 3.99617ρ2

− 3.99577ρ + 1 = 0. (31)

Then, the roots of (31) lie in the unit open disk if and only if 0 < ρ < 0.99990. Moreover, the plots for xn, yn of the
controlled system (29) are shown in Figure 9 with ρ = 0.9935. From Figure 9(a), 9(b) and 9(c), it is clear that the
positive fixed point E2 is stable.
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Figure 1: Flip bifurcation diagram and maximum Lyapunov exponents in the (h, x) and (h, y) plane for ω = 0.751, β = 1.571, l = 1.52,
σ = 0.485, k = 0.263, γ = 1.362, α = 0.8. The initial values is (0.24, 0.32).
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Figure 2: Phase portrait of period-1, period-2, period-4, period-6, period-8 and chaos. Here ω = 0.751, β = 1.571, l = 1.52, σ = 0.485,
k = 0.263, γ = 1.362, α = 0.8. The initial values is (0.24, 0.32).
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Figure 3: Neimark-Sacker bifurcation diagram and Maximum Lyapunov exponents in the (h, x), (h, y) and (h, x, y) plane for ω =
0.14, β = 2.5, l = 2, σ = 0.01, k = 0.1, γ = 599/422, α = 0.8. The initial values is (0.9, 0.4).
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Figure 4: Phase portrait of period-1, period-2, period-4, period-6, period-8 and chaos. Here ω = 0.751, β = 1.571, l = 1.52, σ = 0.485,
k = 0.263, γ = 599/422, α = 0.8. The initial values is (0.24, 0.32).
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Figure 5: Stability region for the controlled system (18).
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Figure 6: Plots for system (4) with ω = 0.751, β = 1.571, l = 1.52, σ = 0.485, k = 0.263, γ = 1.362, α = 0.8, h = 1.9900 and initial
conditions (0.24, 0.32).
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Figure 7: Plots for controlled system (18) with ω = 0.751, β = 1.571, l = 1.52, σ = 0.485, k = 0.263, γ = 1.362, α = 0.8, h = 1.9900,
p1 = −2.171, p2 = 3.00 and initial conditions (0.24, 0.32).
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Figure 8: Plots for system (4) with ω = 0.14, β = 2.5, l = 2, σ = 0.01, k = 0.1, γ = 599/422, α = 0.8, h = 1.817 and initial conditions
(0.9, 0.4).
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Figure 9: Plots for controlled system (25) with ω = 0.751, β = 1.571, l = 1.52, σ = 0.485, k = 0.263, γ = 1.362, α = 0.8, h = 1.817,
ρ = 0.9935 and initial conditions (0.9, 0.4).
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6. Conclusions

In this paper, we have investigated some nonlinear dynamics behaviors of the fractional-order dis-
cretized predator-prey model, in which the modification is based on Leslie-Gower functional response and
Mechaelis-Menten type prey harvesting. Sufficient conditions for existence of the solution of the fractional-
order discrete predator-prey system (4) are have analyzed. Also, we have investigated the local stability of
all the fixed points of the fractional-order system (4). We have deduced that system (4) undergoes Flip bi-
furcation and Neimark-Sacker bifurcation for a small range of bifurcation parameter h. Finally, two control
strategies are successfully implemented to control the chaos due to emergence of Flip and Neimark-Sacker
bifurcations. The analytical results have also been supported with various numerical verifications.
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