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Abstract. Let ¢ be an analytic function in the unit disk D := {z € C : [z| < 1} which has the form
@) =1+ p1z+ paz? + ps2° + -+ - with p; > 0, pa, ps € R. For given such g, let S*(¢), K(¢) and R(¢p) denote
the classes of standardly normalized analytic functions f in ID which satisfy

@ 2f"(2)
@ F@

respectively, where < means the usual subordination. In this paper, we find the sharp bounds of |a,a5 — a4,
where a, := f™(0)/n!, n € N, over classes S*(p), K(p) and R(¢).

p(z), 1+ <pi) f(z)<ep@z), zebD,

1. Introduction

Let H be the class of analytic functions in ID := {z € C : |z| < 1} and let A be its subclass of f of the form
fz)=z+ Za”z”, zeD. 1)
n=2

The subclass of A consisting of univalent functions is denoted by S.

For analytic functions f and g we say that f is subordinate to g and write f < g, if there is an analytic
function w : ID — D with w(0) = 0 such that f = g o w in ID. If g is univalent, then f < g is equivalent to
£(0) = g(0) and f(ID) c g(ID).

Given ¢ € H of the form

p(z) =1+ anz", ze DD, 2)
n=1
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let S*(¢), K(¢) and R(¢p) denote the classes of functions f € A which satisfy

zf'(z) - zf""(z)
f(2) 1@

respectively. Let # be the class of functions ¢ € H of the form (2) having a positive real part in ID, i.e.,
the Carathéodory class of functions. When ¢ € P, then functions in the classes S*(¢) and K(¢) are called
Ma-Minda starlike functions and Ma-Minda convex functions, respectively [12]. Therefore functions in
R(p) can be called of bounded turning of Ma-Minda type. For ¢ € P the inclusions S*(p) € S, K(p) ¢ S
and R(¢) c S hold evidently. Let us emphasize, that in our consideration functions ¢ is not restricted to
the class $, however throughout the whole paper we will assume that p; > 0, p, p3 € R in its power series
(2).

Given0 <a <1land 0 < f <1, define

¢(), 1+ <9@, f@<9e@E), zeD, ©)

1+(1-2a)z o,
qja(z).—T—1+2(1—a)kaz, ZGD, (4)
and
1 B
(p*ﬁ(z):z(lfz) :1+2ﬁz+2[%222+%ﬁ(1+2ﬁ2)z3+~-, zeD. 5)
Let
2
) 2 1+ z 8 16 , 184
(PP(Z).=1+¥(IOg1_ Z) :1+§z+ﬁz +457‘(22 + -, zeDD. (6)

Substituting ¢ = @,, ¢ = (p; and ¢ = @p into (3) we obtain several classes that some of these will be
examined subsequently:

o S*(a) := S8'(pa) — the class of starlike functions of order «;

SS8; = S"((p;) — the class of strongly starlike functions of order g;

S}, := §*(pp) - the class of parabolic starlike functions;

K(a) := K(pa) — the class of convex functions of order «;

SKp = 7(((p;) — the class of strongly convex functions of order f3;

UCYV := K(pp) — the class of uniformly convex functions;
o R(a) := R(¢,) — the class of functions of bounded turning of order a.

In this paper, we computed the sharp upper bound of the functional [,3(f) := a,a3 — a4 over the classes
S*(p), K(p) and R(¢p), respectively. The functional ], 3 is a specific case of the generalized Zalcman functional
Jum(f) = uly —Apem—1, n,m € IN\ {1}, which was investigated by Ma [11] for f € S (see also [14] for relevant
results on this functional). On the other hand, many authors (¢f. [1-6, 8, 15]) computed the upper bound
for the functional ], 3 over various subclasses of A to obtain a bound for Hankel determinant

ay dp 4as
H31(f) =2 a3 a4, feA,
az 4a4 as

of third order using the inequality

2
IH3(f)| < lasllazas — a3) + |agllazas — ag| + lasllas — a3l, f € A.
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Refer to [9] for the study of the functional Hys(f) := axas — ag, i.e., the Hankel determinant of the second
order over the classes S*(¢) and K(¢).

In Section 2 we introduce some lemmas which will be used for proofs main results. Sharp bounds for
the functional J,3 over the classes S*(¢), K(¢) and R(@) are computed in Sections 3, 4 and 5, respectively.
Some specific functions are examined in each section also.

2. Preliminary results

Let B, be a subclass of H of functions w of the form
w(z) = Z c.z', zeD, (7)
n=1

such that w(0) = 0 which map D into itself, and called Schwarz functions. Clearly, w € 8 if and only if
o=01+w)/1-w)eP.

In [13], Prokhorov and Szynal investigated the sharp upper bound for the functional W over the class
By, where

W(w,v) = los + pcrca +vell,  (u,v) € R? (8)

and ¢; (i = 1,2, 3) are the coefficients of functions in By with the form given by (7). Moreover the extremal
functions for each cases (u,v) € D; (i = 1,2,--- ,12) were given in [13, p. 135]. Here, D; (i = 1,2,---,12) are
the set defined as in [13, p. 127] such that U}?, D; = R?. Recall that the extremal functions are given by

L w(z) =23 when (u,v) € D; UD, U{(2,1)};
II. w(z) =2z when (u,v) € U,Zzg, Dx.

However the explicit form of the extremal functions for the cases (1, v) € Dg U Do, (u,v) € D1g U D11 \ {(2,1)}
and (u,v) € D1 have not been dealt with at all until now. In this section we will obtain the extremal
functions w € By with the explicit form for the cases above.

To do it, the following result shown by Kwon et al. [7] is required. We remark here that a special case of
the proposition below matches to [10, Lemma 2.3]. Let T = {z € C: |z| = 1}.

Proposition 2.1 ([7]). Let ¢ € P be of the form (2) with p1 € [0,2) and for C€ T,
2p2 = pi + L4 — p)). ®)
Then ¢ must be of the form

_1+p(1+ 0z + (2
T 1-p(1-0z -z

¥(z) zeD, (10)

where p € [0,1).

Let w € By be of the form (7) and ¢, = (1 — c%)C holds for some C € T. Then ¢ := (1 + w)/(1 — w) € Pis of
the form (2) and therefore

p1=2c1, p2= 2(c% +c), p3= 2(0;’ + 2¢105 + C3).

Hence and from equality ¢; = (1 - C%)C, it follows that (9) holds. By Proposition 2.1 the function ¢ is of the
form (10). Since w = (¢ — 1)/(¢ + 1), we get the following lemma.
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Lemma 2.2. Let w € By be of the form (7) with c; € [0,1) and ¢; = (1 - c%)C for some C € T. Then w must be of the
form

_zp+ &)
CU(Z) = m, e, (11)
where p € [0,1).

From Lemma 2.2, the statements III, IV and V in [13, p. 135] can be replaced by III’, IV" and V’ below,
respectively, i.e., the extremal function w has the form (11) with

nr. p= \/(y +1)/3(u +1+v)) and C = =1, when (u,v) € Dg U Dy;

IV'. p = /Bu2 - 2(u% +2)v)/B(v — 1)(4v — u?)) and C = €%, where 6 is defined by

HI2(* +2) = (u® + 8)v]
2[3u? = 2(u% + 2)v]

6Oy = + arccos

when (y,v) € D1p U D11 \ {(2,1)};

V. p=+(u—-1)/@(u-1-v))and C =1, when (u,v) € Dra.
With the aid of [13, Lemma 2] and the extremal functions given in I, II, III’, IV, V’, from here, we will
obtain the sharp bounds of |a,a; — a4 over the classes S*(p), K(¢) and R(p).
3. The class S*(¢)

In this section, we deal with the class S*(¢). Given ¢ € H of the form (2) with p; > 0, p» and p3 € R, let
f € 8*(p) be of the form (1). Then there exists w € By of the form (7) such that

% =¢p(w(z)), zeD. (12)

Substituting the series (1), (2) and (7) into (12) by equating the coefficient we get

1 1
m=picr, a3=z[pic+ Pl +pa)ci]l and  as = —[2pics + 3p + 4pa)cica + (B3 + 3pipa + 2p3)ci]. (13)
2 6

Hence
1
laxas — as| = gr)l‘l’(.ﬁ/ ), (14)
where W is defined by (8),

2 PP
[J:— V= .

p 2
Thus by applying the result in [13, Lemma 2], the sharp bound of (14) is one of the following values:

1 1 2V3(py + 2lpal)*?
Ay = 3P Ap = §|P3 —-pil, As:= Lo ,
27 \/pl —p3 +2pal + ps

2\/5 — 3\(2 _ 112)3/2 24/3(2 _ 1)\3/2
A (ps = PD(p3 — D) and As = V3Q2Ipal - p1)

27(p3 + pi = p1p3) \JP1(Ps —p1 — P} 27 \/ZIsz —p1+p]—ps
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Now, for each i = 1,...,5 consider the functions whose coefficients satisfy equality |aza3 — as| = A;. To
do this, define

f(Z)ZzexP[ﬁz %dé], zeD. (15)

Taking u = fi and v = ¥ in [13, Lemma 2], we get the following functions which are extremal ones for each
case.

(1) |azas — a4| = A1 holds for ﬁ := f, where f is the function defined by (15) with w(z) = 2%, z € ID;
(2) laxaz — ay] = Ay holds for f; := f, where f is the function defined by (15) with w(z) = z, z € ID;
(3) laxasz —a4| = Az holds for f; := f, where f is the function defined by (15) with w defined by (11), where

2
o= l72+Pl3 and C=-1;
3Q2p2+p1—pi +1p3)

(4) |azaz —ag| = A4 holds for ﬁ; := f, where f is the function defined by (15) with w defined by (11), where

C — ei@g

_ \/P‘? + 3PP + 2055 — Pips = PP
3(p1 +p3 = pa)p} + p3 — pap3)
and
p22p] + 2p1p] + pi(1 + p) = 2pips — paps) |

PP} + 3p1p5 + 2p3p5 — Pips — 2p5p3)

Oy ==+ arccos(

(5) l|azas —a4| = As holds for f; := f, where f is the function defined by (15) with w defined by (11), where

2p, —
p= P2 P13 and C=1
3(2p2 —p1 +pj —p3)

From the above consideration it follows the following sharp upper bound of the functional J, 3 over the

class S* ().
Theorem 3.1. Let ¢ € H be of the form given by (2) with p1 > 0, p2, p3 € R and let

4(p1 + 2lpal)® 5o e i 4 P1IP2IQPL+ 20p2])

A 3
61 :=p; —p1 = 2lp2l + , 02 ,

s pa+ Zp%

2 -p
Py 3 P1|P2|( |P2| 1) and Py 3
3p1

L P pipal + 9}
Let f € S*(@) be of the form given by (1). Then the following sharp inequalities hold:
A. When |pa| < p1/4:
(a) If p3 —p1 < p3 < p3 + p1, then |azas — asl < Ay and the extremal function is fi;

(b) Ifps < p3 —p1orps > p3 + py, then |azas — asl < A, and the extremal function is f.

B. When p1/4 <|p2l <p1:
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(a) If 61 < p3 < pf + p1, then |axas — ag| < Ay and the extremal function is fl ;
(b) Ifps < (3p3 = 2p1 — 4lpal)/3 or p3 = p3 + p1, then |azas — as| < A, and the extremal function is fo
(c) If (3;7? —2p1 — 4lpal)/3 < p3 < 61, then |axas — ay| < Az and the extremal function is fg
C. When py < |p2| <2p1 -
(a) If ps < (Bp3 —2p1 — 4lpal) /3 or p3 = Gy, then |ayas — a| < Ay and the extremal function is f
b) If (3pi’ —2p1 — 4lp2l)/3 < p3 < 6, then |axas — ay| < Az and the extremal function is f;;
(c) If 62 < p3 < G4, then |agas — as| < A4 and the extremal function is f;
D. When |pa| = 2p; :
(a) If ps < (Bp3 —2p1 —4lpal)/3 or ps = (3p] —2p1 +4ip2l)/3, then |azas — as| < A, and the extremal function
is fz,‘
(b) If(3pf —2p1 — 4lpal)/3 < p3 < 6, then |axas — ay| < Az and the extremal function is f;;
(c) If 62 < p3 < 63, then |axas — as| < Ay and the extremal function is ﬁ;

(d) If65 <ps < (3p§’ —2p1 + 4lpal)/3, then |azas — ay| < As and the extremal function is f:;

Example 3.2. (see [4, Theorem 2.1]) Let a € [0,1) and let f € S*(a) = S*(pa), where @, is defined by (4). Since
p1 =p2 = p3 = 2(1 — a), we see that p1/4 < |p2| < p1 for all @ € [0,1). Note that 61 > p3 for all a € [0,1),
since 61 — p3 = 8(1 — a)>. Note also that ps — 3p3 — 2p1 — 4|p2))/3 = —2(1 — a)(1 — 8a + 4a?). Therefore, for
a €[0,(2 — V3)/2] the inequality p; < (3p3 — 2p1 — 4lp2l)/3 holds. Hence by Theorem 3.1.B.(b) we have

2
laas —ay| < Ay = 3(3 —11a + 1202 — 4a°%)

when a € [0, (2 — V3)/2]. The equality holds for the function

~ z (Pa(é) -1 zZ
fa(z) = zexp ([) z dé) = 1=z’ ze DD,

which is in S*(). On the other hand, for a € [(2 — V3)/2,1), the inequality p3 > (3p3 — 2p1 — 4lp2)/3 holds and this
fact with Theorem 3.1.B.(c) yield the sharp inequality

2(1-a
|112(13—€l4| SA3 = #
3yal2 - a)

The equality holds for the function

2oy Fpa(E) -1\ “2(1-a)(p - &)
f3(Z) =zexp (j(; Tdé) =zexp (j(; mdé , z€DD,

with p = 1/(2 /a2 — a)), which is in S*(a).

Example 3.3. (see [3, Theorem 2.1]) Let B € (0,1] and let f € SS; = S*(gol*g), where ¢, is defined by (5). We have

p1 = 2B, p2 = 2p* and ps = 2B(1 + 2p*)/3. Firstly, let B € (0,1/4]. Then p, < p1/4and p3 —p1 < p3 < p3 +p1.
Hence by Theorem 3.1.A.(a), we get the sharp inequality

2
lasas — ay| < §ﬁ' (16)
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The equality holds for the function

3
fl(z)—zexp[f (1+§3 —1]dé], zeDD,

which is in SS;. Now, let fix B € [1/4,1]. Thenp1/4 < |p2| < p1andps < p3+p1. Notealso that (3p3 —2p1 —4p2)/3 <
ps when B € [1/4,(2 + V34)/10] and (3p3 — 2p1 — 4p2)/3 > ps when B € [(2 + V34)/10,1]. We have

. 4 2 3

61— ps = -p(-16 — 158 + 69 + 165°).

Hence 61 < p3 for B € [1/4,61] and 61 = p3 for B € [p1,1], where B1 = 0.559 is the zero of the equation
—16 — 15x + 69x% + 16x° = 0. Consequently, for B € [1/4, 11, by Theorem 3.1.B.(a) the sharp inequality (16) holds.
The equality holds for fy defined above. For B € [B1,(2 + V34)/10], by Theorem 3.1.B.(c) we get the sharp inequality

2V2B(1 +2p)*/?

lazas —as| < Az =
921353

The equality holds for the function

(2) = le 1_—52ﬁ_1 dé eD
f3(z) = zexp s t\Toper 2 , Z ,

where p = /(1 +2)/(3(1 + 3B — 4p%)), which is SSy. When f € [(2 + V34)/10,1], by applying Theorem 3.1.B.(b)
we get the sharp inequality

2
laxas —ag) < Ay = §;3(1052 -1).

The equality holds for the function

fZ(Z)‘ZeXP[fé((%)—l)dé], zeD.

which is in SS;.

4. The class K(¢p)

Given @ be of the form (2) with p1 > 0, p2, p3 € R, let f € K(¢p) be of the form (1). Since zf'(z) € S*(p),
from (13) we obtain

1 1
a = EPlCl, az = g[plcz + (p% + po)c ] and a4 = —[2p1C3 + (3p1 +4py)cicr + (p1 + 3p1p2 + 2p3)c 1]
Hence
(123 — sl = —p1 W (@, 7)
203 — d4| = 12171 w,v),
where W is defined by (8),

A 2yt pipa—

‘Ll - 2p1 V= 2p1
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Therefore, by applying the result in [13, Lemma 2] the sharp bound of the functional J,3 over the class K(¢)
is among the following values:

1

1 V3(Ip? + 4pa| + 2p1)°?
By = P B = ﬂh?? —-pip2 —2p3l, Bs:= 1

7

108 \/lpf +4po| + 2p1 — p3 + pip2 + 2ps

\/6(—;9? + p1p2 + 2p3)(p] + 8p2p2 + 16p3 — 16p3)%/2
432(9p} + 16p3 — 16p1ps) \/Pl(—Pi’ +p1p2 +2p3 = 2p1)

4 1=

and
V3(Ip? + 4pa| — 2p1)>/?

B5 = .
108 \/lp% +4pa| = 2p1 + P — p1p2 — 2ps

Now, foreachi =1,...,5 consider the functions whose coefficients satisfy equality |a2a3 —a4| = B;. To do
this, define

z C _
f(z) =j(; (exp [j(; %dé]) d¢, zeD, (17)

where w € 8. Taking u = i and v = 7 in [13, Lemma 2], we get the following functions which are extremal
ones for each case.

(1) |apas — a4| = B1 holds for fl := f, where f is the function defined by (17) with w(z) = z°, z € D;
(2) |azas — a4| = B, holds for f; := f, where f is the function defined by (17) with w(z) = z, z € D;
(3) l|azas — a4 = B3 holds for ﬁ, := f, where f is the function defined by (17) with w defined by (11), where

2+ 4p, +2
p= - T i —~ and C=-1;
3(;71 +4py +2p1 + 2p3 + pap2 — pl)

(4) |azas — a4] = B4 holds for f:; := f, where f is the function defined by (17) with w defined by (11), where
p = 4/(2x1)/(Bx2), C = e'% and 0y = + arccos(k3/xs), and where

K1 1= pp +16p1(3 = p2)ps + 8pipa(2 + p2) + p(11 + 7p2) — 2p1ps — 32pps — 16p7(1 + p2)ps,

K2 = (P} + P12 = p2) = 2p3)(9p} + 16p; — 16p1p3),
K3 1= (p] + 4p2)[4p1(8p] + (pT + 4p2)*) + (p] + 16p5 + 8p2(4 + p2)) (3 — pap2 — 2p3)]

and
Kq = 24P (2 + 4p2)? + 8p1(8p2 + (P + 4p2) ) (P2 — pip2 — 2p3);

(5) lazas — a4] = Bs holds for f?; := f, where f is the function defined by (17) with w defined by (11), where

2 +4p, —2
o= . i e — and C=1.
3(py +4p2 = 2p1 — 2p3 — p1p2 + py)

From the above consideration it follows the following sharp upper bound of the functional J, 3 over the

class K(g).
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Theorem 4.1. Let ¢ € H be of the form (2) with p1 > 0, p2, p3 € R and let

(Ip? + 4pa| + 2p1)°
54p3

1 1 1
1= EP? — P2 —pL- §|Pf +4ps| +

et}

7

s 1, 1 .\ p1(2p} + 16p2py + 32p3 + 4palp? + 4p2l)
2= QT Qi pl + 8p2py + 16p3 + 16p7 + 4p:|p3 + 4p,|’

03 = 1193 - 1171?72 + p1(@py + 16pipa +32p; — dpi|p + 4pal)
P17 3 P} + 8p3ps + 16p3 + 16p? — 4p1|p2 + 4po

and

1,1 +p‘11+8p%p2+16p§+32p%
Ll 48p; ‘

Let f € K(¢) be of the form given by (1). Then the following sharp inequalities hold:
A. When |p3 +4py| < p1 :

(@) If (3 = 2p1 — p1p2)/2 < p3 < (p3 + 2p1 — p1p2)/2, then |azas — as| < By and the extremal function is fy;
(b) Ifps < (p] = 2p1 — p1p2)/2 07 p3 = (p3 + 2p1 — p1p2)/2, then lasas — as| < By and the extremal function
is f.
B. When py < |p2 + 4pa| < 4p; :

(a) If 61 < p3 < (p? — p1p2 + 2p1)/2, then |axas — ag| < By and the extremal function is f];

(0) If ps < (3py = 3p1p2 —4p1 = 2p] + 4pal)/6 or ps = (P} = prp2 + 2p1)/2, then lazas — as| < By and the
extremal function is f»;
(c) If (3pi’ = 3p1p2 —4p1 — ZIpf +4p,)/6 < p3 < 51, then |azas — as| < Bs and the extremal function is fs.

C. When 4p1 < |[p? + 4pa| < 8p1 :

(a) If p3 < (3pf = 3p1p2 —4p1 - 2|p% +4ps)/6 or p3 = G4, then |axas — as| < By and the extremal function is

fo;
(b) If (3p3 — 3p1p2 — 4p1 — 2|p3 + 4p2l)/6 < p3 < &2, then |azas — ay| < Bs and the extremal function is f

(c) If 52 < p3 < 34, then |apas — ag| < By and the extremal function is f;
D. When |p3 + 4ps| > 8p; :
(a) Ifps < (3p3 —3p1p2—4p1 —2|;~7% +4pa|)/6 07 p3 > (3p3 —3p1pa —4p1 +2|p2 +4p2l) /6, then lazas —as] < B,
and the extremal function is f,;
(b) If (3p3 — Bp1p2 — 4p1 — 2|p? + 4p2l) /6 < p3 < &y, then lazas — as| < Bs and the extremal function is f3;
(c) If 52 < p3 < 33, then |ayas — as| < By and the extremal function is f:;;

(d) If 53 < p3 < B3 — 3pip2 — 4p1 + 2|p% + 4pal) /6, then laras — ay| < Bs and the extremal function is fs.

Example 4.2. Let a € [0,1) and let f € K(a) = K(pa), where @, is defined by (4). Since p1 = p2 = p3 = 2(1 — a),
it follows that 4p; < p} + 4p, < 8py for all a € [0,1). Note also that p3 > (3p3 — 3p1p2 — 4p1 — 2lpT + 4p2)/6 for all
a €1[0,1). We have

p3— G4 = %(1 — a)’(~17 + 25a).
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Thus p3 > G4 for a € [17/25,1). Therefore, by Theorem 4.1.C.(a) we get the sharp inequality
laraz —ay| < B, = %0{(3 —5a +2a?).
The equality holds for the function
fz) = ((1 2*7'-1), zeD,

which is in K(a). When o € [0,17/25], then ps < 54. We have

2(1 — @)?(24 — 47 + 170 — 20(3)
19 — 8a + a?

02 —p3 =

If a € [0, 1], where ay ~ 0.653 is the zero of the equation 24 — 47x + 17x* — 2x> = 0, then &, > p3. Therefore by
Theorem 4.1.C.(b) we get the sharp inequality

Vé(1 - a)(4 — a)*/?
542 +a-a2

The equality holds for the function

f;(z) :f [exp (2(1 a)f (gp;) 5 5)] d¢, zeD,

withp = \J(4 — a)/(6(a? — a — 2)), which is in K(a). Ifa € [a1,17/25], then 52 < ps. Therefore by Theorem 4.1.C.(c)
we get the sharp inequality

lasas —ay] < B3 = a €[0,aq].

V3a3 - 2a)(5 — a)*?
486V2a -1
The equality holds for the function

N ¢ (p+C&)
f4(z)—f0[exp(2(1—a)fo 1+p(C—1)E—CEZd£)]dC' zeD,

where

lagas —as| < By = € [a1,17/25].

—27 + 57a — 2642 + 4a3
27(1 — a)?(-1 + 2a)
and C = e'% with

(=3 + a)(=22 + 41a — 13a? + 2a°)
54 — 114a + 5202 — 8a3 ’

6y = arccos(

which is in f:; € K(a).

Example 4.3. Let § € (0,1] and consider the function f € SKp = 7(((;7;), where @ is defined by (5). Then p1 = 2,

p2 = 28 and p3 = 2B(1 +2p%)/3. Note that (p3 —2p1 — p1p2)/2 < p3 < (P +2p1 — p1p2)/2 for all B € (0, 1]. Firstly,
let B € (0,1/6]. Then p? + 4pa < p1. Thus from Theorem 4.1.A.(a) we get the sharp inequality

1
lapas — ay| < gﬁ. (18)
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The equality holds for the function

- ; “1((1+&
fl(z)zf(;(exp{j(; E((1—53) —1]dEDdC, zeD, (19)

which is in SKp. Let now p € [1/6,2/3]. Since

51—p3 = —%ﬁ@z +458 — 117p% — 1086°),
we see that 51 < ps when p € [1/6,p,] and 61 > p3 when B € [B2,2/3], where B, = 0.568 is the zero of the equation

32 + 45x — 117x* + 108x” = 0. Therefore, if p € [1/6, p2] by Theorem 4.1.B.(a) the sharp inequality (18) holds with
f1 defined by (19) as the extremal function. If B € [B2,2/3], then taking into account that

1 2
8(3P? —3pip2 — 4p1 — 2p? + 2pal) — ps = —55(3 +68—p) <0, Be(0,1], (20)
by Theorem 4.1.B.(c) we get the sharp inequality

(1 +3p)>?
IVE+IB-B

The equality holds for the function

» 3 Z C 1 1- 52 B
f3(Z) = j(; (exp [j; E ((m) - 1] dé}) dc, zZ € D, (22)

where p = /(1 +3B)/(4 + 98 — B2), which is in SK. Let now B € [2/3,1]. Since

lagas — as| < (21)

2B(4 — 128 — 498% — 68> — 9B%)
3(4 + 68 + 9p2)

P3_52: <Or ﬁ€[2/3/1]r

by (20) we have (3p3 — 3p1p2 — 4p1 — 2Ip] + 4pal)/6 < ps. Thus from Theorem 4.1.C.(b) it follows that the sharp

inequality (21) holds with the f3 defined by (22) as the extremal function. Summarizing, we get the following sharp
result. Let B € (0,1] and f € SKj be of the form (1). Then

g, Be (0Bl

lazas —as| < 4 pa+3p??

sy el

Example 4.4. Let f € UCYV = K(pp), where @p is defined by (6). Since p1 = 8/n?, p» = 16/(3n?) and
ps = 184/(457%), we can easily check that 5, < p3 < (p3 — p1p2 + 2p1)/2. Therefore by Theorem 4.1.B.(a) we get the
sharp inequality

ara3 — Ay < —.
| | 32

The equality holds for the function

Z C
A = fo (exp[ fo %(w(?)—l)d&])dc, zeD,

which is in UCYV.
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5. The class R(p)

Given ¢ € H of the form (2) with p1 > 0, pp, p3 € R, let f € R(p) be of the form (1). Then there exists
w € By of the form (7) such that

@) =¢w(z), zeD. (23)

Substituting the series (1), (2) and (7) into (23) by equating the coefficient we get

1 1 1
ap = 561171, as = g(Czpl + C%Pz) and a4 = Z(Capl + 2c10p2 + ci’p3).
Hence
1 . .
lazaz — a4l = Zpl‘l’(.ul V),

where V is defined by (8),
o 2(3p2 —p3) 5= 3ps = 2p1p2
H 3]71 ! 3p1 )

Therefore, by applying the result in [13, Lemma 2], the sharp bound of the functional ], 3 over the class R(¢)
is among the following values:

V3(213p; - P3|+ 3p1)*/?
54 \/2|3p2 — P21+ 3p1 — 2p1p2 + 3p3

1 1
C = 1P G = ﬁ|3P3 =2pipal,  Gai=

4

. (3}73 - 2]71}72)(9]()% - 6;7%;72 + lel _ 9p%)3/2
4 p—t
54[(p? — 3p2)? + 3p1(2p1p2 — 3p3)] Vp1(3ps — 2p1p2 — 3p1)

and
.. V3(213p2 — p2| - 3p1)*?
5= .
54 \/2|3p2 — P2l = 3p1 + 2172 - 3p3
Define
f@= [ pwend, zeD, 1)
0

and by applying the analogue methods in Section 3 and 4, let us define the functions f; (i = 1,...,5) as
follows:

(1) f1 = f, where f is the function defined by (24) with w(z) = z°, z € D;
(2) fz = f, where f is the function defined by (24) with w(z) = z, z € D;

(3) f3 = f, where f is the function defined by (24) with w defined by (11), where

_ 3p1 = 2p% + 6p2
P 3(3P1 - ZP% + 6]92 - 2P1p2 + 3}’)3)’
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4) f4 = f, where f is the function defined by (24) with w defined by (11), where p = /x1/(3x2), C = €%
and 6y = + arccos(k3/x4), and where

K1 = =12p3pa(3 + 2p2) + p3(9 + 4p2) + 9pap5(9 + 4p2) — 6pips — Sdpops + 9pi(=3 + 4p2)ps,

12 = (p1(3 + 2p2) — 3p3)(p} + 93 — 9p1pa),
K3 1= (P} = 3p2)[=2p] (3 + p2) = 18p1p3(3 + p2) + 3pi(=9 + 4p3) + 3pips — 18p3(=3 + pa)ps + 27p3ps]

and
ks 1= 3p1[=12p%p2(3 + 2p2) + P39 + 4p2) + Ip1p3(9 + 4p2) — 6pips — 54p3ps + Ip3 (=3 + 4p2)psl;

(5) f5 = f, where f is the function defined by (24) with w defined by (11), where

~ 3p1 +2p% — 6p2 (-1
P = \3Gp1 + 207 — 6p2 — 2p1p2 + 3p3) '

The following sharp upper bound of the functional J, 3 over the class R(¢) holds.

Theorem 5.1. Let ¢ € H be of the form (2) with p1 > 0, p2, p3 € R and let

P T T o —pl+dp) 2 pil26p2 = p1) +3pip — pil
1= 32T g T 72997 ; 025= 3PP (72— 3p2) + 97 + 3pilp? — 302l
L2 P2Cp2 —piP —3piBp—pill 2 93— 6pipa+pi + 187
3 3P1P2 (P% ~ 3P2)2 n 9P% “3m |Pf ey 4 3P1P2 27 .

Let f € R(p) be of the form (1). Then the following sharp inequalities hold:

A. When 4]3p, — p3| < 3p :
(a) If p1(2p2 —3)/3 < p3 < p1(2p2 + 3)/3, then |azas — as| < Cy and the extremal function is ﬁ;
(b) If ps < p1(2p2 — 3)/3 or p3 = p1(2p2 + 3)/3, then |azas — a4| < Cy and the extremal function is fz

B. When 3py < 43p> — p3l < 12p1 :
(a) If 61 < p3 < p1(2p2 + 3)/3, then |axas — ay| < Cy and the extremal function is f1 ;
(b) If pg, < (6p1p2 — 4|p% —3p2l—6p1)/9 or p3 = p1(2p2 +3)/3, then |azas —as| < Cy and the extremal function

is fo;

(c) If (6p1p2 — 4lp3 — 3pal — 6p1)/9 < p3 < 61, then |azaz — ay| < Cs and the extremal function is f.

C. When 3py < [3p, — p2| < 6p1
(a) If p3 < (6p1p2 — 4Ip% —3pal — 6p1)/9 or p3 = G4, then |azas — ay| < Cy and the extremal function is f;;
(b) If (6p1p2 — 4|p% —3pa|l = 6p1)/9 < p3 < G2, then |axas — ay| < Cs and the extremal function is f3
(c) If 62 < p3 < Gy, then |aas — as| < Cy and the extremal function is f°4.

D. When |3p; — p?| > 6p1 :

(@) Ifps < (6p1p2 — 4IP3 = 3pal = 6p1)/9 07 p3 = (6p1p2 + 4lp7 — 3pal — 6p1)/9, then |axas — as] < Cy and the
extremal function is fo;
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(b) If (6p1p2 — 4|p% —3pa|l = 6p1)/9 < p3 < G2, then |axas — ay| < Cs and the extremal function is f3
(c) If 62 < p3 < G3, then |aas — as| < Cy and the extremal function is fZ;

(d) If 63 < p3 < (6p1p2 + 4|p% — 3pal — 6p1)/9, then lazas — as| < Cs and the extremal function is f5

Example 5.2. (see [6, Theorem 2.1]) Let @ € [0,1) and f € R(a) = R(pa), where @, is defined by (4). Since
p1 = p2 = p3 = 2(1 — a), we see that 3py < 4|3p, — p3| < 12py for all a € [0,1). We have

and

1
51— p3 = —%(1 —a)*(59 + 152a + 32a%) <0, a<€]0,1)

p3 — %pl(sz +3) = —2(1 —a)? <0, acl0,1).

Thus 61 < p3 < p1(2p2 + 3)/3 and by Theorem 5.1.B.(a) we get the sharp inequality

1
|ﬂzﬂ3 - a4| < 5(1 - D().

The equality holds the function

(141 -20)8
fl(z)_LTdér zeD,

which is in R(a).
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