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Classes of Analytic Functions Related to Blaschke Products
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Abstract. Basing on the well known Riesz Theorem on the canonical factorization of bounded analytic
functions, we distinguished the subfamilies of the Carathéodory class of functions. The basic properties of
introduced classes have been proved. Related classes of analytic functions are discussed also.

1. Introduction

Let H Dbe the class of all analytic functions in the unit disk ID := {z € C : |z| < 1}. Subclasses of H,
particularly subclasses of univalent functions are the basic subject to study in the geometric function theory.
There are several classic methods of distinguishing such subfamilies. One of them is based on geometrical
view. In this way e.g., Study [15] in 1913 introduced convex functions, Alexander [1] in 1915 starlike
functions and Robertson [14] in 1936 functions convex in one direction. References for these and other
classes see e.g., [5]. Many of such families of functions have an analytical description expressed in term
of Carathéodory class of functions, i.e., the family P of functions p € H normalized by p(0) := 1 with a

positive real part. Let us say that ¥ in H is such a class. Therefore each subclass, say P of P, creates a
corresponding subclass ¥ in . One can restrict the range of p(ID) to a given domain e.g., to a sector, a disk,

a conic domain etc. lying in the right halfplane to define the subclass P and the corresponding subclass F .
One can modify the power series of p € P, e.g., by removing a polynomial part. Given m € IN, consider a
subfamily #,, of P of all p of the form

pz) =1+ Z azf, zeD. (1)
k=m

One can restrict the coefficients of the above series to real, negative etc. The concepts of a-convexity and
y-starlikeness were at the base of the subclass construction technique illustrate the technique by using of
real or complex parameters. This method has been intensively developed over the last 50 years.

In this paper, we propose a method of distinguishing subclasses in $ based on famous Riesz Theorem
on the factorization of functions in the Hardy classes, so in particular of bounded analytic functions. Since
there is a one to one relationship between the class £ and the class By of Schwarz functions, i.e., of self
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analytic mapping of ID with a fixed point at the origin and in general between the class $,, and the class
Bom of Schwarz functions having zero at the origin of order of at least m, the factorization of the class By
can be transferred to the class P, so in the next step to the corresponding class #. Thus classes such as
starlike, convex and other can be factorized through the suitable representation of . What is important,
they are defined by zeros of Schwarz functions. In this way, the geometry of zeros both of their module
and of oscillation plays a fundamental role for the corresponding families in H.

In addition to the definition of new classes, the main purpose of the work is to prove the basic theorems,
i.e., growth and distortion theorems (Theorems 3.3 and 3.7) and Theorem 3.5 in the newly introduced
families of Carathéodory functions that are tools for examining other classes. Next we apply them to
discuss the radii of convexity. In the last section we show that the upper bounds of the classical well known
coefficient functionals on the whole class # can be expressed in therm of zeros when instead of  we take
its subclass related to the same zeros and that the new results are more detailed than the classical.

Givenr € (0,1),1et T, := {z € C: |z| = r} and let T := T;. Let B be the class of all w € H such that
lw(z)| < 1 for z € D, and B° be its subclass of non-vanishing functions in D. Let B be the class of Schwarz
functions, i.e., of all w € B keeping the origin fixed.

Let DY := D\ {0}. Given a € D, let

zZ—Q
= eD
Pa(2) T 2¢€D

denote the Blaschke factor. A sequence of points A = (ax) € (ID°)™ is said to satisfy the Blaschke condition if

Y (= lal) < o0,
k=1

which guaranties convergence of the product

Ba@ =[] %’:"'%k(z), zeD.

keN
A function B(z) := z"B(z), z € D, with m € IN U {0}, is called the Blaschke product. When A(IN) = 0, set
Bu(z) :=1, z € D, and then

Ba(z) =z7z", zeD.
Given k € N, let Ay := (ID°)* and let Ag := {0}!. Let Ao be the subset of (ID°)™ of all sequences which

satisfy the Blaschke condition. Let

A= U Ar.

keNUJ0,00}

2. Subclasses of analytic functions

For f € H let Z(f) be the set of all zeros of f in ID° counting with their multiplicities. Since Z(f) is
countable, it can be considered as an element of A. As it is known, the sequence Z(w) of each bounded
analytic function w, so in particular, of each Schwarz function, satisfies the Blaschke condition. Moreover,
by Riesz Theorem (e.g., [6, p. 283], [2, p. 20]) each w € B has a unique canonical factorization

w(z) = 2"Bzw)p(z), z€D, (2)

where m € N and ¢ € B°. Thus B(z) = z2""Bz,)(z) for z € ID, is the Blaschke product with the same zeros as
the function w. In additional, the function ¢ can be uniquely represented as a product of some inner and
some outer function. Vice versa, each function

w(z) :=2"Ba(2)p(z), ze€D, (3)

withm € N, A € A and ¢ € B°, is a Schwarz function. This is a starting point for further considerations.
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Definition 2.1. Given m € N and A € A, let B(m, A) denote the class of functions of the form (3), where ¢ € B.
Let B%(m, A) be the class of functions of the form (3), where ¢ € B°.
When B, = 1, i.e., when A(IN) = 0, we will write B(m) and B°(m) instead of B(m, \) and B(m, N), respectively.

Closely related to the class By is the class . Namely, if v € By, then

_1+w
T1l-w

p: eP. 4)

Vice versa, if p € P, then

I-p
a).—mego. (5)

Definition 2.2. Given m € N and A € A, let P(m, A) denote the class of functions p € H of the form

_ 1+2"Bs(2)p(z)
PO = T,

Let P%(m, A) be the class of functions of the form (6), where ¢ € B°.
When B, = 1, we will write P(m) and P°(m) instead of P(m, A) and P°(m, A), respectively.

zeD, peB. (6)

Clearly, P(m, ) C Py,. When p € P, then w given by (5) is in By, so has a unique factorization (2). Hence
and by (4) a function p is uniquely representation as

_ 1+2"B(z)p(z)
p(z) - 1 _ ZmB(Z)(P(Z)’ zZ€ 7
with ¢ € 8°.

The Carathéodory class is the basic tool for analytic description of the well known classes of analytic
functions. Let us recall some of them. Given m € IN, let A,, of be the subset of H of all f of the form

(o)
f@)=z+ Z Az, zeD.

k=m

Let A := A; and let S be the class of all univalent functions in (A.
Let §* be the class of starlike functions, i.e., of all f € A such that

zf'(z) = f(2)p(z), z€DD,

for some p € P (see e.g., [3, p. 41]). The class S* contains all univalent functions in A which map a disk ID
onto starlike domains with respect to the origin.
Let S be the class convex functions, i.e., of all f € A such that

Zfl/(z) _
f'(2)
for some p € P (see e.g., [3, p. 42]). The class S° contains all univalent functions in A which map a disk ID

onto convex domains.
Let 7 be the class of all functions f € A such that

1+

p(z), ze€D,

f@)=2zp(z), zeD,

for some p € P. The class 7 was considered by many authors (see e.g., [9], [10]).
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Let ' be the class of functions of bounded rotation, i.e., of all f € A such that

f@=p@, zeD, (7)

for some p € P (see e.g., [5, Vol. I, p. 101]). The condition (7) is the well known criterium of univalence due
to Noshiro [13] and Warschawski [16] (see also [5, p. 88]).
Given m € N, let

Sy =S NAy, S =S80 A, Tu:=T N Au, Pp=P 0 An

Having classes $(m, /\) we now define some classes of analytic functions. Many others can be defined
in a similar way.

Definition 2.3. Given m € N and A € A, let
1. T (m, A) denote the class of functions f € A such that

_ 1+2"Ba(2)p(z)
f@) = 1—2"Ba(2)p(z)’

2. P’(m, A) denote the class of functions f € A such that

zeD, peB; 8)

1+ z"BA(2)p(z)
1—2"Ba(2)p(z)’
3. 8*(m, A) denote the class of functions f € A such that

f@)= zeD, peB; ©)

1+ z"BA(z)p(2)
1-2"B(2)p(z)’
4. 8°(m, A) denote the class of functions f € A such that
zf"(z) _ 1+ 2"Ba(2)@(2)
f'(z)  1=z"Ba(z)p(z)’
5. Let T°(m,A), PP(m, N), S(m, A) and S“°(m, A) be classes of functions satisfying (8)-(11), respectively,

where ¢ € B.
When A(IN) = 0, for short we will write T (m), P’ (m), S*(m) and S¢(m) for the corresponding classes.

zf'(z) = f(z) zeD, peB; (10)

1+

zeD, pe 8. (11)

Clearly, 7 (m,A) C T, P'(m,A) C Py, S'(m,A) C Sy, and $(m, A) C S5,

3. Growth and Distortion Theorems

Givenr e (0,1) and f € H, let

M(f) := max|f(@)] = max[f(a)|.
zely zeD,

In particular, let M,(A) := M,(B,).
We will now prove the growths theorems for the class P(m, /).

Theorem 3.1. Let m € N and A € A. If p € P(m, A) has the form (6), then for z € D,

In(2)] < L+ @Ozl + |z (19 0)] + |zDIBA(2)]
P 1+ ezl = IzI"™(Ip0)] + zD)IBA(2)I

(12)

and

1+ 19Ol - 12" (p(0)] + )1
Rep() 2 T o0 + P (eO) + F)BAG)

(13)
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Proof. Let
w(z) :=2"Ba(z)p(z), zeD.

Since (see e.g., [4, Corollary 1.3, p. 4])

lp0)] + Iz
PO 1 oo =1 2P
we have
" lp(O)| + [z

|CL)(Z)| < |Z| |B/\(Z)|W <l, e D. (14)

Hence and by the fact that a function [0,1) 3 ¥ — y(r) := (1 + #)/(1 — r) is increasing, from (14) we have
1 1
POl = [0 < T = @D 15)
- lp(0)] + |z|
<yl lBA(Z)lW)
_ 1+ 1pOllzl + [ (e O)] + [zDIBa()I s e
1 +1p(0)llzl = " (Ip(0)| + 1z)IBA(2)l" '

which shows (12).

Using the second inequality in (15) we have

1+w(i) 1-|o@)

Repl@) =Re 10 0) = T=wia)p

l-e@ 11

T 1+loE) T 1+le@)] T y(e@))
e

o 14 1Ol — =" (O + [ZDIBAG)I
~ 1+ 1ozl + 2" (Ip(0)] + IzDIBA(2)l”

e D,
which shows (13). O

Theorem 3.2. Let m € Nand A € A. If p € P(m, A), then for z € D,
1+ [2"Ba(2)]

PN T B @) 1o
and
1 - [z["[Ba(2)]
Rep(z) > Wl&\(z)l (17)

Proof. Letz € ID. Set x := |p(0)|, ¥ := |z and a := |Bx(z)|. Then x € [0,1], r € [0,1), a € [0, 1] and the inequality
(12) takes the form

1+ar™! + (r +ar™)x
lp(2)l < T m——— =y(), x€[0,1].

Since the function y is increasing, we have

1+ |z["[Ba(2)]

, z€D,
1= [z"Ba(2)]

lp2)| < y(x) <y(1) =

i.e., the inequality (16).
Because the function 1/y is decreasing, the inequality (17) follows from the inequality (13). O
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Theorem 3.3. Letm e Nand A € A. Ifp € P(m,A) and r € (0,1), then forz € D,,

1+ 7" M,(A
PE < Tt (1%
and
1- "M, (A
Rep(z) > #MEA; (19)

Both inequalities are sharp for A = (ay) either with ay € (0,1) or with ay € (-1, 0).

Proof. Letr € (0,1) and z € T,. Set x := [BA(z)|. Then 0 < x < 1. Since a function

]/(.'Xf) = m, X € [0, 1],
is increasing, in view of (16) we have

1+ r"M,(A)

Pl <y () <y (M) = T2

which shows (18).
Because the function 1/y is decreasing, the inequality (19) follows from the inequality (17).
Let now A = (ax) € A with a, € (0, 1). Since

T+ g

1+ rak'

max |, (z)| = €N,
zeT,

and

r+a
Ba(-n = [[ o = [ [ 7o = [ [ maxlon @)l
kelN keN ko keN i

we see that M,(A) = B(—r). Thus for the function p given by (6) with ¢ = 1 when m is even and with ¢ = -1

when m is odd we have
1+7"Ba(-r) _1+71"M,

PN = T, ~ T=rid,

which makes the equality in (18).
To get equality in (19), take a function p given by (6) with ¢ = —1 when m is even, and with ¢ = 1 when
m is odd. Then we have
1—r"Bs(-r) 1-r"M,
p(=r) = —— =—7
1+ rBy(-r) 1+1r"M,

The case ay € (-1, 0) follows analogously. [

Recall that the inequality

1-lp(2)l*

pp €D (20)

lp’(2)| <

is a part of Schwarz-Pick Lemma (e.g., [4, p. 2]). In the class 8 the equality in (20) holds only for conformal
automorphisms of ID or for constant functions of modulus 1.

Theorem 3.4. Let m € Nand A € A. If p € P(m, ), then for z € D,

p'(z)

< 22" m(1 - z1)|Ba(z)| + |zI(1 — |BA(2)?)
p(z) '

T 1Rzl 1= [zP"Ba(2)P?

(21)
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Proof. Since
29" (2)Ba(2) + m(2)Ba(2) + 2 (2)B), (2)

(1 -2m9(2)Ba(z))’

P (z) =221 e D,

N AN -1 (z¢'(2) + m(z)) Ba(z) + zp(2) B/, (2)

p@) 1-22"92(2)B} (2)
Using twice the inequality (20) for the function ¢ and for ¢ := B,, we have

, zeD.

G p— |z’ (2) + mep(2)) Ba(z) + 20(2)B, (2)|
p2) | |1 - zzm(pz(z)Bf‘(z))
< oppp1 (I )L+ mip ) 1Ba@) + () IB, @)
- 1- [zP"lp(2)PIBA(z) P
1- 2 - 2
(| L@l m|<p<z)|) BA@)] + Il =240
4 1-z] 1-1z|
< 2z"
1- [zP"p)PIBa)P
3 |Z|m—1
Tz

><(|z|(1 — lp@P) + m(1 - 1zP)lp@)) BA@)| + lzllp@)| (1 - 1BAG)P)
1- P"p(2)PIBA(2)P
forzeD.Setr:=1|z| € [0,1), x := |p(z)| € [0,1] and a := |BA(2)| € [0, 1]. Let

—arx* + (m(l —r)a+r(l- az))x +ar

y(x) = T g , x€[0,1].
We will now show that
y(x) <y(1), x€[0,1], (22)
i.e., that
—arx? + (m(l —Ma+rl- a2)) x+ar
1 _ p2mg2y2
m(1 —r?)a +r(l —a?)
< T , x€][0,1].

which can be equivalently written as
(m - a+r(1-2a%))(1-2)
+(m(1-r)a+r(1-a?)) a2 x(1 - x) - ar(1 - 2)
a3l (1 - xz) >0, xe[0,1].

The above inequality has the form
(1-x)Fu(x) 20, x€[0,1],

where
Fu(x) :== A, — Byx,
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with
Ay i=m(L=7r)a+r(1 —a®) —ar(l - a®r™")

and
By, := ar(l — a*r*") — (m (1 - rz)a +r (1 - az)) a?r?m,

Thus to prove the inequality (22) we need to show that
Fu(x) >0, xe[0,1]. (23)
First we shall prove that
By > 0. (24)

Let
o(a) := r*"a® — (rz’” +m(l - 1’2)1*2’"_1)a2 -?a+1, ael0,1].

Since
B, =arp(a), a€l0,1],

it is enough to show that
o@) >0, ael0,1]. (25)

The above inequality obviously holds for ¥ = 0. Thus let r € (0,1). Note that

0(0)>0 (26)
and

o(1) =1 -7 —m(1 — r*)r¥1 (27)

=(1-7%) (1 P4+ er‘z) —m(1 - )1
=(1 —rz)(l 472422 —mrzm‘l)
=1-P) (A= + @ -+ (P2 > 0.
Since
o'(a) = 3r*"a® -2 (rz’” +m(l - rz)rz’”_l)a - ael0,1],

so ¢'(0) = =" < 0, ¢’(1) = —2m(1 — *)r*"~1 < 0 and the coefficient 3r?" is positive. Thus ¢’(a) < 0 for

a € [0, 1]. Because g is the decreasing function, the inequality (25), so (24) follows from (26) and (27).
By (24) we have

F.(x)>F,1), xe€][0,1]. (28)
Observe now that

Indeed,
Fi(1)=A1-B;

=1 -ra+r(l-a*) —ar(l —a*r?) —ar(l — a*r?)
+ ((1 —)a+r(l- 112)) a*r

= ((1 —Pa+r(l - az)) (1 + a?r?) = 2ar(1 — a®r)
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=@+ 1A —-ar)1 + a*?) = 2ar(1 — a*1?)
=(1-ar) ((a + 1)1 +a*r?) = 2ar(1 + ar))
=1 -ar) (a + a7 + 1+ a*r® = 2ar — 2a2r2)
=1 -ar) (a —ar+r—ar+a’rt —a*r? +a*r - azrz)
=1 -ar) (a(l — 1)+ (1 —a) —a*?*(1 —a) —a?r*(1 - r))
=(1—ar) ((1 —@a—-a*?) + (1 -a)(r- azrz))
=1 -ar) (a(l -1 —-ar*)+r(1 —a)1 - aZr)) > 0.
We will now show that
Fp1(1) = Fu(1).
We have
Fu(1) = Fu(1)
= Am+1 — Am — (Bis1 — Bi)
=m+ 1)1 -rHa+r(l —a®) —ar(l — a®r**?)
-m(1 = *)a—r(1 —a®) +ar(1 — a**™)
—ar (1 - azrz””z) + ((m + 1)1 =rHa+r(1l - az)) a?r?m+?
+ar(1 — a*r*™) — (m (1 - rz)a + r(l - az)) a*r"
= (1 —r?)a +2a>r¥+3 — 2432+l
+ (— (m(l —Pa+r(l- az)) (1-r)+ar*(1- 1’2)) a?r?"
=a(1-7r%) (1 — 2072 — (m(l —-Pa+r(l- az)) ar?™ + a2r2m+2)
= a(1-1")o(),

where

oa) := r*"1g® - (21’2"“rl +m(l - ) - rz’”+2)a2 -3 41, ael0,1].

Thus to confirm (30), we need to show that

o(@ >0, ael0,1].
Note that

0(0)>0
and

o(1) =1 — P2l — p2mtl |y 2m2 2 22

=(1 —r)(l+r+r2+---+1’2’”)—r2m+1(1—r)—mrzm(l—rz)
= (1—r)(1 Frr? P = P2 (] +r))

=(1—r)<1+r+r2+---+r2”’—r2m+1—mrz’”—mrz’”“)

6297

(30)

(31)

(32)

(33)
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=1=-N(A ="+ =P+ (P =)+ (=)
+(rm+1 _ r2m+1) + (rm+2 _ r2m+1) b (er _ r2m+1))
=(1-7) ((1 — 2" 41— Y 21 - P2

T rm+1(1 — M)+ rm+2(1 _ rm—l) bt 1,2m(1 _ 1’)) > 0.
Since
G/(ZZ) — 37’2m+1ﬂ2 -2 (2r2m+1 + m(l _ rZ)rZWZ _ },.ZWI+2)[Z _ 72m+1, = [O, 1],
SO
o’ (0) = —r*™1 <0,

o'(1) = 3p2m+l _ 2(2r2m+1 +m(l - rZ)er _ 72m+2) — p2m+l

= =2r""(1 = r)(r + m(1 +71)) <0,

and the coefficient 3r*"*! is positive. Thus o’(a) < 0 for a € [0, 1]. Because the function ¢ is decreasing, the

inequality (31), so (30) follows from (32) and (33).
The inequalities (28)-(30) complete the proof of the inequality (23). O

Theorem 3.5. Let m € Nand A € . Ifp € P(m, A) and r € (0,1), then for z € D,,

A 2r m(1 = )M, (A) + (1 = M7(A))) (34)
p@@) |~ (1 =r2)(1 = rPmMF(A))
and
’ m _ 2 — M?2
e 2m(1 = M) + (1= MEA)) )
p(2) 1 =11 = "Mz (A))
Both inequalities are sharp when A = (o) with a € (=1,1) \ {0}.
Proof. Fixr € (0,1) and z € T,. Then the inequality (21) has the form
P@|_ 2 m( = P)IBAG) + (1 = BAGIE) )
p) |~ 1-1 1= 7r2"Bu(z)I?
Define 5 X
ot +m(l—r)x+r
Y(x) = 1= 2ng2 , x€][0,1].
We shall prove that the function y is increasing. We have
, (=2rx + m(1 — r2))(1 — r?"x2) + 2r?"x(—rx* + m(1 — r¥)x + 1)
o(x)
= (1 — r2mx2)2, X € [O, 1],
where
o(x) .= mr*"(1 =) = 2r(1 = *)x + m(1 — %), x€[0,1].
Note that

0(0) >0 (38)
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and
o(1) = mr? (1 =) = 2r(1 = r*") + m(1 — 1?) (39)
=(1-7r) (mrz’” 21+ +- +7" ) + m)
= A=) (" =+ P+ em =+ )
= A=A (" =)+ " =)+ (P =T
+A=n)+ A=)+ (1= ")
= (1 =) (-r@ =" = PAA =P = A =)
Q=1+ A=)+ (1= ")
=(1-7)
x(A=nA ="+ 1 -r)A ="+ (1= ") (1= 1) > 0.
Moreover ¢/ (x) = 0 iff

e - .
Tomn(1-p2)
Observe first that
r(1 —r2m)
= 51 4

ST ) S (40)
i.e., that

1= > mr* (1 - 12). (41)
Indeed,

1 =) = mr" (1 =7
=(1-7) (1 724+t rz’”‘z) —mr? (1 = 1?)
=1-PA) 1+ + 22—
=(1-r% ((1 B N (e S er—l))
= (1= (A=) + PO =) 44 P21 = 1) > 0,

which confirms the inequality (41), so (40). Hence, by (38) and (39) it follows that g(x) > 0 for x € [0, 1].
Consequently, due to (37) we see that )’ (x) > 0 for x € [0, 1]. Thus the function y is increasing and therefore

Y (Ba(2)) < y(M)).
Hence and from (36) we have
2rm—1 m—1

(B <

=E V)

plz)| = 1-r2

_2rm 7 m(1 = r)MA(A) + (1 — M2(A)))
= (1= 2)(1 - r2mM2(A))

7

which shows (34).
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The inequality (35) follows directly from (34).
Let A = (a) with @ € (-1,1) \ {0}. Then Bs = ¢, and for a function p of the form (6) with ¢ = 1 we have

PE) _ e MPa(2) + 294(2)

p(z) - 1 _ sz(Pi(Z) (42)

_ 1Mz = @)1= az) +2(1 ~|af)

eD.
(1 - az)? = z2"(z — a)? z

Since

_ r+]a]
MF(A) - 1 + |CY|7’, re (0/ 1)/ (43)

from (42) it follows that the equality in (34) holds fora € (0,1) atz:= —rand fora € (-1,0) atz:=r. O
The following two statements can be called distortion theorems for P(m; A).
Theorem 3.6. Let m € Nand A € A. If p € P(m, A), then for z € D,

) < 287 m = EP)IBA@ + I~ BA@)P)
S 1ok (1 - 21" BA)I)?

(44)

and

22" m(1 = 1zR)IBa()| + 21 = BA(z)P)
1-|zP (1 - z"|BAG)))*

Re(zp'(z)) = - . (45)

Proof. In view of (21) and (16) we have

221" m(1 — 2P)IBa(@)| + [2I(1 — 1Ba(2)P)
11—z 1 — [z]2"[Ba(z)I?

') < Ip(2)l

221" m(1 = 2P)Ba@)| + 211 = |Ba(2)P) 1 +z]"IBa(2)|

Sl 1 - [22"|BA(2)P 1 —[21"[Ba(z)
m—1 _ 2 _ 2
:m|fw1umww+w%wmmlzdl
1 -] (1 - 2" |BA(2)))

which proves (44).
The inequality (45) follows directly from the inequality (44). O

Using the inequalities (34) and (18) we get
Theorem 3.7. Let m € Nand A € A. If p € P(m, A) and r € (0, 1), then for z € D,,

2PN (m(1 — r)M(A) + r(1 — M2(A)))
(1 =721 ="M, (A))?

Ip'(2)] <
and
2" (m(1 — )M, (A) + (1 — M2(A)))
(1 =7r)(1 = "M, (A))?
Both inequalities are sharp when A = (a) with a € (-1,1) \ {0}.

Re(zp'(z)) = -

When A(IN) = 0, the results of Theorems 3.3, 3.5 and 3.7 for the class P(m) are the same as for the class
Pu- Recall that the inequalities (46) was proved by MacGregor [10, Lemma 1].
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Theorem 3.8. Let m € IN. If p € P(m) and r € (0, 1), then for z € D,,

1+ 1-7"
Ip(z)| < 1= Rep(z) > T+
p'@@)|  2mrmt zp’(2) 2mr™
] R T T B ST (46
2my™1 2mr™
! L ! > -
Ip'(2)| < 1= e Re(zp'(z)) = =y
The inequalities are sharp with
1+2z"
p(z) = T Z€ D,

as the extremal function.

When A := (a), where a € D°, then B, = @q and M, is as (43). In this case results of Theorems 3.3, 3.5
and 3.7 can be rewritten as follows.

Theorem 3.9. Letm € N and o € ID°. If p € P(m; (a)) and r € (0,1), then forz € D,,

r(r+laf) + lalr + 1
—"(r + |af) + |alr +17

Ip(z)| <

—r"(r +|al) + |alr + 1
r+al) +lalr+1 7

Rep(z) >

yml [2mlalr2 +2 (m +1+(m- 1)|a|2) T+ Zmlal]

A
—r2m(r + |al)? + (lalr + 1)2

pz) |~

7

2/ (2) N " [Zmlazlr2 + Z(m +1+(m— 1)|a|2)r + 2m|a|]

Re~®) 27 2+l + (lalr + 17

7

yml [Zmlozlr2 +2 (m + 1+ (m— 1)|a|2) r+ 2m|0(|]

(1 + [a2) — 2rm (jdr2 + (1 + |aP)r + al) + (alr + 1)’

Ip'(2)| <

" [Zmlozlr2 +2 (m +1+(m- 1)|a|2) r+ 2m|oz|]

Re(' () 2 w1 1ap) =2 (1 + (L + [aP)r + Ja) + (alr + 1"

4. Radii of convexity
We apply now the results of the previous section to discuss radii of convexity.

Definition 4.1. For ¥ C A set

Zf”(Z)
f@

The number Rse(F) is called the radius of convexity for F .

RSE(T):zsup{re(O,l]:Re{1+ }>O,fef,zelD,}.

I. The case F := P’ (m; /).
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Theorem 4.2. Let m € N and A € A. Then

Rs:(#'(m; A)) = 1o, (47)
where r := 1y is the smallest root in (0, 1) of the equation
(1 =) = PP"MZ(A)) — 27" (m(1 — r*)M(A) + r(1 — M}(A))) = 0. (48)

For oo € (—=1,1) \ {0} equality in (47) holds.
Proof. Let f € P'(m; A). Then f’ = p for some p € P(m; A). Hence and from (35), for each r € (0, 1) we have

2f"(2)) _ Zp'(@)
Re{1 Nz } BT "
L 2= PMUA) £ (= MEA)

(1 =2)(1 = rPmMF(A))
which leads to (47).
When a € (-1,1) \ {0} the inequality (35) is sharp, so is (49) which yields equality in (50). O

Substituting M, = 1 for the equation (48) we see that ry is the unique root in (0, 1) of the equation

P 4+ 2mr™ —1 =0, ie.,
1/
ro=(Vm2+1—m) "

Then rg = Rs:(P’(m)) with the extremal function

(1l
f(z).—L—l_Cde, z e D.

Recalling the radius of convexity Rg:(#;,) for the class %}, which was found by MacGregor [10, Theorem 2]
we have

Theorem 4.3. Let m € IN. Then

1/m

Rs:(P) = Rs(P'(m)) = (Vm? +1~m)

The case m = 1, i.e., the radius of convexity Rs:(#’') was computed also by MacGregor in the former
paper [9, Theorem 2].
For A := (a), a € DY, M, is given by (43) and then the equation (48) reduces to (51).

Corollary 4.4. Let m € N and o € D°. Then

Rs:(#'(m; (@) 2 1o, (50)
where r := 1 is the smallest root in (0, 1) of the equation

P+ [al)? + 20" (mlad(F? + 1) + (m + 1+ (m = Dla®)r) - (alr + 12 = 0. (51)
For o € (—=1,1) \ {0} equality in (50) holds.

Since the function
0,1) 37+ r* + 4|l + 47 - 1,

is strictly increasing, the case m = 1 yields
Corollary 4.5. Let a € D°. Then
Rs:(#'(1; (@) = 7o, (52)
where r := 1 is the unique root in (0, 1) of the equation
+4alr® +47 -1=0.

For o € (—=1,1) \ {0} equality in (52) holds.
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II. The case ¥ := §*(m; A).
Theorem 4.6. Let m € N and A € A. Then
Rs:(S'(m; A)) 2 1o (53)
where r := 1y is the smallest root in (0, 1] of the equation
(1 = "M (AL = r)(1 = " M}(A)) (54)

=2¢"(1 + " M(A))(m(1 = )M, (A) + (1 — M*(A))) = 0.
For A = (a), where o € (—=1,1) \ {0}, the equality in (53) holds.
Proof. Let f € §*(m; A). Then
zf'(2)
f(@)
for some p € P(m; A). Hence, from (19) and (35), for each r € (0, 1) we have

2f"(2)) _ zp'(2)
Re {1 + —f'(Z) } = Rep(z) + Re _p(Z) (55)

=p(z), zeD,

1= M, A) 2 (m(1 — r)M(A) + (1 — M2(A)))
=1+ mM(A) (1 —12)(1 — 2" MA(A))
(@ =r"MA(A)A = )1 = rP"MZ(A))
T (1 + M) = r2)(1 — rmMA(A))
2rm(1 + M, (A))(m(1 — PIM(A) + r(1 — M2(A)))
- (1 + M, (A))(1 = 2)(1 — r2mM2(A))

, zeD,,

which leads to (53).
When a € (-1,1) \ {0} the inequalities (19) and (35) are sharp, so is (55) which yields equality in (55). O

Substituting M, = 1 for the equation (54) we see that ry is the unique root in (0, 1) of the equation
"+ 1) (P =20+ my +1) =0,

ie.,

1/m
o :(1+m— Vm2+2m) .
Then ry = Rs:(S*(m)) with the extremal function f € A satisfying the differential equation

zf'(z) 14z
fz) 1-zv

Moreover we can state that Rs(S;,) = rp. Unfortunately, we were not able to find to whom belongs this
result although we are sure that the result is well known for specialists. Thus we have

eD.

Theorem 4.7. Let m € IN. Then

Rs:(S;) = Re(S'(m) = (1+m— Vo +2m) "

Let us recall that the radius of convexity for class S* was found by Nevanlinna [12] and it is the same as
for the class S. Thus we have
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Theorem 4.8.
Rs:(S) = Rs:(S) = Rs:(S* (1) =2 - V3.

When A := (@), where a € DY, then substituting M, given by (43) for the equation (54) we obtain
Corollary 4.9. Let a € D°. Then

Rs:(S'(1;(a)) 2 10 (56)
where
1
=3 (Mo — Vo - 4)/ (57)
with u := uy being the unique root in (2, +00) of the equation
u® = 4(|laf* + 2)u — 16|al = 0. (58)

For o € (—=1,1) \ {0} the equality in (56) holds.
Proof. For m =1 and M,(A) is given by (43) the equation (54) takes the form

P — @al + 6)r° — 16]a|r® + 16]alr® + @lal* + 6)r* =1 =0
equivalently written as

(*? = 1)(r° — (@)al + 5)r* — 16|l — (4la)® + 5)r* + 1) = 0.

Since the second factor is a symmetrical polynomial, by setting u := r + r~! it takes the form 1> — 4(laf* +
2)u — 16|al, where u € (2, +00). It is easily to see that the function

(2, +00) 3 u > u® — 4(laf* + 2)u — 16|
is strictly increasing, so the equation (58) has a unique root 1 in (2, +c0). Thus 7y given by (57) is the unique
solution in (0, 1) of the equation uy = rp + r(;l, which leads to (56). O
5. Coefficient functionals

In this section we discuss some basic coefficients problems for the class P(m, («)), where m € IN and
a € DO Let p € P(m, (). Then

p(@) (1 - 2"p(2)pa(2)) = 1 + 2"Q(2)pa(z), z€D, (59)
for some ¢ € B, i.e., equivalently
piz)(1-az-2"p@)z—a)=1-az+z"p)(z-a), zeD.

Putting into the above equation the series (1) and the series

p(z) = Z b,z", zeD, (60)
n=0

by comparing corresponding coefficients we get

cm = —2aby. (61)
Moreover, when m = 1, then

cr = —2aby +2(1 - |a?) bo + 207} (62)
and when m > 1, then

cme1 = —2aby +2(1- |af?) bo. (63)
Since |bo| = |@(0)| < 1, from (61) we have
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Theorem 5.1. Let m € N and a € D°. If p € P(m, (@) is of the form (1), then
lcm] < 2|al. (64)
The result is sharp. Equality in (64) holds for the function p given by (59) with ¢ = —e™'%, where 6 := Arga € [0,27).
Given m € IN and A € R, consider the functional
D 1 (P) = lomsr — Ak

over the class P of functions p of the form (1). In particular, the functional ®, := ®; , plays a fundamental
role in many extremal coefficient problems. Ma and Minda [8, Lemma 1] proved the following sharp result
for the whole class P :

2|1 - 2A|/ Ae (_OO/ 0] U [1/ +oo),

Al <
lc2 = Aci —{ 2, A €(0,1). ©5)

We compute now the upper bound of @, in the class (1, (a)). It should be expected that the result is
more detailed then the bounds in (65) and so is.

Theorem 5.2. Let a € D® and p € P(1, (a)) be of the form (1). If |a| € (0, V2 — 1], then
2= At <2(la (1-2A1-1)+1), A€R. (66)

Iflal € (V2 —1,1), then

|cz - /\cﬂ @)
2 -2l +1 3laf + 2la] - 1
2ap(1-20-1+1),  agebzFalrly g Slafe2alol
< 4af 4)al
) laf 41 -2MaP +2aP +1  JaP-2al+1 _ _3laP+2al -1
2|a| — 2|af?|1 — 2A] ! 4)af? TRE
In particular,
1, 2(1=laP), lal€ (0, V2-1],
- =3l<! A+aP)? 5
2=y L) e (va- 1), (68)
2|a
and
o] < 2. ©9)

The result is sharp. Let a := |ale'®, 6 € [0,2mn). The equality in (66) and in the first inequality in (67) holds for
the function p given by (59) with ¢ = +e 2. The equality in the second inequality in (67) holds for the function p
given by (59) with

20 €2 = X9

- , e D, 70
1 — e i0xz z (70)

P(z) ;== te

where

1—laf?
Xo .

" 2Jal(T = JallT - 24D 7
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Proof. Since (see e.g., [5, Vol. 11, p. 78])
b1l < 1= lbof, (72)
from (61) for m = 1 and (62) we have

le2 = Akl =2 |~aby + (1= aP) by + @%(1 - 2A)83) (73)

< 2[lad (1= 1boP) + (1 = lae?) ool + P11 = 2 Ibo ]

=2 [ladl (jall1 = 221 = 1) [bol? + (1 = lae) lbol + levl] =2 ([l

where
() =2[lal (lalll = 2A] = 1) 2* + (1 = |af?) x + |al|, x€[0,1].

(a) When |¢||1 — 2A| =1 > 0, i.e., when

/\E(—oo |a|_1]u[|a|+1 +oo)
" 2o 2al ’ ’

we have y’(x) > 0 for x € [0,1], and consequently

y() <y(@) =2(laP(1-2A1-1)+1), x€[0,1]. (74)

(b) Assume now that |a|]1 —2A| — 1 <0, i.e., that

ol =1 o] + 1)
A . 7
e 2l " 20l (75)
We have y’(x) = 0 only for x := xo, where xq is given by (71). Thus xo > 1 iff

| + 2]a| = 1

1-2A >
| | 2l

Taking into account (75) we see that the above inequality holds: when |a| € (0, V2 —1] for A as in (75), and
when |a] € (V2 - 1,1) for

A€

(76)

la| =1 |af? = 2Ja| + 1 U Blaf +2al -1 |a]+1
2lal 4| 4| " 2l )

Hence and by the case (a) it follows that y’(x) > 0 for x € [0,1] so the inequality (74) holds when |a| €
(0, V2 - 1] for all A € R, and when |a| € (V2 —1,1) for A as in (76). This and (73) proves the inequality (66)
and the first inequality in (67). The second inequality in (67) is a consequence of the inequality

) < (0) = lal* — 401 - 27|[af + 2laf + 1
VY= Yo 2lal = 2|1 = 2]

which holds for
laf> = 2|l + 1 3laf> +2la] -1

Ae ,
4|af? 4|af?

Since
la> = 2|a] + 1 1 3la? + 2Ja] — 1

daf 257 dap
for |a] € (V2 - 1,1), so the inequalities (66) and (67) with A := 1/2 reduce to the inequality (68).
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For A := 0 the inequalities (66) and (67) reduce to (69).

It remains to discuss the sharpness. Let a := |alel?, O € [0,27). It is obvious that the equality in (66) and
in the first inequality in (67) holds for the function p given by (59) either with ¢ = e or with ¢ = —e 2.
Let A <1/2. For

-2i0 e %2 —xg —2i0 2y,.-3i0
@) =—€e ¥ ———=eVx-(1-x5)ez+..., zeD,
1 - e 0xpz 0

we have
‘—abl + (1= laP) by + (1 - 2A)bg|

= ‘|o¢|(l —x3)e™ + (1 - |a?) xoe 2 + (1 = 24)|arPacge

= lal(1 = 22) + (1 = laP) xo + (1 = 2A) a2,

which yields the equality in the second inequality in (67). The case A > 1/2 follows in a similar way. [

Remark 5.3. One can check that the upper bounds in (66) and (67) do not exceed of the upper bounds in
(65). Setting |a| = 1 the inequalities (66) and (67) reduce to the inequality (65).

We consider now the case m > 1.
Theorem 5.4. Let a € D°, m > 1and p € P(m, (a)) be of the form (1). If |a| € (0, V2 - 1), then
lemer = Ack| <2(jaP @AI-1)+1), A€R. (77)
Iflal € (V2 —1,1), then

|emar = Ay (78)

—Ja = 2la + 1 2 4 2lal -1
2P -n+1),  Aagebz2arly ), b e 2alo]
< 4l 4al
=) laf =8AllaP +2laP +1 o ~2al+1 __aP+2lal-1
2] — 4laf?|A| ’ 4 Ao
In particular,
1,
Cm+1 — Ecm <2 79)

and

2(1-laP), ae(0 V2-1],
lem+1l <9 (1 + |af?)?
2|l

80
, ae(V2-1,1). (50)

The result is sharp. The equality in (77) and in the first inequality in (78) holds for the function p given by (59)
with @ = +e 2%, where 6 := Arga € [0,2n). The equality in the second inequality in (78) holds for the function p
given by (59) with ¢ given by (70) where

1—|af?

= Sl = 2l ey

X0
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Proof. From (61), (63) and (72) it follows that
lower = A2| =2 ‘—abl + (1 laP) bo - ZAazbé‘ (82)

< 2[ld(1 — [bol?) + (1 = la)lbo| + 21 llePlbol?]

= 2lal @lalIAl = 1]) lbol + (1 = la®)lbol + lal] =: y(lbol),

where
y() = 2[lal@ladIAl = 12 + (1 = laP)x + |l |, x € [0,1].

(a) When 2|a||A] =1 > 0, i.e., when
-1 1
A€e (—00, m] U [m, +00),
we have y’(x) > 0 for x € [0,1], and consequently
y() <y(1) =2(la @IAI-1)+ 1)), x€[0,1]. (83)
(b) Assume now that 2|a||A| — 1 < 0, i.e., that
-1 1
“ (ot 1) o
We have )’(x) = 0 only for x := xo, where x is given by (81). Thus x > 1 iff

la? +2|a] — 1

Al >
IA| T

Taking into account (84) we see that the above inequality holds: when |a| € (0, V2 - 1] for A as in (84), and
when || € (V2 -1,1) for

A€

1 il — 2 B
1 —|a 2|a|+1)u(|a| +2lal-1 1 (85)

2la” 4aP 4o 7 20al)

Hence and by the case (a) it follows that y’(x) > 0 for x € [0,1] so the inequality (83) holds when |a| €

(0, V2 —1]forall A € R, and when |a| € ( V2-1, 1) for A as in (85). This and (82) proves the inequality (77)
and the first inequality in (78). The second inequality in (78) is a consequence of the inequality

laf* — 8|Allaf + 2l + 1

y(x) < y(xo) =

2la] — 4| A
which holds for
—laP? =2lal+1 |af? +2Ja| -1
A€ ,
4|2 4|af?
Since
1 S | +2]a| — 1
2 4|af? ’

for |a] € (V2 —1,1), so the inequalities (77) and (78) with A := 1/2 reduce to the inequality (79).
For A := 0 the inequalities (77) and (78) reduce to (80).
The sharpness follows analogously as in Theorem 5.2. [
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6. Additional remarks

In this paper we were mainly interested in the class P(m, /). Examples of radii of convexity show that
some computational problems can be considered in the corresponding classes of analytic functions. The
class P°(m, /) and related families of analytic functions were defined also however they were not examined
here. Although the results for the class P(m, A) are valid for the class $°(m, A) they can not be sharp in
PO(m, /) in general. One of the extremal function p for the inequalities (67) is defined with using the function
@ given by (70) having zero in D, so ¢ ¢ B° and therefore p ¢ $°(m, A). The computational techniques for
PO(m, A), i.e., when (ONS B9, have to be more sophisticated based on knowledge on the class on bounded
non-vanishing analytic functions. Let us mention that in 1968 Krzyz [7] conjectured that

byl < neN,

[cH RS

for ¢ € B of the form (60) with equality only for the function

n _
z 1):l+zz+...,ze]D,
zZ"+1 e e

Qu(z) = exp(

and its rotations. A review of the results of this conjecture can be found in [11].
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