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Abstract. The notion of Alexandroff space was firstly appeared in [1]. Different types of the covering
dimension in the set of all Alexandroff countable spaces have been studied (see [5]). Inspired by [9], where
a new topological dimension, called quasi covering dimension was developed, in this paper we study
this new dimension in the set of all Alexandroff countable topological spaces using the matrix algebra.
Especially, we characterize the open and dense subsets of an arbitrary Alexandroff countable space X using
matrices. Under certain additional requirements on X, we provide a computational procedure for the
determination of the quasi covering dimension of X.

1. Introduction

There are three kinds of dimension of a topological space: the covering dimension, the small inductive
dimension and the large inductive dimension which have been studied in details (see, for example [3, 13]).
Moreover, the meaning of the matrix gave different characterizations of some dimensions, such as of the
covering dimension and the small inductive dimension (see [2, 6–8]).

Inspired by Dimension Theory a new dimension-function in the set of topological spaces, called quasi
covering dimension, was inserted and many of its properties were studied (see [9]). The study of this
new dimension in the set of finite topological spaces was completed by its investigation under the view of
matrices (see [10]).

The beginning of the study of Alexandroff spaces was a result of the important role of finite spaces in
digital topology and the fact that these spaces have all the properties of finite topological spaces which
are related to such theory (see [12]). In digital spaces, image synthesis, image analysis and computer
graphics, it is necessary to describe topological properties of n-dimensional digital image arrays (see
[11, 14]). Therefore, the search for models, especially topological models, of the supports of such images
was necessary. Alexandroff spaces have been studied as such topological models. But a problem on which
research has been focused is the notion of dimension for Alexandroff spaces. A dimension for Alexandroff
spaces, called Alexandroff dimension, which is essentially the small inductive dimension of [13], was
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studied in [4] and [15]. Also, the Krull dimension of Alexandroff T0-spaces came to enrich this research (see
[16]) and recently in [5] the so-called covering dimension of Alexandroff spaces was studied.

In this paper, we study the quasi covering dimension in the set of Alexandroff countable topological
spaces using matrices. Especially, in Section 2, we remind basic definitions and notations which are used
in the rest of this study. In Section 3, we characterize the open and dense subsets of Alexandroff countable
spaces using matrices and in Section 4, we study the quasi covering dimensions of those spaces, adapting
the results of Section 3.

2. Preliminaries

In this section, we recall basic terminology and notions which will be used in this study.
First of all, we mention that an Alexandroff space is a space such that every point has a minimal open

neighborhood or equivalently, the intersection of every family of open sets is open (see [1]). Also, a
topological space X is called countable if the set X is countable.

Definition 2.1. Let X be a topological space.
(1) A cover c of X is a non-empty set of subsets of X whose union is X. In particular, a cover c of X is called

open if all elements of c are open in X.

(2) A quasi cover c of X is a non-empty set of subsets of X whose union is dense in X. Especially, a quasi
cover c of X is called open if all elements of c are open in X. Also, two quasi covers c1 and c2 of X are
called similar (in short, we write c1 ∼ c2) if their unions are the same dense subset of X.

(3) A family r of subsets of X is called a refinement of a family c of subsets of X if each element of r is
contained in an element of c.

In what follows we consider two symbols “−1” and “∞” for which we suppose that:
(a) −1 < k < ∞, for every k ∈ {0, 1, . . .} and

(b) ∞ + k = k +∞ = ∞, −1 + k = k + (−1) = k, for every k ∈ {0, 1, . . .} ∪ {−1,∞}.

Definition 2.2. The order of a family r of subsets of a space X is defined as follows:
(1) ord(r) = −1 iff r consists of the empty set only.

(2) ord(r) = k, where k ∈ {0, 1, . . .}, iff the intersection of any k + 2 distinct elements of r is empty and there
exist k + 1 distinct elements of r whose intersection is not empty.

(3) ord(r) = ∞ iff ord(r) , k, for every k ∈ {−1, 0, 1, . . .}.

Definition 2.3. The function dim, called covering dimension, with domain the set of all topological spaces
and range the set {0, 1, . . .} ∪ {−1,∞}, is defined as follows:
(1) dim(X) 6 k, where k ∈ {−1, 0, 1, . . .}, iff for every finite open cover c of X, there exists a finite open cover

r of X, which is a refinement of c and satisfies the relation ord(r) 6 k.

(2) dim(X) = k, where k ∈ {0, 1, . . .}, iff dim(X) 6 k and dim(X) 
 k − 1.

(3) dim(X) = ∞ iff dim(X) 6 k does not hold for every k ∈ {−1, 0, 1, . . .}.

Definition 2.4. ([9]) The function dimq, called quasi covering dimension, with domain the set of all topological
spaces and range the set {0, 1, . . .} ∪ {−1,∞}, is defined as follows:
(1) dimq(X) 6 k, where k ∈ {−1, 0, 1, . . .}, iff for every finite open quasi cover c of X, there exists a finite open

quasi cover r of X, which is a refinement of c, is similar to c and satisfies the relation ord(r) 6 k.

(2) dimq(X) = k, where k ∈ {0, 1, . . .}, iff dimq(X) 6 k and dimq(X) 
 k − 1.

(3) dimq(X) = ∞ iff dimq(X) 6 k does not hold for every k ∈ {−1, 0, 1, . . .}.
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In the rest of this paper, we denote by X = {x1, x2, . . .} an Alexandroff countable space and by Ui the
smallest open set of X which contains the point xi, i = 1, 2, . . . .Also, byωwe denote the first infinite cardinal
and by T = (ti j) we denote the ω × ω matrix, where

ti j =

1, if xi ∈ U j

0, otherwise

which is called incidence matrix of X. We denote by c1, c2, . . . the columns of the matrix T and by 1 the ω × 1
matrix 

1
1
1
...


which has all elements equal to 1. Finally, if A and B are two matrices of the same type, we denote by
max(A + B) the largest element of the matrix A + B.

3. Open and Dense Subsets of Alexandroff Countable Spaces and Matrices

In this section we characterize the open and dense subsets D of an arbitrary Alexandroff countable space
X = {x1, x2, . . .} using matrices. Firstly, we observe that in an Alexandroff countable space X, each open
subset D of X is either finite or countable, and the following example verifies this claim.

Example 3.1. We consider the Alexandroff countable space X = {x1, x2, x3, . . .} with the topology τ =
{∅, {x1}, {x1, x2}, {x1, x3, x4, . . .},X}. Then, the open set {x1} is finite and the open set {x1, x3, x4, . . .} is countable.

Thus, in order to study the open subsets D of an arbitrary Alexandroff countable topological space X
which are, in parallel, and dense subsets in X, using matrices, we examine the following cases:

Case 1: D is finite
Case 2: D is countable

Case 1: We suppose that D is finite, writing D = {xi1 , . . . xim }, where i1, . . . im are distinct elements of the set
{1, 2, . . .}.

Notation 3.2. We denote by ai1···im and b j1··· jl , for some distinct elements i1, . . . im and j1, . . . , jl of {1, 2, . . .} the
ω × 1 matrices

ai1···im =


a1

i1···im

a2
i1···im

a3
i1···im
...

 and b j1··· jl =


b1

j1··· jl

b2
j1··· jl

b3
j1··· jl
...


,

where

ai
i1···im =

1, if i ∈ {i1, . . . , im}
0, otherwise

and

bi
j1··· jl

=

0, if ti j1 = . . . = ti jl = 0
1, otherwise.

Proposition 3.3. Let i1, . . . , im be distinct elements of the set {1, 2, . . .}. Then, {xi1 , . . . , xim } = U j1 ∪ . . . ∪ U jl , for
some j1, . . . , jl ∈ {i1, . . . , im} if and only if ai1···im = b j1··· jl .
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Proof. Let {xi1 , . . . , xim } = U j1 ∪ . . . ∪ U jl , for some j1, . . . , jl ∈ {i1, . . . , im}. We prove that ai1···im = b j1··· jl . For
every i ∈ {1, 2, . . .}, in the i-row of those matrices we have the following cases:

(1) ai
i1···im = 1⇔ i ∈ {i1, . . . , im} ⇔ xi ∈ {xi1 , . . . , xim }

⇔ there exists r ∈ {1, . . . , l} such that xi ∈ U jr

⇔ ti jr = 1⇔ bi
j1··· jl

= 1,

(2) ai
i1···im = 0⇔ i < {i1, . . . , im} ⇔ xi < {xi1 , . . . , xim }

⇔ xi < U jr , for each r ∈ {1, . . . , l}

⇔ ti jr = 0, for each r ∈ {1, . . . , l} ⇔ bi
j1··· jl

= 0.

Therefore, ai1···im = b j1··· jl .
Conversely, we suppose that ai1···im = b j1··· jl , for some j1, . . . , jl ∈ {i1, . . . , im} and we prove that {xi1 , . . . , xim } =

U j1 ∪ . . . ∪ U jl . Let xi ∈ {xi1 , . . . , xim }. Then, ai
i1···im

= 1 and by assumption bi
j1··· jl

= 1. That is, there
exists r ∈ {1, . . . , l} such that ti jr = 1 or equivalently xi ∈ U jr and thus xi ∈ U j1 ∪ . . . ∪ U jl . Therefore,
{xi1 , . . . , xim } ⊆ U j1 ∪ . . .∪U jr . For the opposite side, let xi ∈ U j1 ∪ . . .∪U jl . Then, there exists r ∈ {1, . . . , l} such
that xi ∈ U jr or equivalently ti jr = 1. Thus, bi

j1··· jl
= 1 and by assumption ai

i1···im
= 1. Therefore, xi ∈ {xi1 , . . . , xim }

and so U j1 ∪ . . . ∪U jl ⊆ {xi1 , . . . , xim }. Thus, {xi1 , . . . , xim } = U j1 ∪ . . . ∪U jl .

Corollary 3.4. Let i1, . . . , im be distinct elements of the set {1, 2, . . .}. Then, we have {xi1 , . . . , xim } = Uir , for some
r ∈ {1, . . . ,m} if and only if ai1···im = cir .

Proof. By Proposition 3.3 we have {xi1 , . . . , xim } = Uir , for some r ∈ {1, . . . ,m} if and only if ai1···im = bir . Since
bir = cir , we get the desired result.

Proposition 3.5. Let j1, . . . , jl be distinct elements of the set {1, 2, . . .}. Then, the set U j1 ∪ . . . ∪U jl is dense in X if
and only if max(b j1··· jl + c j) = 2, for each j ∈ {1, 2, . . .} \ { j1, . . . , jl}.

Proof. We suppose that the union U j1 ∪ . . .∪U jl is a dense subset of X and we prove that max(b j1··· jl + c j) = 2,
for each j ∈ {1, 2, . . .} \ { j1, . . . , jl}. Let j ∈ {1, 2, . . .} \ { j1, . . . , jl} and k = max(b j1··· jl + c j). By definitions of the
matrices b j1··· jl and T we have either k = 1 or k = 2. Since U j1 ∪ . . .∪U jl is dense in X, there exists q ∈ {1, . . . , l}
such that U jq ∩U j , ∅. Therefore, there exists i0 ∈ {1, 2, . . .} such that ti0 jq = ti0 j = 1. Thus, bi0

j1··· jl
+ ti0 j = 2 and

therefore k = 2.
Now, we suppose that max(b j1··· jl + c j) = 2, for each j ∈ {1, 2, . . .} \ { j1, . . . , jl} and we prove that the set

U j1 ∪ . . . ∪U jl is dense in X. In contrast, we suppose that it is not dense in X. Then, there exists an open set
U of X such that

U ∩ (U j1 ∪ . . . ∪U jl ) = ∅. (3.1)

Therefore, there existsµ ∈ {1, 2, . . .} such that Uµ ⊆ U and xµ < U j1∪. . .∪U jl . By assumption, max(b j1··· jl +cµ) =

2. Thus, there exists i0 ∈ {1, 2, . . .} such that bi0
j1··· jl

= ti0µ = 1. Therefore, xi0 ∈ U jq ∩Uµ, for some q ∈ {1, . . . , l}
which contradicts the relation (3.1). Thus, the set U j1 ∪ . . . ∪U jl is dense in X.

Since for every open subset D = {xi1 , . . . , xim } of an Alexandroff countable space X there exist elements
j1, . . . , jl ∈ {i1, . . . , im} such that D = U j1 ∪ . . . ∪ U jl , from the above results we can get a characterization of
the finite open and dense subsets D of an Alexandroff countable space X as follows:

Proposition 3.6. Let i1, . . . , im be distinct elements of the set {1, 2, . . .}. Then, the set D = {xi1 , . . . , xim } is open and
dense in X if and only if there exist elements j1, . . . , jl ∈ {i1, . . . , im} satisfying the following conditions:
(1) ai1···im = b j1··· jl ,
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(2) max(b j1··· jl + c j) = 2, for each j ∈ {1, 2, . . .} \ { j1, . . . , jl}.

Proof. We suppose that the set D = {xi1 , . . . , xim } is open and dense in X and we prove that there exist
elements of {i1, . . . , im} satisfying the conditions (1) and (2) of the proposition. As we have observed above,
there exist j1, . . . , jl ∈ {i1, . . . , im} such that D = U j1 ∪ . . . ∪U jl . By Proposition 3.3 we have ai1···im = b j1··· jl and
the condition (1) is satisfied. Also, since D is dense in X, by Proposition 3.5 max(b j1··· jl + c j) = 2, for every
j1, . . . , jl ∈ {i1, . . . , im} and the condition (2) is satisfied.

Conversely, we suppose that there exist elements j1, . . . , jl of {i1, . . . , im} satisfying the conditions (1) and
(2). We prove that the set D is open and dense in X. By Proposition 3.3, since the condition (1) is satisfied,
we have D = U j1 ∪ . . . ∪ U jl and thus D is open. Moreover, by Proposition 3.5, since the condition (2) is
satisfied, the set D is dense in X.

Example 3.7. We consider the Alexandroff countable space X = {x1, x2, x3, . . .} with the topology τ =
{∅, {x1}, {x1, x2}, {x1, x3, x4, . . .},X}. The incidence matrix T of X is the following matrix

T =



1 1 1 1 1 1 . . .
0 1 0 0 0 0 . . .
0 0 1 1 1 1 . . .
0 0 1 1 1 1 . . .
0 0 1 1 1 1 . . .
...

...
...

...
...

...
...


,

where U1 = {x1}, U2 = {x1, x2} and U3 = U4 = . . . = {x1, x3, x4, . . .}. The finite set {x1, x2} is open in X since

a12 =



1
1
0
0
0
0
...


= b2,

that is {x1, x2} = U2. Also, it is dense in X since

b2 + c1 =



2
1
0
0
0
0
...


and b2 + c j =



2
1
1
1
1
1
...


,

for every j = 3, 4, 5, . . . . Therefore, max(b2 + c j) = 2, for every j = 1, 3, 4, 5, . . . . But, the finite set {x4, x5} is not
open in X since

a45 =



0
0
0
1
1
0
...


, b4 =



1
0
1
1
1
1
...


.

In similar way, since b4 = b5 = b45, we have a45 , b5 and a45 , b45.
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Case 2: We suppose that D is countable, writing D = {xi1 , xi2 , . . .}, where i1, i2, . . . are distinct elements of the
set {1, 2, . . .}. In this case we must state that since X is Alexandroff, the set D is also Alexandroff with the
corresponding subspace topology.

Notation 3.8. We put I = {i1, i2, . . .} and let J = { j1, j2, . . .} be a countable subset of {1, 2, . . .}. We denote by aI
and bJ the ω × 1 matrices

aI =


a1

I

a2
I

a3
I
...

 and bJ =


b1

J

b2
J

b3
J
...

 ,
where

ai
I =

1, if i ∈ {i1, i2, . . .}
0, otherwise

and

bi
J =

0, if ti j1 = ti j2 = . . . = 0,
1, otherwise.

Proposition 3.9. Let I = {i1, i2, . . .} ⊆ {1, 2, . . .}. Then, the following conditions are satisfied:
(1) {xi1 , xi2 , . . .} = U j1 ∪ . . . ∪U jl , for some j1, . . . , jl ∈ I if and only if aI = b j1··· jl .

(2) {xi1 , xi2 , . . .} =
⋃
∞

r=1 U jr , for some countable subset J = { j1, j2, . . .} of I if and only if aI = bJ.

Proof. (1) Firstly, we suppose that {xi1 , xi2 , . . .} = U j1 ∪ . . . ∪ U jl , for some elements j1, . . . , jl ∈ I. We prove
that aI = b j1··· jl . For every i ∈ {1, 2, . . .}, in the i-row of these matrices we have:

a) ai
I = 1⇔ i ∈ {i1, i2, . . .} ⇔ xi ∈ {xi1 , xi2 , . . .}

⇔ there exists r ∈ {1, . . . , l} such that xi ∈ U jr

⇔ ti jr = 1⇔ bi
j1··· jl

= 1,

b) ai
I = 0⇔ i < {i1, i2, . . .} ⇔ xi < {xi1 , xi2 , . . .}

⇔ xi < U jr , for each r ∈ {1, . . . , l}

⇔ ti jr = 0, for each r ∈ {1, . . . , l} ⇔ bi
j1··· jl

= 0.

Thus, aI = b j1··· jl .
Conversely, we suppose that aI = b j1··· jl , for some elements j1, . . . , jl ∈ I and we prove that {xi1 , xi2 , . . .} =

U j1 ∪ . . .∪U jl . Let xi ∈ {xi1 , xi2 , . . .}. Then, ai
I = 1 and by assumption bi

j1··· jl
= 1. That is, there exists r ∈ {1, . . . , l}

such that ti jr = 1 or equivalently xi ∈ U jr . Thus, xi ∈ U j1∪. . .∪U jl and hence {xi1 , xi2 , . . .} ⊆ U j1∪. . .∪U jl . In the
opposite side, let xi ∈ U j1 ∪ . . .∪U jl . Then, there exists r ∈ {1, . . . , l} such that xi ∈ U jr or equivalently ti jr = 1.
That is, bi

j1··· jl
= 1 and by assumption ai

I = 1. Therefore, xi ∈ {xi1 , xi2 , . . .} and hence U j1∪ . . .∪U jl ⊆ {xi1 , xi2 , . . .}.
Thus, {xi1 , xi2 , . . .} = U j1 ∪ . . . ∪U jl .

(2) Let {xi1 , xi2 , . . .} =
⋃
∞

r=1 U jr , for some countable subset J = { j1, j2, . . .} of I. We prove that aI = bJ. For
every i ∈ {1, 2, . . .}, in the i-row of these matrices we have:

a) ai
I = 1⇔ i ∈ {i1, i2, . . .} ⇔ xi ∈ {xi1 , xi2 , . . .}

⇔ there exists r ∈ {1, 2, . . .} such that xi ∈ U jr

⇔ ti jr = 1⇔ bi
J = 1,
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b) ai
I = 0⇔ i < {i1, i2, . . .} ⇔ xi < {xi1 , xi2 , . . .}

⇔ xi < U jr , for each r ∈ {1, 2, . . .}

⇔ ti jr = 0, for each r ∈ {1, . . . , l} ⇔ bi
J = 0.

Therefore, aI = bJ.
Conversely, let aI = bJ, for some countable subset J = { j1, j2, . . .} of I. We prove that {xi1 , xi2 , . . .} =

⋃
∞

r=1 U jr .
Let xi ∈ {xi1 , xi2 , . . .}. Then, ai

I = 1 and by assumption bi
J = 1. That is, there exists r ∈ {1, 2, . . .} such that ti jr = 1

or equivalently xi ∈ U jr . Thus, {xi1 , xi2 , . . .} ⊆
⋃
∞

r=1 U jr . In the opposite side, let xi ∈
⋃
∞

r=1 U jr . Then, there
exists r ∈ {1, 2, . . .} such that xi ∈ U jr or equivalently ti jr = 1. Therefore, bi

J = 1 and by assumption ai
I = 1, that

is xi ∈ {xi1 , xi2 , . . .} and so
⋃
∞

r=1 U jr ⊆ {xi1 , xi2 , . . .}. Thus, {xi1 , xi2 , . . .} =
⋃
∞

r=1 U jr .

Corollary 3.10. Let I = {i1, i2, . . .} ⊆ {1, 2, . . .}. Then, we have {xi1 , xi2 , . . .} = Uir , for some r ∈ {1, 2, . . .} if and only
if aI = cir .

Proof. By Proposition 3.9 {xi1 , xi2 , . . .} = Uir , for some r ∈ {1, 2, . . .} if and only if aI = bir . Since bir = cir , we
have the desired result.

Proposition 3.11. Let J = { j1, j2, . . .} ⊆ {1, 2, . . .}. Then, the set
⋃
∞

r=1 U jr is dense in X if and only if max(bJ +c j) = 2,
for every j ∈ {1, 2, . . .} \ J.

Proof. Let
⋃
∞

r=1 U jr be a dense subset of X, j ∈ {1, 2, . . .} \ J and max(bJ + c j) = k. We prove that k = 2. By
definitions of the matrices bJ and T we have either k = 1 or k = 2. Since the union is dense in X, there exists
r ∈ {1, 2, . . .} such that U jr ∩ U j , ∅. Thus, there exists i0 ∈ {1, 2, . . .} such that ti0 jr = ti0 j = 1. Therefore,
bi0

J + ti0 j = 2 and so k = 2.
Conversely, we prove that the union

⋃
∞

r=1 U jr is a dense subset of X. We suppose that it is not dense in
X. Then, there exists an open set U of X such that U ∩

⋃
∞

r=1 U jr = ∅. Thus, there exists x j ∈ U j ⊆ U such that
x j <

⋃
∞

r=1 U jr . By assumption max(bJ + c j) = 2. That is, there exists i0 ∈ {1, 2, . . .} such that bi0
J = ti0 j = 1 or

equivalently xi0 ∈ U j ∩
⋃
∞

r=1 U jr which is a contradiction. Thus, the union is dense in X.

Since each open countable subset D = {x j1 , x j2 , . . .} of X can be written as D = U j1 ∪ . . . ∪ U jl , for some
j1, . . . , jl ∈ {i1, i2, . . .} or as D =

⋃
∞

r=1 U jr , for some countable subset { j1, j2, . . .} of {i1, i2, . . .}, we can have the
following characterization of the countable open and dense subsets D of X.

Proposition 3.12. Let I = {i1, i2, . . .} ⊆ {1, 2, . . .}. Then, the set D = {xi1 , xi2 , . . .} is open and dense in X if and only
if one of the following conditions is satisfied:
(1) aI = b j1··· jl , for some j1, . . . , jl ∈ I and max(b j1··· jl + c j) = 2, for every j ∈ {1, 2, . . .} \ { j1, . . . , jl} or

(2) aI = bJ, for some countable subset J = { j1, j2, . . .} of I and max(bJ + c j) = 2, for every j ∈ {1, 2, . . .} \ J.

Proof. We suppose that the set D is open and dense in X. Then, we have D = U j1 ∪ . . . ∪ U jl , for some
j1, . . . , jl ∈ I or D =

⋃
∞

r=1 U jr , for some countable subset J = { j1, j2, . . .} of I. Therefore, by Proposition
3.9 we have aI = b j1··· jl or aI = bJ, respectively. Also, since D is dense in X, by Propositions 3.5 and 3.11
max(b j1··· jl +c j) = 2, for every j ∈ {1, 2, . . .}\{ j1, . . . , jl} or max(bJ +c j) = 2, for every j ∈ {1, 2, . . .}\ J, respectively.

Conversely, if the condition (1) of the proposition holds, then by Proposition 3.9 we have D = U j1∪. . .∪U jl
and thus D is open in X and by Proposition 3.5 D is dense in X. If the condition (2) of the proposition holds,
then by Proposition 3.9 we have D =

⋃
∞

r=1 U jr and thus D is open in X and by Proposition 3.11 D is dense
in X.
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Example 3.13. We consider the Alexandroff countable space X = {x1, x2, x3, . . .} with the topology τ =
{∅, {x2}, {x1, x2}, {x2, x3, x4, . . .},X}. The incidence matrix T of X is the following matrix

T =



1 0 0 0 0 0 . . .
1 1 1 1 1 1 . . .
0 0 1 1 1 1 . . .
0 0 1 1 1 1 . . .
0 0 1 1 1 1 . . .
...

...
...

...
...

...
...


,

where U1 = {x1, x2}, U2 = {x2}, U3 = U4 = U5 = . . . = {x2, x3, x4, . . .}. Let D = {x2, x3, x4, . . .} and I = {2, 3, 4, . . .}.
Following Proposition 3.12 we observe that the set D is open and dense in X. Indeed, since

aI =



0
1
1
1
1
1
...


= b23,

the set D is open in X. Moreover, it is dense in X since

b23 + c1 =



1
2
1
1
1
1
...


and b23 + c j =



0
2
2
2
2
2
...


,

for every j ∈ {4, 5, . . .}. Thus, max(b23 + c j) = 2, for every j ∈ {1, 2, . . .} \ {2, 3}.
Now, let D = {x3, x4, x5, . . .} and I = {3, 4, 5, . . .}. The set D is not open in X since

aI =



0
0
1
1
1
1
...


,



0
1
1
1
1
1
...


= b j1··· jl = bJ,

for every j1, . . . , jl ∈ I and for every countable subset J of I.

4. Alexandroff Countable Spaces and Quasi Covering Dimension with Matrices

In this section, based on the results of Section 3, we compute the quasi covering dimension of an
Alexandroff countable space X = {x1, x2, . . .}which satisfies certain additional requirements using matrices.
For that we remind the following results:

Proposition 4.1. ([6]) Let X be a finite space.
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(1) If some column of the matrix T is equal to 1, then dim(X) = 0.

(2) If c ji , i = 1, . . . ,m, are m columns of the matrix T such that c j1 + . . . + c jm > 1 and cr1 + . . . + crq � 1, for every
q < m, then dim(X) = max(c j1 + . . . + c jm ) − 1.

Proposition 4.2. ([5]) Let X be an Alexandroff countable space which has at least an open finite cover {Ui1 , . . . ,Uiµ }.
(1) If some column of the matrix T is equal to 1, then dim(X) = 0.

(2) If c ji , i = 1, . . . ,m, are m columns of the matrix T such that c j1 + . . . + c jm > 1 and cr1 + . . . + crq � 1, for every
q < m, then dim(X) = max(c j1 + . . . + c jm ) − 1.

Proposition 4.3. ([9]) For every topological space X, dimq(X) = sup{dim(D) : D is open and dense in X}.

Agreement. In what follows, we consider an Alexandroff countable space X = {x1, x2, . . .} such that
every open and dense subset D = {xi1 , xi2 , . . .} of X (in particular, the whole space X) can be written as
D = U j1 ∪ . . . ∪U jl , for some j1, . . . , jl ∈ {i1, i2, . . .} (see [5, Proposition 2.1]).

Following Propositions 3.6 and 3.12 we can recognize the open and dense subsets of X through the
matrix theory and from Propositions 4.1 and 4.2 we can compute each of their covering dimension by
matrices. Therefore, from Proposition 4.3, the matrix-computation of the quasi covering dimension of X is
succeeded.

Undoubtedly, the topological space X is defined by its topology or its base, each of which consists of
open sets of X and their unions. In the following process, using matrices, we verify that these sets, finite
or countable, are open, we examine which of these sets are dense in X and we see that any other subset
of X is not open and dense in X. Therefore, the choice of F and C of all finite and countable subsets
of X, respectively, in the following proceeding is absolutely determined by the topology of X. Thus, the
proceeding of computing the quasi covering dimension dimq of X is described as follows:

Step 1: Find the incidence matrix T of X and go to Step 2.

Step 2: Find d = dim(X) (use Proposition 4.2) and go to Step 3.

Step 3: Find the set F of all finite subsets {i1, . . . , im} of {1, 2, . . .} for which there exist j1, . . . , jl ∈ {i1, . . . , im}
satisfying the following properties:
(1) ai1···im = b j1··· jl ,

(2) max(b j1··· jl + c j) = 2, for each j ∈ {1, 2, . . .} \ { j1, . . . , jl}.
If F = ∅, then put f = 0 and go to Step 4. Otherwise, use Proposition 4.1 to print

f = max{dim({xi1 , . . . , xim }) : {i1, . . . , im} ∈ F }

and go to Step 4.

Step 4: Find the set C of all countable proper subsets I = {i1, i2, . . .} of {1, 2, . . .} for which there exist
j1, . . . , jl ∈ I satisfying the following properties:
(1) aI = b j1··· jl ,

(2) max(b j1··· jl + c j) = 2, for each j ∈ {1, 2, . . .} \ { j1, . . . , jl}.
If C = ∅, then put c = 0 and go to Step 5. Otherwise, since each {xi1 , xi2 , . . .}, {i1, i2, . . .} ∈ C satisfies our
agreement, use Proposition 4.2 to print

c = max{dim({xi1 , xi2 , . . .}) : {i1, i2, . . .} ∈ C}

and go to Step 5.

Step 5: Print dimq(X) = max{d, f , c}.
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Example 4.4. We consider the Alexandroff topological space X of Example 3.13. We will compute the quasi
covering dimension of X by performing the following steps.

Step 1: As we have seen in Example 3.13 the incidence matrix T of X is:

T =



1 0 0 0 0 0 . . .
1 1 1 1 1 1 . . .
0 0 1 1 1 1 . . .
0 0 1 1 1 1 . . .
0 0 1 1 1 1 . . .
...

...
...

...
...

...
...


.

Step 2: Since

c1 + c3 =



1
2
1
1
1
1
...


> 1,

by Proposition 4.2 we have d = dim(X) = max(c1 + c3) − 1 = 2 − 1 = 1. Therefore, by Proposition 4.3 we
have dimq(X) > 1.

Step 3: We have F = {{2}, {1, 2}}with f = max{dim({x2}),dim({x1, x2})} = 0.

Step 4: We have C = {{2, 3, 4, . . .}}with c = dim({x2, x3, x4, . . .}) = 0.

Step 5: Therefore, dimq(X) = max{d, f , c} = 1.

Example 4.5. Let the following sets X = {x1, x2, x3, . . .}, W1 = {x1, x4, x5, x6, . . .}, W2 = {x2, x4, x5, x6, . . .} and
Wi = {xi, xi+1, xi+2, xi+3, . . .}, for i = 3, 4, 5, . . . be given. We consider the Alexandroff countable space (X, τ),
where τ is the topology which is generated by the family {∅,W1,W2,W3, . . . ,X}. The quasi covering dimen-
sion of X can be found via the following steps.

Step 1: The incidence matrix T of X is the following matrix:

T =



1 0 0 0 0 0 . . .
0 1 0 0 0 0 . . .
0 0 1 0 0 0 . . .
1 1 1 1 0 0 . . .
1 1 1 1 1 0 . . .
...

...
...

...
...

...
...


since Wi = Ui, for each i = 1, 2, 3, . . . .

Step 2: For the space X we have:

c1 + c2 + c3 =



1
1
1
3
3
3
...


> 1,
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cr , 1, for every r ∈ {1, 2, . . .} and cr1 + cr2 � 1, for every r1, r2 ∈ {1, 2, . . .} with r1 , r2. Thus, d = dim(X) = 2
and by Proposition 4.3 we have dimq(X) > 2.

Step 3: We have F = ∅. Thus, f = 0.

Step 4: The set C consists of the countable sets {1, 4, 5, 6, . . .}, {2, 4, 5, 6, . . .}, {1, 2, 4, 5, 6, . . .}, {1, 3, 4, 5, 6, . . .},
{2, 3, 4, 5, 6, . . .}, and {i, i + 1, i + 2, . . .}, where i = 3, 4, 5, . . . . For the covering dimension dim({x1, x4, x5, x6, . . .})
we observe that the corresponding incidence matrix of W1 is the following matrix:

1 0 0 0 0 0 . . .
1 1 0 0 0 0 . . .
1 1 1 0 0 0 . . .
1 1 1 1 0 0 . . .
1 1 1 1 1 0 . . .
1 1 1 1 1 1 . . .
...

...
...

...
...

...
...


.

Since the first column of the above matrix is equal to 1, we have dim(W1) = 0. Similarly, dim(Wi) =
0, for every i = 2, 3, 4, . . . . Following the same thinking, we observe that dim({x1, x2, x4, x5, x6, . . .}) = 1,
dim({x1, x3, x4, x5, x6, . . .}) = 1 and dim({x2, x3, x4, x5, x6, . . .}) = 1. Therefore, c = 1.

Step 5: Thus, dimq(X) = max{d, f , c} = 2.
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