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Leaping Cauchy numbers
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Abstract. We introduce leaping Cauchy numbers, that are generalizations of the analogous numbers to
Euler numbers, as Cauchy numbers corresponds to Bernoulli numbers, in particular, in terms of determinant
expressions. We also give several properties including sums of products.

The theory of determinants has been established and studied by many Mathematicians through the
history. For example, T. Muir, who was remembered as an authority on determinants, studied and collected
nearly all of the known facts about determinants up to the early 1930s. The basic facts, including permu-
tations and combinations, general principles of simple determinants, compound determinants, co-factors,
adjugates, rectangular arrays and matrices, and linear dependence can be found in [12]. His book the his-
tory of determinants [11], whose Volume 1 covered the origins to Leibniz in 1693 until 1840, was published
in 1890. The remaining volumes were Volume 2 1840-1860 (1911), Volume 3 1860-1880 (1920), Volume 4
1880-1900 (1923), Volume 5 1900-1920 (1929). Muir was working on Volume 6 1920-1940 at the time of
his death. Although many theories about determinants had been established, they have been unknown,
ignored, or forgotten. Unfortunately, many Mathematicians has declared new results, though they had
already been established. One can safely says that we have rediscovered the original results. However, it
would be important to remember the first or the original results. Nowadays, it is really difficult to get the
original papers. Nevertheless, we should or cite them through the definite sources including [2], [4] and
[15] by way of [11].

In this paper by remembering the classical results, that have been often ignored, we shall introduce one
kind of generalized numbers of the original Cauchy numbers, which are related to the Bernoulli numbers
of the second kind, in particular, in terms of determinants.

The classical Cauchy numbers c, ([3, p.293]) may be defined by the generating function:

X o X
log(1+x) ;) T M

The numbers b, = c,/n! are sometimes called Bernoulli numbers of the second kind (e.g. [5, 13]).
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It is known that Cauchy numbers have a determinant expression ([4, p.50]):

1 0
i1
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n+1 n 3 2
On the other hand, Bernoulli numbers B,,, determined by
X - x"
-1 Z B”E ’
n=0
also have a determinant expression ([4, p.53]):
x 1 0
1 1
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B, =(=1)"n!| : : 1 0 (©)
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(n+1)! nl 32

If we choose only the factorials of even numbers, this is reduced to a determinant expression of Euler
numbers (cf. [4, p.52]):
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Here, classical Euler numbers E,, are defined by

)

1 x"
= E,—.
cosh x Z "l

One of the natural questions is what the number U, is from Cauchy number c,, as Euler number E,
from Bernoulli number B,. Namely, what kind of number U, is, expressing the following determinant

expression?
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In this paper, we shall answer this natural question by introducing the leaping Cauchy numbers as one
natural extension of the classical Cauchy numbers, in particular, in terms of determinanal expressions.
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1. Definitions and preliminary properties

For a nonnegative integer m, let F,(x) be the partial summation of the logarithm function log(1 + x),
defined by

Fu = Y -1y
n=1

and Fo44,m(x) be its odd version, defined by

xZn—l

2n—-1"

Foaan(®) = ) (1"
n=1

Define the leaping Cauchy numbers U™ by

S (~1)%(log(1 + %) — Fye)))
Z U(m)_ N 7 (%)
n=0

"ol T 2xm

if m is even, and

xm

- -1
Z U(m)x—n _ [1 . (-1 (arctanx - Fodd,m;l(x))]

if m is odd.
In particular, we have

) -1
(O)ﬁ _(y log(1 + x?)
;5 U n (1 2

and

0o

x" X
s -
o n!  arctanx

In [8, Theorem 1], different types of Cauchy numbers ¢, <, and ¢, >, are defined in terms of the partial
function F,(x):

o0 X eFn(0-1
;gc"/fmﬁ " Fu@)
and
) o £108(1+x)—=Fy1 (x)
Z 2 T Tog(1+ %) — Fpa(x)

n=0

so that ¢, = Cy<co = Cp>1-
There is a recurrence relation among the leaping Cauchy numbers.

Lemma 1.1. Forintegersn > 1and m >0,

v C)ent
£ (2n = 2k +m)(2k)! 2

(m) _
UZn -

with U = 1.
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Proof. By the definition, we see that for any nonnegative integer m,

-1
) n s _1)nx2n
gm* _ (
ZA "ol 1+ ZA 2n+m
n=0 n=1

By this definition, U(m) 0 if n is odd. Therefore,

~ ad ) xZn R (_1)lx21
= [Z ta (2n)!](1+2 A+m

n=0 =1
B i o X . o n-1 (_1)n—ku(m) xzn
= o A .
= " (2n)! e (2n — 2k + m)(2k)!

Comparing the coefficients on both sides, we have U(()m) =landforn>1

m n n—ky 7(m)
u( ) Zl‘ -1) ku2k _
(2n)' (2n — 2k + m)(2k)!

The leaping Cauchy numbers have an explicit expression.

Theorem 1.2. For integersn > 1 and m > 0,

m) _ - _1\n—k 1
u,” = (2n)! kz_;( 1) Z (2i1 +m)--- i +m)

ip+etip=n
i1 i 21

Proof. We shall prove that

(_1)i1+-~+ik
(2iy +m)--- ix +m)

ul = (2n)! Zn"(—l)k

iq+eetip=n
i1 e zkzl

When n =1, by Lemma 1.1, we have

2 2
u(m) — u(m) — .
2 m+2 0 m+2
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This matches the result of (7) for n = 1. Assume that (7) is valid up to n — 1. Then by Lemma 1.1, we have

m a1 L
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2. Deteminantal expressions

Leaping Cauchy numbers are naturally extended from the original Cauchy numbers in terms of deter-
minant.

Theorem 2.1. For integersn > 1 and m > 0,

1
m+2 1 0
1 1
m+4 2
(m) _ .
u,, = (@2n)! 1 0 8)
1 1 1 1
m+2n—-2 m+2n—4 m+2
1 B O
m+2n m+2n—2 m+4 m+2

Remark 2.2. When m = 0 in Theorem 2, the result is reduced to (5), where U, = Ugi) It is known ([7, 10]) that
Euler numbers of the second kind E,, defined by

(o]
x Z X"
sinhx &= = "n!

have the determinant expression

z 1 0
5 3 1
Ezy, = (-1)"(2n)! o0
1 1 1 1
-1 @n-3) 3l
_1 _1 1 1
@n+D)!  @n-D) 5 3
When m = 1 in Theorem 2, we have its analogous expression:
1
3 1 0
1 1
5 3 1
1
ul) = (2n)! 0
1 _1 1 1
i T 11
2n+1 2n—1 5 3
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Proof. | For simplicity, put (9" = U /n! and prove that

1
m+2 1 0
1 1
m+4 m+2

r(m) _

U, =| : .10
1 1 ... 1L 1
m+2n—2 m+2n—4 m+2
1 1t ... L 1
m+2n m+2n-2 m+4 m+2

By Theorem 1.2, we see that

~ 1
u(m) —
2 m+2
Assume that (9) is valid up ton — 1. By Lemma 1.1,
-1 I
n (_1)n k-1 ()

rp(m) _
u2n -
k=0

2n—2k+m 2%

with l:[ém) = 1. Expanding at the first row of the right-hand side of (9), we have

(m) ’”{'4 } (m) (m)
m m+6 m+2 rim rm 1
UZn—Z _ . . . 1 — u2n—2 _ uZn—4 Tt (_1)11—2 m+21n—2
m+2 : : - . m+2 m+4 P
m+21n—2 m+21n—6 e mil—Z 1
m+2n m+2n—4 e m+4 m+2
n-1 n—k-1
Yy _CETT g o
2n—2k+m % m
k=0
3. Table of UL’”)
n 0o 2 4 6 8 10 12
0
u® 1 1 o 30 —840 60480 6153840
uv 1 o2 = 704 _ 54784 2610176 10976325632
n 3 15 21 45 33 1365
2) 1 _5 165 _ 2989 384615 38732265
u, 1 3 4 2 1 4
u® |1 2 _a 7808 _ 16143872 13685271552 4400505311232
n 5 175 175 9625 125125 398125
u®» 1 1 _z 136 _ 15974 355010 36298042
n 3 3 9 3 3
U® [ 1 2 _320 168640 800765440 42494991360  _ 1573960917340160
n 7 147 3773 441441 343343 122573451
u® |1 1 _sl 1389 290553 16202079 17062159653
n 1 40 32 160 128 1280
The following properties are easily seen.
Theorem 3.1. Form >0
ym = 2
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The sequence of numerators of U;ln)/ (2n)! (n > 1) is seen in [16, A216272], and the sequence of denomi-
nators of qu) /(2n)! (n > 2) is seen in [16, A195466]. We have an explicit expression:

D n+1 2n=1 I
) _ (-1 ¥ 241 (25— 1 ik! I+1
@2n)! 2n-1 I+1\ I k
1=0 k=0
where {’;} denotes the Stirling numbers of the second kind given by

(= X ()

=0

(7’1 2 1)/

I+k 1
I [(d+k)

and [Z] denotes the (unsigned) Stirling numbers of the first kind arising as coefficients of the rising factorial

x(x+1)---(x+n—1):i[1;]xk.

k=0

4. Applications by the Trudi’s formula

We shall use the Trudi’s formula to obtain different explicit expressions and inversion relations for the
numbers B".

Lemma 4.1. For a positive integer n, we have

a ap 0
a a

2 ! b+t by
t1,..., ty

)(_ao)n—h—m—ty,a;la;z . a;nl

t1+2t2+~~+nt,,=n (
n-1 oM 4o

ay Ap—1 -+ d2 M

+"'+t,,) - (tl""""'tn)I

f
where ( H oot !

are the multinomial coefficients.

This relation is known as Trudi’s formula [11, Vol.3, p.214],[15] and the case a9 = 1 of this formula is
known as Brioschi’s formula [2],[11, Vol.3, pp.208-209].
In addition, there exists the following inversion formula (see, e.g. [9]), which is based upon the relation:

n

Y () aDe -k =0 (n21).

k=0
Lemma 4.2. If {a,}u50 is a sequence defined by ag = 1 and

D1) 1 a1
= D) , then D(n) = @
: | R |
D(n) --- D(@2) D(1) ap - ap

n
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From Trudi’s formula, it is possible to give the combinatorial expression

B4+t

ay =
t1,...,tn

( )(‘1)”_“‘""@(1)“D(Z)” —--D(n)".
t+2ty+-+nt,=n

By applying these lemmata to Theorem 8, we obtain an explicit expression for leaping Cauchy numbers.

Theorem 4.3. Forn > m > 1, we have

H+-+ 1y, e 1 ty 1 ty
u(WI) =(2 ' X (=1 n—ty t”( ) ( ) .
2 = (21) Z t,.o by =D m+ 2 m+2n

b2t +-+nt,=n

By applying the inversion relation in Lemma 4.2 to Theorem 8, we have the following.

Theorem 4.4. For n > 1, we have

(m)
u
2
2! 1 0
(1) (m)
4 U
4! 2!
1| . L
m+2n , ,
(m) (m) (m)
wp, up, o uw
il A
m ) m n)
L . .
2n)! 2n-2)! 4! 2!

5. Convolution identities

It is known ([17, Theorem 2.1]) that Cauchy numbers ¢, satisfy the identity

n

Z (Z)ckcn_k =—-m-1)c,—n(n-2)c,-1 (n=0).

k=0

Leaping Cauchy numbers satisfy the following relations.

Theorem 5.1. For any nonnegative integer n, we have

= (1) 00 Uy )
_ Tt

kZ-o(k)uk u-, = o +nll,”, (10)

5 (n

k)u;” ), = ~(n -, —n(n-1)(n - HU,, (11)
k=0
and for m > 2

= (1 Uy = m—n um 4 1 LZ;'J‘(_DZ (m - 1)l nl(n — 21 — m) Lo (12)

P k]7k Tk =17 m(m = 1) — m (n=2N! n=2l"

Remark 5.2. When n is odd, both sides of any of (10), (11) and (12) are equal to 0.
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Proof. Put
s 1)11 2n
u(x)—(1+n T J
We have
o (—1)"2nx2 1
w(x) = Z(x) Z 2n+m
n=1
— _q42 - n2n1_ﬂw(1)x2n
u(x)[”Z‘( B x; 2n+m

If m = 0, we have
X

w'(x) = u?(x) T2

or
uA(x) = u "(x) + xu’(x).

Hence, we get

(e8] n o0
040 x" _1 o X, o X"
VY (fuus s = L Y e Y Ut
k=0

n=0 n=0 n=0
) 0) )
_ U,,, x" ©)
S Lt L
n=0 n n n=0

Comparing the coefficients on both sides, we obtain the identity (10).
If m =1, we have

/ ) | u)

HOE e T

or
1 (x) = (1 + xP)ux) — x(1 + 22/ (x).

Hence, we get

i ) ( )U(l)uf'll)kxl Zu(l Zu(l)x Zun+1 z
k=0

n=0 k:

3

_ mx" nt o) X" 1)x
‘Zu” ! +;0‘(n—2)!u”‘2n! Z

n=

n=0
==Y -u % =Y nn - 1) - 3)u§}_>2x—,
n=0 ’ n=0

Comparing the coefficients on both sides, we obtain the identity (11).
If m > 2, we have
m(1 + x?) x(1 + x2)
= —=u(x) -
m+ (m—1)x2

m+ (m — 1)x2

u'(x).

u(

1y X"

n+1 n!

Z

(n— 3)'

o X

”Zn!
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The first term on the right-hand side is equal to

m 1 1 m 1 -« m—1
m—l[l_a1+m7‘1x2]u(x)_m—lu(x)_m—lz(_l)l( m )xz’u(x)
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[ n+20+1

_ 1 m—1 n+21+1)' x
T om-— 12 ”“n' m(m—l)z;l( 1( )Z u”+1(n+21+1)'

1

L3]

N\

! n! (m) x"

1)1( m 1) (n—zl—l)!un—ﬂﬁ

_ 1y wX” -
T om-1 " n! m(m—l)Z

n=0 n=0 I=

Therefore, we obtain

I

BN S o PRES SOD S o @ APINY [/t | W NP X
_m—lz(m n)unn!+m(m—1)z (1)( m )(n—ZZ)!(n 2 m)u"_ﬂn!'

Comparing the coefficients on both sides, we obtain the identity (12). O
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