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Abstract. Based on the S-type eigenvalue localization set developed by Li et al. (Linear Algebra Appl.
493 (2016) 469-483) for tensors, a modified S-type eigenvalue localization set for tensors is established in
this paper by excluding some sets from the existing S-type eigenvalue localization set developed by Huang
et al. (arXiv: 1602.07568v1, 2016). The proposed set containing all eigenvalues of tensors is much sharper
compared with that employed by Li et al. and Huang et al. As its applications, a criteria, which can be
utilized for identifying the nonsingularity of tensors, is developed. In addition, we provide new upper
and lower bounds for the spectral radius of nonnegative tensors and the minimum H-eigenvalue of weakly
irreducible strong M-tensors. These bounds are superior to some previous results, which is illustrated by
some numerical examples.

1. Introduction

Let n be a positive integer with n ≥ 2, and N = {1, 2, . . . ,n}. C(R) stands for the set of all complex (real)
numbers. A = (ai1...im ) called a complex (real) tensor of order m dimension n, denoted byA ∈ C[m,n](R[m,n]),
if ai1...im ∈ C(R), where i j ∈ N for j = 1, 2, . . . ,m [19].

The tensorA ∈ R[m,n] is called the unit tensor [21], denoted by I, if its entries δi1...im (i1, . . . , im ∈ N) satisfy
the following conditions:

δi1...im =

{
1, if i1 = . . . = im,
0, otherwise.

ForA = (ai1...im ) ∈ R[m,n], i, j ∈ N, j , i and a nonempty proper subset S of N, we denote

∆N = {(i2, i3, . . . , im) : each i j ∈ N for j = 2, 3, . . . ,m},

∆S = {(i2, i3, . . . , im) : each i j ∈ S for j = 2, 3, . . . ,m}, ∆S = ∆N
\∆S
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and

Ri(A) =

n∑
i2,...,im=1

aii2...im , Rmax(A) = max
i∈N

Ri(A), Rmin(A) = min
i∈N

Ri(A),

ri(A) =
∑

δii2 ...im =0

|aii2...im |, r j
i (A) =

∑
δii2 ...im =0,
δ ji2 ...im =0

|aii2...im | = ri(A) − |ai j... j|.

LetA ∈ R[m,n], and x ∈ Cn. ThenAxm−1 is a column vector of dimension n and its i-th entry is

(Axm−1)i =

n∑
i2,...,im=1

aii2...im xi2 · · · xim , i ∈ N.

Qi [31] and Lim [29] independently introduced the following definitions.

Definition 1.1. A pair (λ, x) ∈ C × (Cn
\ {0}) is called an eigenpair ofA if

Axm−1 = λx[m−1],

where x[m−1] = (xm−1
1 , xm−1

2 , . . . , xm−1
n )T. Here xT denotes the transpose of x. Furthermore, we call (λ, x) an

H-eigenpair, if λ is a real number and x is a real vector.

Definition 1.2. A pair (λ, x) ∈ C × (Cn
\ {0}) is called an E-eigenpair ofA, if they satisfy the equationAxm−1 = λx,

xTx = 1.

We call (λ, x) a Z-eigenpair, if λ is a real number and x is a real vector.

The generalized matrix eigenvalue problems are important in many applications. In view of this, the
definition of the generalized tensor eigenvalue has been developed and is giving by:

Definition 1.3. [6, 11] LetA and B be two m-order n-dimensional tensors on R. Assume that bothAxm−1

and Bxm−1 are not identical to zero. We say (λ, x) ∈ C × (Cn
\ {0}) is an eigenpair of A relative to B, if the

n-system of equations:

Axm−1 = λBxm−1

possesses a solution. λ is called a B-eigenvalue ofA, and x is called a B eigenvector ofA.

As said in [11], the generalized tensor eigenvalue covers the definitions of H-eigenvalues, E-eigenvalues
and D-eigenvalues.

Now we turn to introduce some extreme eigenvalues of tensors. The spectral radius ρ(A) of the tensor
A [38] is defined as

ρ(A) = max{|λ| : λ is an eigenvalue ofA}.

Denote by τ(A) the minimum value of the real part of all eigenvalues of the tensor A [12]. The bounds
of ρ(A) and τ(A) have been concerned by many researchers, and much literature is devoted to presenting
some relevant results.

The spectral radius of a tensor is often associated with nonnegative tensors, which are defined as follows:

Definition 1.4. [6, 14, 27, 32, 37, 38] A tensor A is called nonnegative (resp., positive) if ai1i2...im ≥ 0 (resp.,
ai1i2...im > 0) for all i1, i2, . . . , im.

The definition about symmetry of matrix has been known for us, next we exhibit the definition of
symmetry of tensor, which was put forward firstly by Qi [31].
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Definition 1.5. [18, 19, 22, 23, 31, 37] A real tensorA = (ai1...im ) is called symmetric if its entries satisfy

ai1...im = aπ(i1...im), ∀π ∈ Πm,

where Πm is the permutation group of m indices.

M-matrix is an important special matrix and has many beautiful properties [1], and there are many
scholars paying their attentions to this matrix. In 2013, the concept of M-matrix has been generalized to
M-tensors [10], and many properties of them have been studied.

Definition 1.6. [10, 39, 40] A tensorA is called a Z-tensor, if all of its off-diagonal entries are non-positive,
thus we can get the form of a Z-tensor is A = sI − B, where s is a real number and B is a nonnegative
tensor (B ≥ 0). A Z-tensorA = sI − B is an M-tensor if s ≥ ρ(B), and it is a nonsingular (strong) M-tensor
if s > ρ(B).

Eigenvalue problems of tensors play significant roles in many fields, and they have wide practical ap-
plications, such as magnetic resonance imaging [34], higher order Markov chains [30], spectral hypergraph
theory [8] and so forth. For the past couple of years, many works have been made contribute to spectral
properties of tensors, which include estimating the upper bounds on ρ(A) of nonnegative tensors, obtaining
the lowers bounds for τ(A) of M-tensors, and investigating the numerical algorithms for eigenvalues of
tensors etc. [4, 6, 7, 10–13, 18, 25–27, 31–33, 36–38].

Further, it is vital that we study the eigenvalue inclusion sets for tensors, as observed in from [19, 21, 24],
we can utilize the smallest H-eigenvalue of an even-order real symmetric tensor to determine its positive
(semi-)definiteness, but getting the smallest H-eigenvalue of tensors is a task work for us on many occasions.
Furthermore, as mentioned in [35], the determinant of the tensor A denoted by det(A), is the resultant of
the ordered system of homogeneous equationsAxm−1 = 0 and is closely related to the eigenvalues ofA. In
general, if det(A) , 0, i.e., 0 is not an eigenvalue ofA, thenA is nonsingular. However, it is very difficult
to determine the nonsingularity of the tensors by computing their eigenvalues directly. Considering these
situations, we shall try to derive a set which contains all eigenvalues of tensors. Some efforts have been
made towards this goal recently, we can see [2, 3, 15, 18, 19, 21–24, 31] for more details. A great eigenvalue
localizations set is conducive to judge the positive definiteness, the positive semi-definiteness and the
nonsingularity of tensors, which stimulates us to establish the new set which contains all eigenvalues of
tensors in our paper, this new set is referred to as the modified S-type eigenvalue localization set and it is
confirmed to be tighter than those in [17, 19, 22, 31].

Before giving the main results of this paper, we recapitulate some eigenvalue inclusion sets of tensors.
For the real supersymmetric tensors, Qi [31] in 2005 gave the Geršgorin eigenvalue localization sets as
follows.

Lemma 1.1. [31] LetA = (ai1...im ) ∈ C[m,n], n ≥ 2. Then

σ(A) ⊆ Γ(A) =
⋃
i∈N

Γi(A),

where σ(A) is the set of all the eigenvalues ofA and

Γi(A) = {z ∈ C : |z − ai...i| ≤ ri(A)}.

This result still stands for general tensors [22, 37]. Subsequently, the following eigenvalue localization set
which is more accurate than Γ(A) for tensors is developed by Li et al. [22].

Lemma 1.2. [22] LetA = (ai1...im ) ∈ C[m,n], n ≥ 2. Then

σ(A) ⊆ K (A) =
⋃

i, j∈N, j,i

Ki, j(A),

where

Ki, j(A) = {z ∈ C : (|z − ai...i| − r j
i (A))|z − a j... j| ≤ |ai j... j|r j(A)},
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which is called the Brauer-type eigenvalue localization set. To reduce computations of obtaining K (A),
they also established the S-type eigenvalue localization set as follows.

Lemma 1.3. [22] LetA = (ai1...im ) ∈ C[m,n], n ≥ 2, and S be a nonempty proper subset of N. Then

σ(A) ⊆ KS(A) =

 ⋃
i∈S, j∈S̄

Ki, j(A)

⋃
 ⋃

i∈S̄, j∈S

Ki, j(A)

 ,
whereKi, j(A) (i ∈ S, j ∈ S̄ or i ∈ S̄, j ∈ S) are defined as in Lemma 1.2 and S̄ is the complement of S in N.

It is also shown in [22] that when n ≥ 3,KS(A) ⊆ K (A) always true.
Lately, Li et al. in [19] deduced a new eigenvalue localization set. Theorem 6 in [19] confirms that this

new set is contained in the sets Γ(A),K (A) andKS(A).

Lemma 1.4. [19] LetA = (ai1...im ) ∈ C[m,n], n ≥ 2, and S be a nonempty proper subset of N. Then

σ(A) ⊆ ΩS(A) =

 ⋃
i∈S, j∈S̄

ΩS
i, j(A)

⋃
 ⋃

i∈S̄, j∈S

ΩS̄
i, j(A)

 ,
where

ΩS
i, j(A) = {z ∈ C : (|z − ai...i|)(|z − a j... j| − r∆S

j (A)) ≤ ri(A)r∆S

j (A)},

ΩS̄
i, j(A) = {z ∈ C : (|z − ai...i|)(|z − a j... j| − r∆S̄

j (A)) ≤ ri(A)r∆S̄

j (A)},

and for i ∈ S,

ri(A) = r∆S

i (A) + r∆S

i (A), r j
i (A) = r∆S

i (A) + r∆S

i (A) − |ai j... j|,

with

r∆S

i (A) =
∑

(i2,...,im)∈∆S,
δii2 ...im=0

|aii2...im |, r∆S

i (A) =
∑

(i2,...,im)∈∆S

|aii2...im |.

In the sequel, enlightened by the idea of [24], Huang et al. in [17] proposed a new S-type eigenvalue
localization set for tensors as follows, which is better than that in Lemma 1.4.

Lemma 1.5. [17] LetA = (ai1...im ) ∈ C[m,n], n ≥ 2, and S be a nonempty proper subset of N. Then

σ(A) ⊆ ΥS(A) =
(
ΥS

i, j(A)
)⋃(

ΥS̄
i, j(A)

)
, (1)

where

ΥS
i, j(A) =

⋃
i∈S

Υ̂1
i (A)

⋃
 ⋃

i∈S, j∈S̄

(
Υ̃1

i, j(A)
⋂

Γi(A)
) ,

ΥS̄
i, j(A) =

⋃
i∈S̄

Υ̂2
i (A)

⋃
 ⋃

i∈S̄, j∈S

(
Υ̃2

i, j(A)
⋂

Γi(A)
) ,

with

Υ̂1
i (A) = {z ∈ C : |z − ai...i| ≤ r∆S̄

i (A)}, Υ̂2
i (A) = {z ∈ C : |z − ai...i| ≤ r∆S

i (A)},

Υ̃1
i, j(A) = {z ∈ C : (|z − ai...i| − r∆S̄

i (A))(|z − a j... j| − r∆S̄

j (A)) ≤ r∆S̄

i (A)r∆S̄

j (A)},

Υ̃2
i, j(A) = {z ∈ C : (|z − ai...i| − r∆S

i (A))(|z − a j... j| − r∆S

j (A)) ≤ r∆S

i (A)r∆S

j (A)}.
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Motivated by the idea of [18], Huang et al. in [15] newly employed another S-type eigenvalue inclusion
set for tensors, which improves those in Theorem 2.2 of [22] and Theorem 6 in [18]. This set is also involved
in a nonempty proper set S of N, and we can see that in Lemma 1.6.

Lemma 1.6. [15] LetA = (ai1...im ) ∈ C[m,n], n ≥ 2, and S be a nonempty proper subset of N. Then

σ(A) ⊆ ∆S(A) =

 ⋃
i∈S, j∈S̄

∆
j
i (A)

⋃
 ⋃

i∈S̄, j∈S

∆
j
i (A)

 ,
where

∆
j
i (A) =

{
z ∈ C : |(z − ai...i)(z − a j... j) − ai j... ja ji...i| ≤ |z − a j... j|r

j
i (A) + |ai j... j|ri

j(A)
}
.

In this work, motivated by the ideas of [20, 28, 35], a new set called the modified S-type eigenvalue
localization set for tensors is derived, which outperforms those in Lemmas 1.1-1.5. A new criteria for
identifying the nonsingularity of tensors, bounds for the spectral radius of nonnegative tensors and the
minimum H-eigenvalue of strong M-tensors are established by applying the proposed set. These results
perform better than some existing ones. We afford several numerical examples to show the advantages of
our results.

2. Preliminaries

In our proofs of main results, we need some results, which are related to tensors and inequality are
briefly introduced in this section.

Lemma 2.1. [5] If A ∈ R[m,n] is irreducible nonnegative, then ρ(A) is an eigenvalue with an entrywise positive
eigenvector x, i.e., x > 0, corresponding to it.

Lemma 2.2. [22] LetA ∈ R[m,n] be a nonnegative tensor. Then ρ(A) ≥ max
i∈N
{ai...i}.

Lemma 2.3. [36] Let A be a nonsingular (strong) M-tensor and τ(A) denote the minimal value of the real part of
all eigenvalues of A. Then τ(A) > 0 is an H-eigenvalue of A with a nonnegative eigenvector. If A is a weakly
irreducible Z-tensor, then τ(A) > 0 is the unique eigenvalue with a positive eigenvector.

The definitions for irreducibility and weakly irreducibility of tensors have been introduced in [18, 38].
For the weakly irreducible strong M-tensors, the following result has been obtained by Wang and Wei in
[36].

Lemma 2.4. [36] LetA be a weakly irreducible strong M-tensor. Then τ(A) ≤ min
i∈N
{ai...i}.

3. Main results

3.1. A modified S-type eigenvalue localization set for tensors

In this section, we construct a modified S-type eigenvalue localization set for tensors, and we also
compare the proposed set with those in Lemmas 1.1-1.5.

Theorem 3.1. LetA = (ai1...im ) ∈ C[m,n], n ≥ 2, and S be a nonempty proper subset of N. Then

σ(A) ⊆ GS(A) =
(
GS

i, j(A)
)⋃(

GS̄
i, j(A)

)
, (2)
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where

GS
i, j(A) =

⋃
i∈S

Υ̂1
i (A)

⋃
 ⋃

i∈S, j∈S̄

( (
Υ̃1

i, j(A)\G1
i, j(A)

)⋂
Γi(A)

) ,
GS̄

i, j(A) =

⋃
i∈S̄

Υ̂2
i (A)

⋃
 ⋃

i∈S̄, j∈S

( (
Υ̃2

i, j(A)\G2
i, j(A)

)⋂
Γi(A)

) ,
with

Υ̂1
i (A) = {z ∈ C : |z − ai...i| ≤ r∆S̄

i (A)}, Υ̂2
i (A) = {z ∈ C : |z − ai...i| ≤ r∆S

i (A)},

Υ̃1
i, j(A) = {z ∈ C : (|z − ai...i| − r∆S̄

i (A))(|z − a j... j| − r∆S̄

j (A)) ≤ r∆S̄

i (A)r∆S̄

j (A)},

Υ̃2
i, j(A) = {z ∈ C : (|z − ai...i| − r∆S

i (A))(|z − a j... j| − r∆S

j (A)) ≤ r∆S

i (A)r∆S

j (A)},

G1
i, j(A) = {z ∈ C : (|z − ai...i| + r j

i (A))(|z − a j... j| + r∆S̄

j (A)) < |ai j... j|(2|a ji...i| − r∆S̄

j (A))},

G2
i, j(A) = {z ∈ C : (|z − ai...i| + r j

i (A))(|z − a j... j| + r∆S

j (A)) < |ai j... j|(2|a ji...i| − r∆S

j (A))}.

Proof. For any λ ∈ σ(A), let x = (x1, x2, . . . , xn)T
∈ Cn
\{0} be an associated eigenvector, i.e.,

Axm−1 = λx[m−1]. (3)

Let |xp| = max
i∈S
{|xi|} and |xq| = max

i∈S̄
{|xi|}. Then, xp , 0 or xq , 0. Below two cases will be discussed.

(i) |xp| ≥ |xq|, so |xp| = max
i∈N
{|xi|} and |xp| > 0. It follows from the pth equation of (3) that

(λ − ap...p)xm−1
p =

∑
(i2,...,im)∈∆S̄,
δpi2 ...im=0

api2...im xi2 · · · xim +
∑

(i2,...,im)∈∆S̄

api2...im xi2 · · · xim . (4)

Taking absolute values in Equation (4) and applying the triangle inequality yield

|λ − ap...p||xp|
m−1

≤

∑
(i2,...,im)∈∆S̄,
δpi2 ...im=0

|api2...im ||xi2 | · · · |xim | +
∑

(i2,...,im)∈∆S̄

|api2...im ||xi2 | · · · |xim |

≤

∑
(i2,...,im)∈∆S̄,
δpi2 ...im=0

|api2...im ||xp|
m−1 +

∑
(i2,...,im)∈∆S̄

|api2...im ||xq|
m−1

= r∆S̄

p (A)|xp|
m−1 + r∆S̄

p (A)|xq|
m−1,

which leads to

(|λ − ap...p| − r∆S̄

p (A))|xp|
m−1
≤ r∆S̄

p (A)|xq|
m−1. (5)

If |xq| = 0, then it follows from (5) that |λ− ap...p| − r∆S̄

p (A) ≤ 0 by |xp| > 0, that is, |λ− ap...p| ≤ r∆S̄

p (A). Evidently,

λ ∈ Υ̂1
p(A) ⊆ ΥS(A). Otherwise, |xq| > 0. If λ <

⋃
i∈S

Υ̂1
i (A), then for any i ∈ S, we have |λ − ai...i| > r∆S̄

i (A). In
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particular, |λ − ap...p| > r∆S̄

p (A) holds true, i.e., |λ − ap...p| − r∆S̄

p (A) > 0. According to (5), it is not difficult to
verify λ ∈ Γp(A). Besides, it follows from (3) that

|λ − aq...q||xq|
m−1

≤

∑
(i2,...,im)∈∆S̄

|aqi2...im ||xi2 | · · · |xim | +
∑

(i2,...,im)∈∆S̄,
δqi2 ...im=0

|aqi2...im ||xi2 | · · · |xim |

≤

∑
(i2,...,im)∈∆S̄

|aqi2...im ||xp|
m−1 +

∑
(i2,...,im)∈∆S̄,
δqi2 ...im=0

|aqi2...im ||xq|
m−1

= r∆S̄

q (A)|xp|
m−1 + r∆S̄

q (A)|xq|
m−1,

which is equivalent to

(|λ − aq...q| − r∆S̄

q (A))|xq|
m−1
≤ r∆S̄

q (A)|xp|
m−1. (6)

Note that |xp| > 0 and |λ − ap...p| > r∆S̄

p (A), multiplying (5) with (6) results in

(|λ − ap...p| − r∆S̄

p (A))(|λ − aq...q| − r∆S̄

q (A)) ≤ r∆S̄

p (A)r∆S̄

q (A)

by |xp| ≥ |xq| > 0, which together with λ ∈ Γp(A) gives λ ∈
(
Υ̃1

p,q(A)
⋂

Γp(A)
)
.

It follows from (4) that

apq...qxm−1
q = (λ − ap...p)xm−1

p −

∑
(i2,...,im)∈∆S̄,
δpi2 ...im=0

api2...im xi2 · · · xim −
∑

(i2,...,im)∈∆S̄,
δqi2 ...im=0

api2...im xi2 · · · xim . (7)

By taking modulus in both sides of (7) and utilizing the triangle inequality, it has

|apq...q||xq|
m−1
≤ |λ − ap...p||xp|

m−1 +
∑

(i2,...,im)∈∆S̄,
δpi2 ...im=0

|api2...im ||xi2 | · · · |xim | +
∑

(i2,...,im)∈∆S̄,
δqi2 ...im=0

|api2...im ||xi2 | · · · |xim |

≤ |λ − ap...p||xp|
m−1 +

∑
δpi2 ...im=0,
δqi2 ...im=0

|api2...im ||xp|
m−1 = (|λ − ap...p| + rq

p(A))|xp|
m−1. (8)

Furthermore, we consider the qth equation of (3) which can be written as

aqp...pxm−1
p = (λ − aq...q)xm−1

q −

∑
(i2,...,im)∈∆S̄,
δpi2 ...im=0

aqi2...im xi2 · · · xim −
∑

(i2,...,im)∈∆S̄,
δqi2 ...im=0

aqi2...im xi2 · · · xim . (9)

Using the same operations applied in (8) to (9) results in

|aqp...p||xp|
m−1
≤ |λ − aq...q||xq|

m−1 +
∑

(i2,...,im)∈∆S̄,
δpi2 ...im=0

|aqi2...im ||xi2 | · · · |xim | +
∑

(i2,...,im)∈∆S̄,
δqi2 ...im=0

|aqi2...im ||xi2 | · · · |xim |

≤ |λ − aq...q||xq|
m−1 +

∑
(i2,...,im)∈∆S̄,
δpi2 ...im=0

|aqi2...im ||xp|
m−1 +

∑
(i2,...,im)∈∆S̄,
δqi2 ...im=0

|aqi2...im ||xq|
m−1

= |λ − aq...q||xq|
m−1 + (r∆S̄

q (A) − |aqp...p|)|xp|
m−1 + r∆S̄

q (A)|xq|
m−1,
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which yields that

(2|aqp...p| − r∆S̄

q (A))|xp|
m−1
≤ (|λ − aq...q| + r∆S̄

q (A))|xq|
m−1. (10)

If |xq| > 0, then multiplying (8) with (10) leads to

|apq...q|(2|aqp...p| − r∆S̄

q (A))|xp|
m−1
|xq|

m−1
≤ (|λ − ap...p| + rq

p(A))(|λ − aq...q| + r∆S̄

q (A))|xp|
m−1
|xq|

m−1,

and hence

|apq...q|(2|aqp...p| − r∆S̄

q (A)) ≤ (|λ − ap...p| + rq
p(A))(|λ − aq...q| + r∆S̄

q (A)) (11)

as |xp| ≥ |xq| > 0. If |xq| = 0, then (10) implies that 2|aqp...p| − r∆S̄

q (A) ≤ 0, and (11) is also valid. (11) means that

λ < G1
p,q(A). Therefore, λ ∈

( (
Υ̃1

p,q(A)\G1
p,q(A)

)⋂
Γp(A)

)
⊆ GS(A).

(ii) |xp| ≤ |xq|, so |xq| = max
i∈N
{|xi|} and |xq| > 0. From qth equation of (3), it has

(λ − aq...q)xm−1
q =

∑
(i2,...,im)∈∆S

aqi2...im xi2 · · · xim +
∑

(i2,...,im)∈∆S,
δqi2 ...im=0

aqi2...im xi2 · · · xim . (12)

Utilizing the similar operations as in (4), we can obtain the following inequality:

|λ − aq...q||xq|
m−1

≤

∑
(i2,...,im)∈∆S

|aqi2...im ||xp|
m−1 +

∑
(i2,...,im)∈∆S,
δqi2 ...im=0

|aqi2...im ||xq|
m−1

= r∆S

q (A)|xp|
m−1 + r∆S

q (A)|xq|
m−1,

which yields that

(|λ − aq...q| − r∆S

q (A))|xq|
m−1
≤ r∆S

q (A)|xp|
m−1. (13)

If |xp| = 0, then it follows from (13) that |λ − aq...q| − r∆S

q (A) ≤ 0 by |xq| > 0, i.e., |λ − aq...q| ≤ r∆S

q (A),
obviously, λ ∈ Υ̂2

q(A) ⊆ ΥS(A). Otherwise, |xp| > 0. If λ <
⋃
i∈S̄

Υ̂2
i (A), we are easy to see that for any i ∈ S̄,

|λ − ai...i| > r∆S

i (A). In particular, |λ − aq...q| > r∆S

q (A), i.e., |λ − aq...q| − r∆S

q (A) > 0. By (13), we infer that
λ ∈ Γq(A). In addition, it follows from (3) that

|λ − ap...p||xp|
m−1

≤

∑
(i2,...,im)∈∆S,
δpi2 ...im=0

|api2...im ||xp|
m−1 +

∑
(i2,...,im)∈∆S

|api2...im ||xq|
m−1

= r∆S

p (A)|xp|
m−1 + r∆S

p (A)|xq|
m−1, (14)

Inequality (14) can be simplified to the following inequality

(|λ − ap...p| − r∆S

p (A))|xp|
m−1
≤ r∆S

p (A)|xq|
m−1. (15)

Having in mind that |xq| > 0, |λ − aq...q| > r∆S

q (A) and |xq| ≥ |xp| > 0, multiplying (13) with (15) leads to

(|λ − ap...p| − r∆S

p (A))(|λ − aq...q| − r∆S

q (A)) ≤ r∆S

p (A)r∆S

q (A).

This leads to λ ∈
(
Υ̃2

q,p(A)
⋂

Γq(A)
)
⊆ ΥS(A).
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Similar to the proof of Case (i), (12) gives

aqp...pxm−1
p = (λ − aq...q)xm−1

q −

∑
(i2,...,im)∈∆S,
δpi2 ...im=0

aqi2...im xi2 · · · xim −
∑

(i2,...,im)∈∆S,
δqi2 ...im=0

aqi2...im xi2 · · · xim . (16)

By taking modulus in both sides of (16) and utilizing the triangle inequality, it has

|aqp...p||xp|
m−1 = |λ − aq...q||xq|

m−1 +
∑

(i2,...,im)∈∆S,
δpi2 ...im=0

|aqi2...im ||xi2 | · · · |xim | +
∑

(i2,...,im)∈∆S,
δqi2 ...im=0

|aqi2...im ||xi2 | · · · |xim |

≤ |λ − aq...q||xq|
m−1 +

∑
δqi2 ...im=0,
δqi2 ...im=0

|aqi2...im ||xq|
m−1 = (|λ − aq...q| + rp

q(A))|xq|
m−1. (17)

Besides, consider the pth equation of (3):

apq...qxm−1
q = (λ − ap...p)xm−1

p −

∑
(i2,...,im)∈∆S,
δpi2 ...im=0

api2...im xi2 · · · xim −
∑

(i2,...,im)∈∆∆S
,

δqi2 ...im=0

api2...im xi2 · · · xim ,

which results in

|apq...q||xq|
m−1 = |λ − ap...p||xp|

m−1 +
∑

(i2,...,im)∈∆S,
δpi2 ...im=0

|api2...im ||xi2 | · · · |xim | +
∑

(i2,...,im)∈∆∆S
,

δqi2 ...im=0

|api2...im ||xi2 | · · · |xim |

≤ |λ − ap...p||xp|
m−1 +

∑
(i2,...,im)∈∆S,
δpi2 ...im=0

|api2...im ||xp|
m−1 +

∑
(i2,...,im)∈∆∆S

,
δqi2 ...im=0

|api2...im ||xq|
m−1

= |λ − ap...p||xp|
m−1 + (r∆S

p (A) − |apq...q|)|xq|
m−1 + r∆S

p (A)|xp|
m−1,

i.e.,

(2|apq...q| − r∆S

p (A))|xq|
m−1
≤ (|λ − ap...p| + r∆S

p (A))|xp|
m−1. (18)

If |xp| > 0, then combining (17) with (18) obtains

|aqp...p|(2|apq...q| − r∆S

p (A))|xq|
m−1
|xp|

m−1
≤ (|λ − aq...q| + rp

q(A))(|λ − ap...p| + r∆S

p (A))|xq|
m−1
|xp|

m−1.

In view of |xq| ≥ |xp| > 0, we have

|aqp...p|(2|apq...q| − r∆S

p (A)) ≤ (|λ − aq...q| + rp
q(A))(|λ − ap...p| + r∆S

p (A)). (19)

If |xp| = 0, then it follows from (18) that 2|apq...q|−r∆S

p (A) ≤ 0, and (19) also holds true. Thusλ < G2
q,p(A) follows

from (19). By summarizing the above discussions, it holds that λ ∈
( (

Υ̃2
q,p(A)\G2

q,p(A)
)⋂

Γq(A)
)
⊆ GS(A).

This completes our proof of Theorem 3.1.

Remark 3.2. Note that xp and xq do not need to be unique in the proof of Theorem 3.1. If there exist xp1 and xp2 such
that |xp1 | = |xp2 | = max

i∈S
{|xi|}, we can choose one of them, and apply the technique used in Theorem 3.1 to develop the

results of Theorem 3.1.
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Remark 3.3. As mentioned in Remark 3.1 of [17], the number of elements in the sets ΩS(A) (see Lemma 1.4) and
ΥS(A) (see Lemma 1.5) are 2|S|(n − |S|) and 2|S|(n − |S|) + 2n, respectively, where |S| denotes the cardinality of S. In
addition, the set GS(A) consists of |S|(n − |S|) sets Υ̃1

i, j(A) and G1
i, j(A), |S|(n − |S|) sets Υ̃2

i, j(A) and G2
i, j(A), |S| sets

Υ̂1
i (A), n − |S| sets Υ̂2

i (A) and n sets Γi(A), then the set GS(A) contains 4|S|(n − |S|) + 2n sets. Thus, determining
GS(A) requires more computations than ΩS(A) and ΥS(A), while GS(A) is sharper than them, as proved in Theorem
3.4.

Next, we prove the following theorem, which indicates that GS(A) is better than those in Lemmas 1.1-1.5.

Theorem 3.4. LetA = (ai1...im ) ∈ C[m,n], n ≥ 2 and S be a nonempty proper subset of N. Then

GS(A) ⊆ ΥS(A) ⊆ ΩS(A) ⊆ KS(A) ⊆ K (A) ⊆ Γ(A).

Proof. By Theorem 3.2 in [17], we see that ΥS(A) ⊆ ΩS(A) ⊆ KS(A) ⊆ K (A) ⊆ Γ(A) holds. Thus, only
GS(A) ⊆ ΥS(A) need to be proved.

We first prove that GS
i, j(A) ⊆ ΥS

i, j(A). For any i ∈ S, j ∈ S̄, if |ai j... j|(2|a ji...i|−r∆S̄

j (A)) ≤ 0, then G1
i, j(A) = ∅, and

therefore G1
i, j(A) ⊆ Υ̃1

i, j(A). Now we consider the case that |ai j... j|(2|a ji...i| − r∆S̄

j (A)) > 0. Since r j
i (A) ≥ r∆S̄

i (A),
it has

(|z − ai...i| + r j
i (A))(|z − a j... j| + r∆S̄

j (A)) − (|z − ai...i| − r∆S̄

i (A))(|z − a j... j| − r∆S̄

j (A))

= 2|z − ai...i|r∆S̄

j (A) + |z − a j... j|(r
j
i (A) + r∆S̄

i (A)) + r∆S̄

j (A)(r j
i (A) − r∆S̄

i (A)) ≥ 0. (20)

Moreover, it is not difficult to verify that |ai j... j| ≤ r∆S̄

i (A) and 2|a ji...i| ≤ 2r∆S̄

j (A), that is 0 < 2|a ji...i| − r∆S̄

j (A) ≤

r∆S̄

j (A), which implies that

|ai j... j|(2|a ji...i| − r∆S̄

j (A)) ≤ r∆S̄

i (A)r∆S̄

j (A),

which together with (20) shows that G1
i, j(A) ⊆ Υ̃1

i, j(A). Thus( (
Υ̃1

i, j(A)\G1
i, j(A)

)⋂
Γi(A)

)
⊆

(
Υ̃1

i, j(A)
⋂

Γi(A)
)
,

and we conclude that GS
i, j(A) ⊆ ΥS

i, j(A).

On the other hand, we prove GS̄
i, j(A) ⊆ ΥS̄

i, j(A). For any i ∈ S̄, j ∈ S, if |ai j... j|(2|a ji...i| − r∆S

j (A)) ≤ 0, then

G2
i, j(A) = ∅, and therefore G2

i, j(A) ⊆ Υ̃2
i, j(A). If |ai j... j|(2|a ji...i| − r∆S

j (A)) > 0, then

(|z − ai...i| + r j
i (A))(|z − a j... j| + r∆S

j (A)) − (|z − ai...i| − r∆S

i (A))(|z − a j... j| − r∆S

j (A))

= 2|z − ai...i|r∆S

j (A) + |z − a j... j|(r
j
i (A) + r∆S

i (A)) + r∆S̄

j (A)(r j
i (A) − r∆S

i (A)) ≥ 0 (21)

by virtue of r j
i (A) ≥ r∆S

i (A). Similar to the above discussions, it can be seen that |ai j... j| ≤ r∆S

i (A) and

0 < 2|a ji...i| − r∆S

j (A) ≤ r∆S

j (A), hence

|ai j... j|(2|a ji...i| − r∆S

j (A)) ≤ r∆S

i (A)r∆S

j (A). (22)

Combining (21) with (22) proves G2
i, j(A) ⊆ Υ̃2

i, j(A), then( (
Υ̃2

i, j(A)\G2
i, j(A)

)⋂
Γi(A)

)
⊆

(
Υ̃2

i, j(A)
⋂

Γi(A)
)
.

Consequently, GS
i, j(A) ⊆ ΥS

i, j(A).
We summarize the above proof procedure, and infer that GS(A) ⊆ ΥS(A). We finish this proof.
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Figure 1: Eigenvalue localization sets GS(A) (left), ΥS(A) (middle) and ΩS(A) (right).

What follows is an example, which is given to compute the region of Theorem 3.1, and those in Theorem
3.1 of [17] and Theorem 4 of [19]. Moreover, we compare these sets, and depict them in Figure 1.

Example 3.5. Consider the tensorA = (ai jk) ∈ C[3,4] with elements defined as follows:

a111 = 11, a222 = 10, a333 = 12 + i, a444 = 30, a122 = 3 + i, a144 = 20 − i,
a211 = −2 − i, a233 = 3 − i, a322 = 6, a344 = 2 + i, a411 = 10, a422 = 2

and other elements ofA are zeros.

The localization sets GS(A), ΥS(A) and ΩS(A) are plotted in Figure 1. It is clear that GS(A) ⊆ ΥS(A) ⊆
ΩS(A), which is in accordance with the result of Theorem 3.4 (see Figure 1).

Example 3.6. Consider the tensorA = (ai jk) ∈ C[3,4] with elements defined as follows:

a111 = 2, a222 = 2 + 10i, a333 = 2, a444 = 2, a122 = 2, a144 = 2,
a211 = 2, a233 = 2, a322 = 3, a344 = 1, a411 = 2, a422 = 2

and other elements ofA are zeros.

The localization sets GS(A) and ∆S(A) are plotted in Figure 2. It can be seen that GS(A) ⊆ ∆S(A) (see
Figure 2).

Remark 3.7. From Example 3.6, we see that the set in Theorem 3.1 is more precise compared with that in Theorem
3.1 of [15] under some circumstances. Here, we want to single out: although the results of some numerical examples
illustrate that the set in Theorem 3.1 outperforms the one in Theorem 3.1 of [15], we have not proved the result in
Theorem 3.1 is better than that in Theorem 3.1 of [15] in theory now. This problem need to be studied in our future
work.
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Figure 2: Eigenvalue localization sets ∆S(A) (left) and GS(A) (right).

3.2. A new sufficient criteria for nonsingularity of tensors

By applying the set in Section 3.1, in this section, we put out a new sufficient criteria for the nonsingularity
of tensors. Furthermore, to illustrate the superiority of this criteria to those derived in [2, 20, 28, 35], a
numerical example is implemented.

Theorem 3.8. LetA = (ai1...im ) ∈ C[m,n]. If there is a nonempty proper subset S of N and the following four statements
hold:
(i) |ai...i| > r∆S̄

i (A) for any i ∈ S;

(ii) |ai...i| > r∆S

i (A) for any i ∈ S̄;
(iii) For any i ∈ S, j ∈ S̄,

(|ai...i| − r∆S̄

i (A))(|a j... j| − r∆S̄

j (A)) > r∆S̄

i (A)r∆S̄

j (A)

or

(|ai...i| + r j
i (A))(|a j... j| + r∆S̄

j (A)) < |ai j... j|(2|a ji...i| − r∆S̄

j (A))

or |ai...i| > ri(A);
(iv) For any i ∈ S̄, j ∈ S,

(|ai...i| − r∆S

i (A))(|a j... j| − r∆S

j (A)) > r∆S

i (A)r∆S

j (A)

or

(|ai...i| + r j
i (A))(|a j... j| + r∆S

j (A)) < |ai j... j|(2|a ji...i| − r∆S

j (A))

or |ai...i| > ri(A), thenA is nonsingular.
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Proof. Assume that λ is the eigenvalue ofA. From Theorem 3.1, it has λ ∈ GS(A), which implies that there
are i0, i1, i2 ∈ S and j0, j1, j2 ∈ S̄ such that

|λ − ai0...i0 | ≤ r∆S̄

i0 (A) or |λ − a j0... j0 | ≤ r∆S

j0 (A)

or

(|λ − ai1...i1 | − r∆S̄

i1 (A))(|λ − a j1... j1 | − r∆S̄

j1 (A)) ≤ r∆S̄

i1 (A)r∆S̄

j1 (A),

(|z − ai1...i1 | + r j1
i1

(A))(|z − a j1... j1 | + r∆S̄

j1 (A)) ≥ |ai1 j1... j1 |(2|a j1i1...i1 | − r∆S̄

j1 (A)), |λ − ai1...i1 | ≤ ri1 (A)

or

(|λ − a j2... j2 | − r∆S

j2 (A))(|λ − ai2...i2 | − r∆S

i2 (A)) ≤ r∆S

j2 (A)r∆S

i2 (A),

(|z − a j2... j2 | + ri2
j2

(A))(|z − ai2...i2 | + r∆S

i2 (A)) ≥ |a j2i2...i2 |(2|ai2 j2... j2 | − r∆S

i2 (A)), |λ − a j2... j2 | ≤ r j2 (A).

If λ = 0, then it follows that

|λ − ai0...i0 | = |ai0...i0 | > r∆S̄

i0 (A) and |λ − a j0... j0 | = |a j0... j0 | > r∆S

j0 (A)

and

(|λ − ai1...i1 | − r∆S̄

i1 (A))(|λ − a j1... j1 | − r∆S̄

j1 (A))

= (|ai1...i1 | − r∆S̄

i1 (A))(|a j1... j1 | − r∆S̄

j1 (A)) > r∆S̄

i1 (A)r∆S̄

j1 (A)

or

(|λ − ai1...i1 | + r j1
i1

(A))(|λ − a j1... j1 | + r∆S̄

j1 (A))

= (|ai1...i1 | + r j1
i1

(A))(|a j1... j1 | + r∆S̄

j1 (A)) < |ai1 j1... j1 |(2|a j1i1...i1 | − r∆S̄

j1 (A)),

or |λ − ai1...i1 | = |ai1...i1 | > ri1 (A); and

(|λ − a j2... j2 | − r∆S

j2 (A))(|λ − ai2...i2 | − r∆S

i2 (A))

= (|a j2... j2 | − r∆S

j2 (A))(|ai2...i2 | − r∆S

i2 (A)) > r∆S

j2 (A)r∆S

i2 (A)

or

(|z − a j2... j2 | + ri2
j2

(A))(|z − ai2...i2 | + r∆S

i2 (A))

= (|a j2... j2 | + ri2
j2

(A))(|ai2...i2 | + r∆S

i2 (A)) < |a j2i2...i2 |(2|ai2 j2... j2 | − r∆S

i2 (A)),

or |λ − a j2... j2 | = |a j2... j2 | > r j2 (A). These lead to a contradiction. Hence, λ , 0 andA is nonsingular.

We will verify the advantages of Theorem 3.8 by Example 3.9.

Example 3.9. Consider the tensorA = (ai jk) ∈ C[3,4] with elements defined as follows:

a111 = 11, a222 = 10, a333 = 12 + i, a444 = 20, a122 = 1 + i, a133 = 4.7, a144 = 26 − i,
a211 = −2 − i, a233 = 3 − i, a322 = 2, a344 = 5 + i, a411 = 16, a422 = 2, a433 = 0.85

and other elements ofA are zeros.
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After some calculations, we can validate that the tensor A is not in accordance with the conditions of
Corollaries 1 and 3 in [20], Corollaries 3.2 and 3.4 of [2], Corollaries 1 and 2 of [28] and Corollary 2.4 of [35].
Actually, by some calculations, we have

(|a111| − r∆1
1 (A))|a222| = 110 < 173.4674 = r∆1

1 (A)r2(A),

(|a111| + r2
1(A))(|a222| + r∆1

2 (A)) = 549.1200 > 1.8524 = |a122|(2|a211| − r∆1
2 (A)),

which means that Corollary 1 of [28] can not be used to determine the nonsingularity ofA.
Besides, we can check that

(|a222| − r∆2
2 (A))|a111| = 110 < 173.4674 = r∆2

2 (A)r1(A),

(|a222| + r1
2(A))|a111| = 144.7851 > −65.5280 = (2|a122| − r1(A))|a211|,

(|a222| + r3
2(A))|a333| = 27.3607 > −9.8 = (2|a322| − r3(A))|a233|,

(|a222| + r4
2(A))|a444| = 307.9669 > 0 = (2|a422| − r4(A))|a244|,

then we can not apply Corollary 2 of [28] to identify the nonsingularity ofA.
Since a144 = 26 − i , 0 and

|a111|
2
|a444| = 2420 < 19464 = (r1(A))2r4(A),

|a111||a444|
2 = 4400 < 11418 = r1(A)(r4(A))2,

which shows that the conditions of Corollaries 3.2 and 3.4 of [2] are not satisfied.
Meanwhile, we can verify that

|a111| = 11 < 32.1334 = r1(A), |a222| = 10 > −0.9262 = 2|a211| − r1(A),
|a333| = 12.0416 > −7.0990 = 2|a311| − r3(A), |a444| = 20 > 13.15 = 2|a411| − r4(A),

and see that we can not use Corollary 1 of [20] to determine the nonsingularity ofA.
Moreover, it follows from

(|a111| − r2
1(A))|a222| = −197.1922 < 7.6344 = |a122|r2(A),

(|a111| + r2
1(A))|a222| = 417.1922 > −1.3099 = |a122|(2|a211| − r2(A)),

(|a111| − r3
1(A))|a333| = −36.7463 < 33.3654 = |a133|r3(A),

(|a111| + r3
1(A))|a333| = 85.9398 > −33.3654 = |a133|(2|a311| − r3(A))

(|a111| − r4
1(A))|a444| = 97.7157 < 490.4624 = |a144|r4(A),

(|a111| + r4
1(A))|a444| = 342.2843 > 342.1528 = |a144|(2|a411| − r4(A))

that Corollary 2.4 of [35] can not be used to identify the nonsingularity ofA. What is more, as mentioned
in Remark 2.2 of [35], the condition of Corollary 2.4 of [35] is weaker than that in Corollary 3 of [20], thus
we also can not apply Corollary 3 of [20] to identify the nonsingularity ofA in this example.

However, we select S = {1, 2}, S̄ = {3, 4}, and employ Theorem 3.8, then the following results are derived:

|a111| = 11 > 1.4142 = r∆S̄

1 (A), |a222| = 10 > 2.2361 = r∆S̄

2 (A),

|a333| = 12.0416 > 5.0990 = r∆S

3 (A), |a444| = 20 > 0.85 = r∆S

4 (A),

(|a111| − r∆S̄

1 (A))(|a333| − r∆S̄

3 (A)) = 66.55 > 61.4384 = r∆S̄

1 (A)r∆S̄

3 (A),

(|a111| + r4
1(A))(|a444| + r∆S̄

4 (A)) = 356.8314 < 364.2691 = |a144|(2|a411| − r∆S̄

4 (A)),

(|a222| − r∆S̄

2 (A))(|a333| − r∆S̄

3 (A)) = 53.9017 > 6.3246 = r∆S̄

2 (A)r∆S̄

3 (A),

(|a222| − r∆S̄

2 (A))(|a444| − r∆S̄

4 (A)) = 194 > 56.9210 = r∆S̄

2 (A)r∆S̄

4 (A),

(|a333| − r∆S

3 (A))(|a111| − r∆S

1 (A)) = 66.55 > 61.4384 = r∆S

3 (A)r∆S

1 (A),
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Figure 3: The eigenvalue localization GS(A).

(|a333| − r∆S

3 (A))(|a222| − r∆S

2 (A)) = 53.9017 > 6.3246 = r∆S

3 (A)r∆S

2 (A),

(|a444| + r1
4(A))(|a111| + r∆S

1 (A)) = 280.5621 < 341.1076 = |a411|(2|a144| − r∆S

1 (A)),

(|a444| − r∆S

4 (A))(|a222| − r∆S

2 (A)) = 135.0924 > 50.5964 = r∆S

4 (A)r∆S

2 (A).

Therefore, the tensor A fulfills the conditions (i)-(iv) of Theorem 3.8, thus A is nonsingular. This fact can
also be seen in Figure 3 since 0 < GS(A). Here, the asterisk in Figure 3 denotes the original point.

3.3. New bounds for the spectral radius of nonnegative tensors
Founded on the results in Section 3.1, we establish a new lower bound for the spectral radius of

nonnegative tensors in this section, which together with Theorem 5.1 of [17] gives the following theorem.

Theorem 3.10. Let A ∈ R[m,n] be irreducible nonnegative with n ≥ 2, and S be a nonempty proper subset of N.
Then

1
2

max{Γ1,Γ2} = ηmin(A) ≤ ρ(A) ≤ ηmax(A) = max{η1(A), η2(A), η3(A), η4(A)},

where

η1(A) = max
i∈S
{ai...i + r∆S̄

i (A)}, η2(A) = max
i∈S̄
{ai...i + r∆S

i (A)},

η3(A) = max
i∈S, j∈S̄

min
{1

2

(
ai...i + a j... j + r∆S̄

i (A) + r∆S̄

j (A) + Φ
1
2
i, j(A)

)
,Ri(A)

}
,

η4(A) = max
i∈S̄, j∈S

min
{1

2

(
ai...i + a j... j + r∆S

i (A) + r∆S

j (A) + Π
1
2
i, j(A)

)
,Ri(A)

}
,
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Γ1 = min
{

min
i∈S, j∈S̄

{ai...i + a j... j − r j
i (A) − r∆S̄

j (A) + Ψ
1
2
i, j(A)}, min

i∈S̄, j∈S
{ai...i + a j... j − r j

i (A) − r∆S

j (A) + Ξ
1
2
i, j(A)}

}
,

Γ2 = min
{

min
i∈S, j∈S̄

{ai...i + a j... j + r∆S̄

i (A) + r∆S̄

j (A) + Φ
1
2
i, j(A)}, min

i∈S̄, j∈S
{ai...i + a j... j + r∆S

i (A) + r∆S

j (A) + Π
1
2
i, j(A)}

}
with

Φi, j(A) = (ai...i − a j... j + r∆S̄

i (A) − r∆S̄

j (A))2 + 4r∆S̄

i (A)r∆S̄

j (A),

Πi, j(A) = (ai...i − a j... j + r∆S

i (A) − r∆S

j (A))2 + 4r∆S

i (A)r∆S

j (A),

Ψi, j(A) = (ai...i − a j... j − r j
i (A) + r∆S̄

j (A))2 + 4ai j... j(2a ji...i − r∆S̄

j (A)),

Ξi, j(A) = (ai...i − a j... j − r j
i (A) + r∆S

j (A))2 + 4ai j... j(2a ji...i − r∆S

j (A)). (23)

Here, if Ψi, j(A) < 0 (i ∈ S, j ∈ S̄) or Ξi, j(A) < 0 (i ∈ S̄, j ∈ S), we assume that ∇i, j(A) = 0 or ξi, j(A) = 0,
respectively, where ∇i, j(A) and ξi, j(A) are defined as in (29) and (31), respectively.

Proof. Inasmuch as A is a nonnegative tensor, from Lemma 2.1, we see that ρ(A) is an eigenvalue of
A, then it follows from Theorem 3.1 that ρ(A) ∈ GS(A) :=

(
GS

i, j(A)
)⋃ (

GS̄
i, j(A)

)
. If ρ(A) ∈

⋃
i∈S

Υ̂1
i (A) or

ρ(A) ∈
⋃
i∈S̄

Υ̂2
i (A), it is not difficult to obtain

ρ(A) ≤ max
{

max
i∈S
{ai...i + r∆S̄

i (A)},max
i∈S̄
{ai...i + r∆S

i (A)}
}

(24)

in view of the proof of Theorem 5.1 of [17]. If ρ(A) ∈
⋃

i∈S, j∈S̄

( (
Υ̃1

i, j(A)\G1
i, j(A)

)⋂
Γi(A)

)
, then there exist

p ∈ S and q ∈ S̄ such that

|ρ(A) − ap...p| ≤ rp(A), (25)

(|ρ(A) − ap...p| − r∆S̄

p (A))(|ρ(A) − aq...q| − r∆S̄

q (A)) ≤ r∆S̄

p (A)r∆S̄

q (A), (26)

(|ρ(A) − ap...p| + rq
p(A))(|ρ(A) − aq...q| + r∆S̄

q (A)) ≥ |apq...q|(2|aqp...p| − r∆S̄

q (A)). (27)

Combining Lemma 2.2 with (25)-(26), we derive

ρ(A) ≤ min
{
Rp(A),

1
2
{ap...p + aq...q + r∆S̄

p (A) + r∆S̄

q (A) + Φ
1
2
p,q(A)}

}
, (28)

where Φp,q(A) = (ap...p − aq...q + r∆S̄

p (A) − r∆S̄

q (A))2 + 4r∆S̄

p (A)r∆S̄

q (A).

If |apq...q|(2|aqp...p| − r∆S̄

q (A)) ≤ 0, then (27) is valid for ρ(A) ≥ 0. If |apq...q|(2|aqp...p| − r∆S̄

q (A)) > 0, then (27)
yields

ρ(A) ≥
1
2
{ap...p + aq...q − rq

p(A) − r∆S̄

q (A) + Ψ
1
2
p,q(A)} :=

1
2
∇p,q(A) (29)

with Ψp,q(A) = (ap...p − aq...q − rq
p(A) + r∆S̄

q (A))2 + 4apq...q(2aqp...p − r∆S̄

q (A)).
Combining (28)-(29) gives

1
2

min
i∈S, j∈S̄

{
ai...i + a j... j − r j

i (A) − r∆S̄

j (A) + Ψ
1
2
i, j(A)

}
≤ ρ(A) ≤ max

i∈S, j∈S̄
min

{1
2

(
ai...i + a j... j + r∆S̄

i (A) + r∆S̄

j (A) + Φ
1
2
i, j(A)

)
,Ri(A)

}
. (30)
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Furthermore, for the case that ρ(A) ∈
⋃

i∈S̄, j∈S

( (
Υ̃2

i, j(A)\G2
i, j(A)

)⋂
Γi(A)

)
, in the similar manner applied in

Inequality (30), we can derive

1
2

min
i∈S̄, j∈S

{ξi, j(A)} :=
1
2

min
i∈S̄, j∈S

{
ai...i + a j... j − r j

i (A) − r∆S

j (A) + Ξ
1
2
i, j(A)

}
≤ ρ(A) ≤ max

i∈S̄, j∈S
min

{1
2

(
ai...i + a j... j + r∆S

i (A) + r∆S

j (A) + Π
1
2
i, j(A)

)
,Ri(A)

}
, (31)

where Πi, j(A) and Ξi, j(A) are defined as in (23).
By Lemma 2.1, there exists a vector y = (y1, . . . , yn)T > 0 such that

Aym−1 = ρ(A)y[m−1]. (32)

Let yt = max
i∈S
{yi} and ys = max

i∈S̄
{yi}.

If yt ≤ ys, then yt = min
i∈N
{yi}. It follows from (32) that

(ρ(A) − at...t)ym−1
t =

∑
(i2,...,im)∈∆S̄,
δti2 ...im=0

ati2...im yi2 · · · yim +
∑

(i2,...,im)∈∆S̄

ati2...im yi2 · · · yim ,

(ρ(A) − as...s)ym−1
s =

∑
(i2,...,im)∈∆S̄

asi2...im yi2 · · · yim +
∑

(i2,...,im)∈∆S̄,
δsi2 ...im=0

asi2...im yi2 · · · yim . (33)

Apply the technique utilized in the proof of Theorem 3.1 to (33), we obtain

(ρ(A) − at...t)ym−1
t ≥ r∆S̄

t (A)ym−1
t + r∆S̄

t (A)ym−1
s , (ρ(A) − as...s)ym−1

s ≥ r∆S̄
s (A)ym−1

t + r∆S̄

s (A)ym−1
s ,

which leads to

(ρ(A) − at...t − r∆S̄

t (A))ym−1
t ≥ r∆S̄

t (A)ym−1
s , (ρ(A) − as...s − r∆S̄

s (A))ym−1
s ≥ r∆S̄

s (A)ym−1
t ,

Therefore, by ys ≥ yt > 0, it has

(ρ(A) − at...t − r∆S̄

t (A))(ρ(A) − as...s − r∆S̄

s (A)) ≥ r∆S̄

t (A)r∆S̄

s (A). (34)

By solving Inequality (34), we obtain

ρ(A) ≥
1
2
{at...t + as...s + r∆S̄

t (A) + r∆S̄

s (A) + Φ
1
2
t,s(A)}

≥ min
i∈S, j∈S̄

1
2
{ai...i + a j... j + r∆S̄

i (A) + r∆S̄

j (A) + Φ
1
2
i, j(A)}. (35)

Similarly, we can obtain

ρ(A) ≥ min
i∈S̄, j∈S

1
2
{ai...i + a j... j + r∆S

i (A) + r∆S

j (A) + Π
1
2
i, j(A)} (36)

for the case yt ≥ ys > 0. From Inequalities (24), (30)-(31) and (35)-(36), the conclusion is obtained.

Remark 3.11. Using the similar method as Theorem 3.4 in [15], the results of Theorem 3.10 can be extended to
general nonnegative tensors; without the condition of irreducibility, compared with Theorem 3.10.

Remark 3.12. Remark 5.1 of [17] shows that the upper bound in Theorem 3.10 is better than those of Lemma 5.2 of
[37], Theorems 3.3 and 3.4 in [22]. Meanwhile, the numerical results of Example 5.1 in [17] illustrate that the upper
bound in Theorem 3.10 is tighter than that in Theorem 13 of [18] for some cases.
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The following example further shows that the new bounds in Theorem 3.10 are superior to those in
Theorem 3.3 of [15], Theorem 3.3 of [24] and Theorem 5 of [25] in some cases.

Example 3.13. [17] Consider the following nonnegative tensor

A = [A(1, :, :),A(2, :, :),A(3, :, :)] ∈ R[3,3],

where

A(1, :, :) =

 3 1 0
0 1 2
0 0 2

 ,A(2, :, :) =

 2 0 3
0 1 0
0 0 1

 ,A(3, :, :) =

 15 1 8
4 1 0
0 0 1

 .
We now compute the bounds for ρ(A). Let S = {1, 2}, then S̄ = {3}. Careful manipulations obtains the

numerical results, which are listed in Table 1. As observed in Table 1, the bounds in Theorem 3.10 are
tighter than those Theorem 3.3 of [15], Theorem 3.3 of [24] and Theorem 5 of [25] in some cases.

Table 1: Some upper and lower bounds for ρ(A).
Theorem 3.3 of [15] Theorem 3.3 of [24]
ρ(A) ≤ 20.2250 ρ(A) ≤ 25.4711

Theorem 5 of [25] Theorem 3.10
8.0828 ≤ ρ(A) ≤ 17.6190 9.4372 ≤ ρ(A) ≤ 16.3808

3.4. New upper and lower bounds for the minimum H-eigenvalue of weakly irreducible strong M-tensors
In this section, by combining Theorem 6.1 of [17] and the set in Theorem 3.1, we obtain the bounds for

the minimum H-eigenvalue of weakly irreducible strong M-tensors, which are better some known ones.

Theorem 3.14. Let A ∈ R[m,n] be a weakly irreducible strong M-tensor with n ≥ 2, and S be a nonempty proper
subset of N. Then

πmin(A) = min{π1(A), π2(A), π3(A), π4(A)} ≤ τ(A) ≤ πmax(A) =
1
2

min{$1, $2},

where

π1(A) = min
i∈S
{ai...i − r∆S̄

i (A)}, π2(A) = min
i∈S̄
{ai...i − r∆S

i (A)},

π3(A) = min
i∈S, j∈S̄

max
{1

2

(
ai...i + a j... j − r∆S̄

i (A) − r∆S̄

j (A) −Θ
1
2
i, j(A)

)
,Ri(A)

}
,

π4(A) = min
i∈S, j∈S

max
{1

2

(
ai...i + a j... j − r∆S

i (A) − r∆S

j (A) −Λ
1
2
i, j(A)

)
,Ri(A)

}
,

$1(A) = max
{

max
i∈S, j∈S̄

{ai...i + a j... j + r j
i (A) + r∆S̄

j (A) −<
1
2
i, j(A)}, max

i∈S̄, j∈S
{ai...i + a j... j + r j

i (A) + r∆S

j (A) − Σ
1
2
i, j(A)}

}
,

$2(A) = max
{

max
i∈S, j∈S̄

{ai...i + a j... j − r∆S̄

i (A) − r∆S̄

j (A) −Θ
1
2
i, j(A)}, max

i∈S̄, j∈S
{ai...i + a j... j − r∆S

i (A) − r∆S

j (A) −Λ
1
2
i, j(A)}

}
with

Θi, j(A) = (ai...i − a j... j − r∆S̄

i (A) + r∆S̄

j (A))2 + 4r∆S̄

i (A)r∆S̄

j (A),

Λi, j(A) = (ai...i − a j... j − r∆S

i (A) + r∆S

j (A))2 + 4r∆S

i (A)r∆S

j (A),

<i, j(A) = (ai...i − a j... j + r j
i (A) − r∆S̄

j (A))2 + 4ai j... j(2a ji...i + r∆S̄

j (A)),

Σi, j(A) = (ai...i − a j... j + r j
i (A) − r∆S

j (A))2 + 4ai j... j(2a ji...i + r∆S

j (A)). (37)
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Here, if <i, j(A) < 0 (i ∈ S, j ∈ S̄) or Σi, j(A) < 0 (i ∈ S̄, j ∈ S), we assume that κi, j(A) = +∞ or χi, j(A) = +∞,
respectively, where κi, j(A) and χi, j(A) are defined as in (43) and (45), respectively.

Proof. From the conditions of this theorem, we see thatA is a strong M-tensor, which is weakly irreducible.
From Lemma 2.3, τ(A) is an eigenvalue ofA. According to Theorem 3.1, it holds that

τ(A) ∈ GS(A) :=
(
GS

i, j(A)
)⋃(

GS̄
i, j(A)

)
.

If τ(A) ∈
⋃
i∈S

Υ̂1
i (A) or τ(A) ∈

⋃
i∈S̄

Υ̂2
i (A), then by Lemma 2.4 and the proof of Theorem 6.1 of [17], we have

τ(A) ≥ min
{
min

i∈S
{ai...i − r∆S̄

i (A)},min
i∈S̄
{ai...i − r∆S

i (A)}
}
. (38)

For the case that τ(A) ∈
⋃

i∈S, j∈S̄

( (
Υ̃1

i, j(A)\G1
i, j(A)

)⋂
Γi(A)

)
, there exist p ∈ S and q ∈ S̄ such that

|τ(A) − ap...p| ≤ rp(A), (39)

(|τ(A) − ap...p| − r∆S̄

p (A))(|τ(A) − aq...q| − r∆S̄

q (A)) ≤ r∆S̄

p (A)r∆S̄

q (A), (40)

(|τ(A) − ap...p| + rq
p(A))(|τ(A) − aq...q| + r∆S̄

q (A)) ≥ |apq...q|(2|aqp...p| − r∆S̄

q (A)). (41)

Recalling that τ(A) ≤ min
i∈N
{ai...i}, it follows from (39) and (40) that

τ(A) ≥ max
{1

2

(
ap...p + aq...q − r∆S̄

p (A) − r∆S̄

q (A) −Θ
1
2
p,q(A)

)
,Rp(A)

}
, (42)

where Θp,q(A) = (ap...p − aq...q − r∆S̄

p (A) + r∆S̄

q (A))2 + 4r∆S̄

p (A)r∆S̄

q (A).
Similar to the proof of Theorem 3.10, it follows from (41) that

τ(A) ≤
1
2
{ap...p + aq...q + rq

p(A) + r∆S̄

q (A) −<
1
2
p,q(A)} := κp,q(A) (43)

with<p,q(A) = (ap...p − aq...q + rq
p(A) − r∆S̄

q (A))2 + 4apq...q(2aqp...p + r∆S̄

q (A)). (42) and (43) give

min
i∈S, j∈S̄

max
{1

2

(
ai...i + a j... j − r∆S̄

i (A) − r∆S̄

j (A) −Θ
1
2
i, j(A)

)
,Ri(A)

}
≤ τ(A) ≤

1
2

max
i∈S, j∈S̄

{
ai...i + a j... j + r j

i (A) + r∆S̄

j (A) −<
1
2
i, j(A)

}
. (44)

If τ(A) ∈
⋃

i∈S̄, j∈S

( (
Υ̃2

i, j(A)\G2
i, j(A)

)⋂
Γi(A)

)
holds, with a almost the same method utilized in the above

proof, we can derive

min
i∈S̄, j∈S

max
{1

2

(
ai...i + a j... j − r∆S

i (A) − r∆S

j (A) −Λ
1
2
i, j(A)

)
,Ri(A)

}
≤ τ(A) ≤

1
2

max
i∈S̄, j∈S

{
ai...i + a j... j + r j

i (A) + r∆S

j (A) − Σ
1
2
i, j(A)

}
:=

1
2

min
i∈S̄, j∈S

{χi, j(A)}, (45)

where Λi, j(A) and Σi, j(A) are defined as in (37).
According to Lemma 2.3, there exists a vector z = (z1, . . . , zn)T > 0 with zk = max

i∈S
{zi} and zl = max

i∈S̄
{zi}

such that

Azm−1 = τ(A)z[m−1]. (46)
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If zk ≤ zl, then zk = min
i∈N
{zi}. It follows from (46) that

(ak...k − τ(A))zm−1
k = −

∑
(i2,...,im)∈∆S̄,
δki2 ...im=0

aki2...im zi2 · · · zim −
∑

(i2,...,im)∈∆S̄

aki2...im zi2 · · · zim ,

(al...l − τ(A))zm−1
l = −

∑
(i2,...,im)∈∆S̄

ali2...im zi2 · · · zim −
∑

(i2,...,im)∈∆S̄,
δli2 ...im=0

ali2...im zi2 · · · zim .

By the analogical proof as in Theorem 3.10, we can obtain

(ak...k − τ(A))zm−1
k ≥ r∆S̄

k (A)zm−1
k + r∆S̄

k (A)zm−1
l , (al...l − τ(A))zm−1

l ≥ r∆S̄

l (A)zm−1
k + r∆S̄

l (A)zm−1
l ,

and hence

(ak...k − τ(A) − r∆S̄

k (A))zm−1
k ≥ r∆S̄

k (A)zm−1
l , (al...l − τ(A) − r∆S̄

l (A))zm−1
l ≥ r∆S̄

l (A)zm−1
k ,

which together with zl ≥ zk > 0 leads to

(ak...k − τ(A) − r∆S̄

k (A))(al...l − τ(A) − r∆S̄

l (A)) ≥ r∆S̄

k (A)r∆S̄

l (A).

By direct computations, we have

τ(A) ≤
1
2
{ak...k + al...l − r∆S̄

k (A) − r∆S̄

l (A) −Θ
1
2
k,l(A)}

≤ max
i∈S, j∈S̄

1
2
{ai...i + a j... j − r∆S̄

i (A) − r∆S̄

j (A) −Θ
1
2
i, j(A)}. (47)

If zk ≥ zl > 0, then by using the similar method in above, it holds that

τ(A) ≤ max
i∈S̄, j∈S

1
2
{ai...i + a j... j − r∆S

i (A) − r∆S

j (A) −Λ
1
2
i, j(A)}. (48)

Taking advantage of Inequalities (38), (44)-(45) and (47)-(48), the results of this theorem are got.

Remark 3.15. Analogous to the analysis of Theorem 3.6 in [15], the results of Theorem 3.14 can be generalized to
more general cases, that is, the condition “weakly irreducible” in Theorem 3.14 can be removed and the results of that
remain true.

Remark 3.16. It can be seen from Remark 6.1 of [17] that the lower bound in Theorem 3.14 is an improvement on
those in Theorems 2.1 and 2.2 of [12], and it outperforms the one in Theorem 4.5 of [36]. The corresponding numerical
results also illustrate these facts.

The computing results of the following example show the advantage of the new bounds in Theorem
3.14 over the results in Theorem 3.5 of [15], Theorems 3.1-3.2 of [16] and Theorem 2.3 of [9] in some cases.

Example 3.17. [9] Consider the following weakly irreducible nonsingular M-tensor

A = [A(1, :, :),A(2, :, :),A(3, :, :),A(4, :, :)] ∈ R[3,4],

where

A(1, :, :) =


37 −2 −1 −4
−1 −3 −3 −2
−1 −1 −3 −2
−2 −3 −3 −3

 , A(2, :, :) =


−2 −4 −2 −3
−1 39 −2 −1
−3 −3 −4 −2
−2 −3 −1 −4

 ,

A(3, :, :) =


−4 −1 −1 −1
−1 0 −2 −3
−1 −1 35 −1
−2 −2 −4 −3

 , A(4, :, :) =


−2 −4 0 −1
−4 −4 −2 −4
−3 0 −3 −3
−3 −3 −4 49

 .
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In Table 2, we contrast the upper and lower bounds in Theorem 3.14 with the ones which have been
derived. In this example, we consider S = {1, 2} and S̄ = {3, 4}.

Table 2: Some upper and lower bounds for τ(A).
Theorem 3.1 of [16] Theorem 3.2 of [16] Theorem 3.5 of [15]

2.6604 ≤ τ(A) ≤ 8.1955 2.3993 ≤ τ(A) ≤ 8.5460 2.6604 ≤ τ(A) ≤ 8.1955
Theorem 4.5 of [36] Theorem 2.3 of [9] Theorem 3.14

2.2233 ≤ τ(A) ≤ 8.7447 3.5550 ≤ τ(A) ≤ 7.1629 3.6617 ≤ τ(A) ≤ 7

From the observations in Table 2, it can be easily viewed that the bounds in Theorem 3.14 are better than
those in Theorems 3.1-3.2 of [16], Theorem 3.5 of [15] and Theorem 2.3 of [9].

4. Conclusions

A modified S-type eigenvalue localization set for tensors is developed in this paper, which is more
precise compared with those in [17, 19, 22]. By utilizing this new set, a new sufficient criteria which has
wider scope of applications compared with those of [2, 20, 28, 35] for the nonsingularity of tensors, and
tighter bounds for the spectral radius of nonnegative tensors and the minimum H-eigenvalue of strong
M-tensors are obtained.

Besides, we should mention that there are some meaningful problems, which are need to be studied in
the future. There are

• The choices of S not only depend on the form of GS(A), but also rely on the structure of a given tensor.
Finding the best choice for S makes that the set GS(A) is the sharpest.

• Seek new methods to obtain more accurate estimations by partitioning N into three or more parts.

• Investigate S-type eigenvalue localizations for other tensor eigenvalues, such as E-/Z-eigenvalues,
generalized tensor eigenvalue and so forth.
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