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Generalizations of Some Conditions for Drazin Inverses
of the Sum of Two Matrices
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Abstract. In this article, we present some formulas of the Drazin inverses of the sum of two matrices
under the conditions P2QP = 0, P2Q* = 0, QPQ = 0 and PQP* = 0, PQ? = 0, QP® = 0 respectively. These
conditions are weaker than those used in some literature on this subject. Furthermore, we apply our results

. . L . B .
to give the representations for the Drazin inverses of block matrix ( cC D ) (A and D are square matrices)

with generalized Schur complement is zero.

1. Introduction

Let A be a square complex matrix. As we know, the Drazin inverse [1] of A, denoted by A4 is the unique
matrix satisfying the following three equations

AR A4 = AF AAAT = A%, AAY = AYA,

where k is the smallest non-negative integer such that rank(A¥*') = rank(A¥), i.e., k = ind(A), the index of
A. In the case that ind(A) = 1, the Drazin inverse is called the group inverse of A and it is denoted by
A#. Clearly, ind(A) = 0 if and only if A is nonsingular, and in that case AY = A~'. We denote by A™ the
eigenprojection of A corresponding to the eigenvalue 0 that is given by A™ = — AA".

Suppose P,Q € C™". In 1958, Drazin (see [7]) studied the problem of finding the formula for (P + Q)?
and he offered the formula (P + Q) = P? + Q¢, which is valid when PQ = QP = 0. In recent years, many
papers focused on the problem under some weaker conditions. According to current literature, there is no
formula for (P + Q)? without any side condition for matrices P and Q, so this problem is still the open one.
Formulas for (P + Q)? can be very useful for deriving formulas for the Drazin inverse of a 2 X 2 block matrix.
Actually, in 1979 Campbell and Meyer [3], posed the problem of finding an explicit representation for the

Drazin inverse of a complex block matrix M = ( Ié 1]; ), in terms of its blocks, where A and D are square

matrices, not necessarily of the same size. Until now, there has been no formula for M? without any side
conditions for blocks of matrix M. Some results about the representations of (P + Q) and M? under some
conditions were given. Here we list the results below:

(1) Results of the representations of (P + Q)* under the following conditions respectively:
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(1-1) PQ =0 (see [9]);

(1-2) P2Q =0, Q* = 0 (see [10]);
(1-3) Q*P =0, PQP = 0 (see [13]);
(1-4) P>Q =0, Q?P =0 (see [2]).

Other results have been studied in [4-6, 12].
(2) Results of the representations of M under the following conditions respectively:

(2-1) CA™=0,A™B =0and S =0 (see [11]);

(2-2) CA™B=0,AA™B =0and S = 0 (see [8]);
(2-3) CA™B =0,CAA™ =0and S =0 (see [8]);
(2-4) AA™BC=0,CA™BC =0and S =0 (see [13]);
(2-5) BCAA™ =0, BCA™B =0and S = 0 (see [13]);
(2-6) AA™BC =0, ABCA™ =0and S = 0 (see [2]).

We organize this article in three sections. In section 2, we give the formula of (P + Q)? under the conditions
P2QP =0, P*2Q? = 0 and QPQ = 0. These result extend the formula (1-1) and (1-3) above. Then we apply the
computational formula to give the computational formulas for M?, under some conditions with generalized
Schur complement S = 0. Here we list them below:

(a). AATBC =0, BCA™B=0and S = 0;
(b). BCAA™ =0, CA"BC = 0,and S = 0.

The result (a) generalizes the results (2-1) and (2-2) listed above. The result (b) generalizes the result (2-1),
(2-2) and (2-3) listed above.

In section 3, we present our additive formula under conditions PQP? = 0, PQ* = 0 and QP® = 0. And
we derive some new representations for M?, under some conditions with generalized Schur complement
S = 0. Here we list them below:

(a) BCA? =0, BCAA™B =0, CA2A™ =0and S = 0;
(b) A’BC =0, CAA™BC =0, A2A™B=0and S =0.
Before giving the main results, we first introduce several lemmas as follows.
Lemma 1.1 ([1]). Let P € C™" and Q € C™™. Then (PQ)* = P((QP))*Q.
Lemma 1.2 ([9D). Let P,Q € C™" be such that ind(P) = s and ind(Q) = t. If PQ = 0, then

t—1 s—1
(P + Q)d — QT[ Z Qi(Pd)i+l + Z(Qd)i+lpipn-
i=0 i=0

Lemma 1.3 ([1]). Let
A 0 B C
Mi=lc )] M={oa)
where A and B are square matrices with ind(A) = r and ind(B) = s. Then
A0 BY X
d_ d_
(5w ) ()
where

r=1 s—1
X =) (BYY*2CAA™ + B™ ) BC(A")*? - BICA",
i=0 i=0
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A B

Lemma 1.4 ([11]). Let M = ( C D

),(AandDaresquare),ifS:D—CA”’B:O,A”B:O, CA™ =0, then
a_[ I 2 d
Mi={ (AW)PA( 1 A'B)

where W = AA? + ATBCA“.

2. Additive result (Conditions: P>?QP = 0, P?Q* =0, QPQ =0)
Theorem 2.1. Let P,Q € C™" be such that P>’QP = 0, P>?Q? = 0 and QPQ = 0, then

1-1 r—1
(P+Qf'=(P+Q [—(Q”l)de = QUPY? + Y QP + Y (@) PP (P+ Q),
i=0 i=0

where r = ind(P) and | = ind(Q).

Proof. From the definition of the Drazin inverse, we have that

(P+Q) =@+Q>P+Q)% =P+ Q>*P® + P2Q + PQP + QPQ + Q% + Q*P + PQ* + QP?).

Denote by F = P? + P>)Q + PQP and G = QPQ + Q* + Q*P + PQ?* + QP%. From P*QP = 0, P2Q*> = 0 and
QPQ =0, we get FG = 0. Then applying Lemma 1.2, we obtain
ind(G)-1 ind(F)-1

(P+Q)d — (P+Q)2 Z G‘I‘(Gi(Fd)i+l + Z (Gd)i+lFiF7'l . (1)
i=0

i=0

Now, we calculate F9. Consider the following splitting
F = (P?Q) + (P + PQP) := A + B.
According to the condition P2QP = 0, we have AB = 0 and A? = 0. Applying Lemma 1.2, we get
(Fiy" = (BY)" + (BY)"™*1A )

for every n € IN. Notice that B = P® + PQP. From P>QP = 0, we get (PQP)? = 0, (PQP)? = 0. Matrices P° and
PQP satisfy condition of Lemma 1.2. After applying Lemma 1.2, we obtain

(BY)" = (P + PQ(P)P+2 3)
for every n € IN. Substituting (3) into (2) we obtain

(F)" = (P! + PQPY V) (P + Q) 4)
for every n € IN. Next, we will compute G*. Consider the following splitting

G =(Q®+Q*P +QP? + (PQ?*) :=S+T.

According to the conditions P2Q* = 0 and QPQ = 0 we have ST = 0 and T? = 0. Applying Lemma 1.2, we
get

Gy = (8" + T(s"y™! ©)
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for every n € N. Let S = S; + Sy, where S; = Q*P + QP? and S, = Q*. According to the conditions P2Q? = 0,
QPQ = 0 and P*QP = 0, we have 515, = 0 and $? = 0. Applying Lemma 1.2, we get

(Sz:l)n — (Qd)?;ﬂ + (Qd)3n+2p2 + (Qd)3n+1p (6)
for arbitrary n € IN. Substituting (6) into (5) we obtain
(G = P+ Q) ((Q)"2(P + Q) + (Q)"VP?) 7)

for every n € IN. After computation we get:

F' = (PQP3"=1) 4 P3"=1\(P + Q), ifn>2,
G"=(P+Q)Q*2(P+Q)+Q¥1p?), ifn>2.
After substituting this expressions, (7) and (4) into » we have
ind(G)-1 ind(Q)-1 ind(Q)-1
GnGi(Fd)i+1 — Z QnQi(Pd)i+4(P + Q) + Z PQnQi(Pd)i+5(P + Q)
i=2 i=4 i=3
Also,

G"F' = (Q"(P)* + PQP"Y’ - (@' (P - Q'(P)’ - PQ(P) - QY)Y (P)? — P@)A(PYY)(P + Q),

and
3
G"G(F'? = (PQ"QX(P'Y - PQPQ(P*)° - PQQ (PY° + ) Q"Q'(P)™)(P + Q).
i=1
So,
ind(G)-1
Z GnGi(Fd)i+1 — (_ Qd(Pd)S _ PQd(Pd)4 _ P(Qd)Z(Pd)3 _ P(Qd)3(Pd)2 _ (Qd)Z(Pd)Z _ (Pd)4
i=0
ind(Q)-1 o ind(Q)-1 o
+ ) QP Y PQTQPY )P+ Q). (8)
i=0 i=0
Now,
ind(F)-1 ind(P)-1 ind(P)-1
Z (Gd)i+1FiFTL — ( Z (Qd)i+4PnPi + Z P(Qd)i+5pipn)(P + Q)/
i=2 i=5 i=5

on the other hand
GIF™ = ((Q)*P™ + QP PP + P(Q)°P™ + P(Q")PP™ — (Q) P! — PIQ)*P')(P + Q),

and
4 4
(GY*FF™ = (Z(Qd)i+4pnpi " ZP(Qd)i+5PiPn)(P +0Q).
i=2 i=2
Hence
ind(F)-1 ind(P)-1 ind(P)-1
Z (Gd)i+1FiFn _ (_ (Qd)3pd_P(Qd)4pd + Z (Qd)i+4pnpi " Z P(Qd)HSPz'Pn)(p_i_Q). (9)
i=0 i=0 i=0

Finally, substituting (8) and (9) into (1), we complete the proof. [
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Example 2.2. Consider the two matrices P, Q € C®*®, where

0 1 0011 1 01 1 0 O
0 1 0110 000 1 1 1
p= 0 -1 0 0 1 1 0= 000 1 1 1
0O 0 001 1Y 000 -1 0 -1V
0 0 0 0 0O 000 0O 0 O
0 0 0010 000 O 0 O
We have
0O 1 0 1 3 1 1 01 1 1 0O
0O 1 0 1 3 1 0 00 1 0 1
Pl = 0O -1 0 -1 -3 -1 Qd _ 0 00 1 0 1
O o 0o 0o o0 o0V 0 00 -1 0 -1
0O 0 0 0 0 O 0 00 0O 0 O
0O 0 0 0 0 O 0 00 0O 0 O

From P2Q # 0 and Q?P # 0, formula for (P + Q)? from [13, Theorem (2.2)] fail to apply. But it satisfies P>QP = 0,
QPQ = 0 and P>*Q? = 0, also we have

ind(P) =4, ind(Q)=2.

Applying Theorem 2.1, we get

11 1 1 12 4
001 0 2 3 1

s lo 101 6 4
P+Q"=19 0 0 -1 1 0
00 0 0 0 0

00 0 0 0 0

Applications to the Drazin inverse of block matrix

We use the formula in Theorem 2.1 to give some representations for the Drazin inverse of some block

matrices.

Let M = ( Ié g ), (A and D are square) with generalized Schur complement S = D — CA“B is zero.
Hartwig et al. [8] extended the results in [11] by replacing the assumptions CA™ = 0 and A™B = 0 with
CA™B = 0 and AA™B = 0. In the following Theorem 2.3, we give the representation for the Drazin inverse

of M under the conditions AA™BC = 0 and BCA™B = 0, the result generalizes the conclusion in [8].

A B

Theorem 2.3. Let M = ( C D

BCA™B =0, then

), ( A and D are square) such that S = D — CAB = 0. If AA™BC = 0 and

ind(A)

M= M @) + ;«gf)“( At o )HM

AZA4 B
CAA? CAB

where

ok :( Cid )((AW)d)"“A( I A‘B ) W = AA? + AYBCA?,  forn > 1.
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m 2 Ad
Proof.LetP:(AA 0),Q=(AA B

CA™ 0 CAA? CA“B
s = ind(A), so we get P? = 0.

From AA™BC = 0 and BCA™B = 0, we get P2QP = 0, QPQ = 0 and P?Q? = 0, so according to Theorem 2.1,
we have

), then M = P + Q. From P is (s + 1)—nilpotent, where

ind(P)-1

M =P+Q| Y] (Q%"“Pf] (P+Q). (10)
i=0

A2AY AAB 0 A"B
Leth—(CAAd CA’B ),Q2—(O 0 ),thenwehaveQ—Q1+Q2.

We notice that Q;Q, = 0 and Q; is nilpotent, thus according to Lemma 1.2, we get

Q"= Qf + QO (11)
The generalized Schur complement of Q; is equal to zero, and the matrix Q; satisfies

(A2ANTAAB =0, CAAYA2AN =0,

so according to Lemma 1.4, we get

Q)" =( Cid )((AW)d)"”A( I AB), W=AA"+A'BCAY, fornx1. (12)

Substituting (12) into (11), then substituting (11) into (10), we get
ind(P)-1 ind(P)-1
M = (P +Q) [ Y @ere Y Qz(Q‘f)’*“PlJ (P+Q).
i=0 i=0

From Q, = Q — Q1, we have the representation of the M? above can be simplified as follow:

ind(A)
M= (P+Q) @'+ ), (Q‘I)’”( At o ))

(P+Q).

AZA7 B
CAA? CA‘B

O

In [8], Hartwig et al. gave the representation for the Drazin inverse of M under the conditions CA™B = 0
and CAA™ = 0. In the following Theorem 2.4, we give the representation for the Drazin inverse of M under
the conditions CA™BC = 0 and BCAA™ = 0 the result generalizes the conclusion in [8].

A B

Theorem 2.4. Let M = ( C D

BCAA™ =0, then

ind(A) .
d _ d\4 0 AFTA™B ANit+d AZAd AAdB
M _M[[(Ql) + Zl( o o J@™Il T Cam

where

), ( A and D are square) such that S = D — CA’B = 0. If CA"BC = 0 and

M

ok :( Cid )((AW)”*)”“A( I A‘B ) W = AA? + AYBCA?,  forn > 1.
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Proof. We can split matrix M as

M= A B [ A2A? AA“B N AA™ A"B
N cAB )~ \ C CA‘B o o0 )
n n 2 2d d
If we denote by P = ( Ag AOB and Q = ( A éq éidg ), we have that matrices P and Q satisfy the

symmetrical formulation of Theorem 2.1. Using similar method as in Theorem 2.3, we get that the statement
of the theorem is true. []

A B

Example 2.5. We give an example to demonstrate Theorem 2.4. Let M = ( cC D

) e C™7 where

0 -1 10 010

0 1 0O 1 21
A= 0 0 0 0} B= 1 0 1Y

1 1 00 1 01

00 1 -1 0 00
c={01 1 0} D=1 2 1]

00 -1 1 0 00

By computing we get that generalized Schur complement S = D — CA"B is equal to zero. Since CA™ # 0 and
CAT™B # 0 we know that the conditions of Theorem (4.1) in [8] do not hold. However it satisfies the conditions
BCAA™ = 0 and CA™BC = 0 in Theorem 2.4 in this paper. We have

0 -1 00 0 % 00
. 0 1 00 0 3 00
= d: d: 3
ind(A)=3, A"=14 o o o @' =l § 00
0 0 0 O 0 0 0 O
Then according to the formula in Theorem 2.4, we get
0o 0o 0 o 0 0 O
0 5 % 0 5 5 g
0O 0 0 0 0 0 O
M=10 % § 0 95 3 2
0 = =2 o =zt =2 -l
81 23 729 8 79
0 L 2 o T 2 @
o L Z o4
81 243 729 81 729

3. Additive result (Conditions: PQP? = 0, PQ* = 0, QP? = 0)
Theorem 3.1. Let P,Q € C"™". If PQP? = 0, PQ? = 0 and QP® = 0, then

k

(P+Q)" =) ((PY1+ Q") ((QPY(QP)" + (PQ)(PQ)")

i=0

=~
—_

+ (P2i+lpn + QZH—lQn) (((Qp)d)i+1 + ((PQ)d)i+1)

o

>
-

+

g

Q"Q (PX(QPY'y*2Q + QP*(QP))"*?)

o

+ ) (@Y (P(QPY(QP)"Q + QPA(QPY (QP)")

- P = Q"= Q'PAQP) - P(PQ)" - (Q)?P*Q(PQ)",

~
—_

o
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where k = max{ind(P?), ind(Q?), ind(QP)}.

Proof. Using Lemma 1.1, we have

w7 )1 -7 o[(3 8]
).

/)

_ P2+ QP PQ+Q \'( 1
‘(P Q)(P2+QP PQ+Q2)(I (13)
Let
([ P2+QP PQ+Q*)\ _
M‘( P2+ QP PQ+Q? )"F+G'
where
_( QP PQ (P2 Q@
(&) (e &)
From PQP? = 0, PQ* = 0 and QP® = 0, we get FG = 0. Then applying Lemma 1.2, we have
ind(G)-1 ind(F)-1
Md — Z GnGi(Fd)i+l + Z (Gd)HlFiFn. (14)
i=0 i=0
Now, we calculate F?. Let A = ( QOP gg ), B= ( QOP 8 ), then F=A+B,B>=0.
From PQ? = 0, we get AB = 0, then we can apply Lemma 1.2 to get the
F = A 4 B(A)2.
d d dy2
Now by Lemma 1.3, we get A? = ( (Q(l; P+ ((195)?1((PQ) ) )
After computation we get:
(Edyr =( QP (PQY)" + (QP)(PQ))™*! ) (15)
QP (PQY)" + (QP)(PQ)™!

2
for every n € IN. Consider the splitting G = S+ T, where S = ( ; QOZ ) and T = ( 0 % ) We observe

that ST = 0 and T? = 0. Then by Lemma 1.2, we get
G? = 87+ T(S%).

d\2
By Lemma 1.3, S = ( ()

0
QP2+ (P (QY)
(Gd)n :( (pd)zn + (Qd)Z(n+1)P2 (Qd)Zn )

). we obtain

(pd)Zn +(Qd)2(n+1)P2 (Qd)2n (16)

for every n € IN. After computation we get:
oo P2n + (Q)Z(nfl)lﬂ Q2n
P2n + (Q)Z(n—l)PZ Q2n 4

o ( (QPy" (PQ)" +(QP)(PQ)" ] .
QP (PQ"+@P)(PQY" )’

ifn>2

>2
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After substituting this expressions, (15) and (16) into (14) we have

mf_l(cd)m FIFT = ( ain a4 17)
= “\ aan am
where
ind(QP)-1 ‘ ‘ ind(QP)-1 ‘ ‘ ind(QP)-1 A ‘
=) (PYQPYQPT+ Y (@PEIPAQPIQP + ) (QYQPY QP
i=2 i=2 i=2
ind(PQ)-1 ‘ ' ind(PQ) 4 ' ind(PQ)-1 ' .
= ) (PVRPQIPQT+ Y (QVHQP)PQTPQ + Y (@) APQ(PQ)T,
i=2 i=2 i=2
ind(QP)-1 . ‘ ind(QP)—1 ‘ ‘ ind(QP)—1 ‘ .
an= ) (PHYHQPY@QP+ ) (@PFIPAQPIQPY + ) (@Y HQPY QP
i=2 i=2 i=2
ind(PQ)-1 4 ' ind(PQ) ' ' ind(PQ)-1 ' ’
an= ), (PVRPQIPQT+ ) (QVHQPYPQ (PO + Y (@) EHPQ(PQ)".
i=2 i=2 i=2
On the other hand
d2ppn _ [ b b
(G)YFE _(bz1 bzz)
where

bir = (PY4(QP)(QP)™ + (Q")°*PX(QP)(QP)™ — (Q")*P(QP)(QP)" + (Q1)*(PQ)™(QP)

b, = (P)YH(QP)™(PQ) — (P)*Q(PQ)*(PQ) + (Q))*(PQ)(PQ)"™ - (Q")*P(PQ)*(PQ)

by = (PY4(QP)(QP)™ + (Q")°*PX(QP)(QP)™ — (Q")*P(QP)(QP)" + (Q1)*(PQ)™(QP)

by = (P)YY(QP)"(PQ) — (P)*Q(PQ)*(PQ) + (Q))*(PQ)(PQ)" - (Q")*P(PQ)*(PQ)
and

Gipm = ( (P(QP)™ + (QY)*PX(QP)™ — Q'P(QP)"  —P*Q(PQ)" + (Q")*(PQ)™ — Q"P(PQ)*
(P)*(QP)™ + (QY)*PX(QP)™ — Q'P(QP)"  ~P'Q(PQ)" + (Q")*(PQ)™ — Q"P(PQ)*

Thus simplifying (17), we get

ind(QP)-1
an=—@Q)+ ) (P24 @)XFPP? + (Q)*2) (QPY(QPYT,
i=0
ind(PQ)-1
ap = _(Pd)Z _ (Qd)SP _ QdP(PQ)d + Z ((Pd)2i+2 + (Qd)2i+3P + (Qd)2i+2) (PQ)I(PQ)TL,
i=0
ind(QP)-1
= =@+ Y ((PY 4 @R+ (@) QP (QPY,
i=0
ind(PQ)—1
an = =P = QPP - Q'P(PQ + ) ((PH*2 + Q)PP + Q) (PQI(PQ)™.

i=0
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Now,
ind(G)-1 o e
nigpdyi+l _ [ €11 C12
;4 CTGIED _(C21 sz) (18)
where
e = ) (PUPP + PHQP 2P = (QUQP P + PQY - (Q(QH) (@PY),
i=2
C12 = Z (Pn(P)Zl + PTL(Q)Zl (Q)21+1Qd ((PQ)d 1+1 Z PW(Q)2i+1P _ (Q)2i+2QdP) ((PQ)d)HZI
i=2 i=2
e = ) (PP + QUP + QUQPAPY + QU(Q) (QPY),
i=2
0 A A A ‘ ind((Q)?-1 ‘ ‘
Co = Z (_(P)21+1Pd + QT[(P)ZZ + Qn(Q)Zl) ((PQ)d)H—l + Z Qﬂ(Q)ZHlP((PQ)d)H—Z.
i=2 i=2
On the other hand
apd _ [ 411 di2
C'F _( dn  dp )
where

di = PM(QP)" — (Q")*(P*(QP)" - QQ*(QP)*

di» = PM(QP)(PQ)")* + P*(PQ)" — QQ*(PQ)" - (Q)*Q"P((PQ)")*
dy = —PP*(QP)’ — (Q)*(P(QP)" + Q™(QP)"

dy = —PP(PQ)* + Q"(PQ)" + QQ"P((PQ)")*.

and

GTLG(Fd)Z — ( €11 €12 )

€1 €22
where
e = (P’PT((QP)")? = QQ*(PY((QPY")* + (Q*Q™((QPY)
ez = (PY’PT((PQ)) + (QPQ™((PQ)) + (Q°Q"P((PQ)')
exn = (PY’PT((QP)")? = QQ*(PY((QPY")* + (Q*Q™((QPY")
ex = (PY’PT((PQ)") + (QPQ™((PQ))* + (Q°Q"P((PQ))’.
Thus simplifying (18), we get

= —((Q(P*(QP)" + 2 P”(P)zl Q" Q) 2’”)((Q1’)d)’+1
=0

+ Z PT[(Q)Zl (Q)d(Q 2i— 1P2) ((QP)d)1+1 Z P‘n )21 ZPZ((QP)d)Hl/
i=1

i=2
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C12 = ; Pn(P)Zl (Q)21+1Qd (PQ)d)H-l + ; Pn(Q)2i+1P _ (Q)2i+2QdP) ((PQ)d)i+2 + ; Pn(Q)2i((PQ)d)i+l’

= —((Q")*(PY(QPY* +2 Q"(P)Zi—(P)zi”(P)d) (@py’y*!
i=0

ind((Q)*~1

+ ) QUQPEPR@P) T+ Y QHQF(QPY),
i=2 i=1
0 ' ' ‘ ind((Q)?-1 ‘ ' ind((Q)>-1 ' '
=) (PP QTP (PN + Y QUQEPQN T+ Y QUQFP(PQY .
i=0 i=1 i=0

After substituting (17) and (18) into (13) we complete the proof. [J

Example 3.2. Consider the two matrices P,Q € C®*®, where

0 1 0 0 a b 1 0 1 1 00

0 1 0010 0 00 0 11

P 0 -1 0 0 ¢ 1 0= -1 0 -1 1 00
0 0 00 1 1Y 0 0 0 -1 0 0}

0 0 0010 0 0 0 0 0O

0 0 00 0O 0 0 0 0 0O

for every nonzero a,b,c € C. We have

01 00 1 0 000 -1 00

01 00 1 O 000 0O 0O

P = 0 -1 00 -1 0 of = 000 3 0O

0O 0 00 0 O0Y 000 -1 00

0O 0 00 0 O 000 0O OO0

0O 0 00 0 O 000 0O OO0

From P2 # 0 and QP? # 0, formulas for (P + Q) from [10, Theorem (2.2)] and [2, Theorem (2.2)] fail to apply. But
it satisfies PQP? = 0, QP® = 0 and PQ? = 0, also we have

ind(P) =3, ind(Q)=

Applying Theorem 3.1, we get

01 0 -1 3 2
01 0 0 3 1
0 -1 0 3 -3 -4

d _
P+Q"=1y 0 0 -1 0 1
00 0 0 0 0
00 00 0 0

Applications to the Drazin inverse of block matrix

We use the formula in Theorem 3.1 to give some representations for the Drazin inverse of block matrix.
Now we consider the generalized Schur complement is equal to zero.



R. Yousefi, M. Dana / Filomat 32:18 (2018), 6417-6430 6428

Theorem 3.3. LetM:( A B ) ( A and D are square) such that S = D — CAB = 0. If BCA? = 0, BCAA™B = 0

C D
and CA?A™ = 0, then

M‘*=(‘é i ){(8 _‘Z‘S‘;ﬁ(ﬁgc)d)z) ZAZ'A” ((BO) )’“+Z(Ad)2<'+2>(BC) (BC)“}}( e g)

where k = max{ind(A?), ind(BC)}.

AA™ B A%A? 0
0 0),Q—( C  CA'B ),thenM—P+Q.

Obviously (AA™)? = 0. After using Lemma 1.3, we get P/ = 0.
From BCA? = 0, BCAA™B = 0 and CA%2A™ = 0, we get QP® = 0, PQP?> = 0 and PQ? = 0. So according to
Theorem 3.1, we have

Proof. Let P = (

(P+Q) = Z(Q")Z’“ (QPY(QP)" + (PQ)(PQ)")

>:~ T
[y

(P21+1PT( + QZH—lQn) (((Qp)d)1+1 + ((PQ)d)H—l)

—+

gl

o~
| I
— o

+

Q" Q¥ (P(QP))*2Q + QP*(QP)")"*?)

Y (@ (P(QP) (QP)"Q + QPA(QPY(QPY")

+

gl oM

i=

- Q"= Q'PAQPY' - P(PQ)" — (Q")P*Q(PQY’, (19)

where k = max{ind(P?), ind(Q?), ind(QP)}.
After computation we get:
AdA3 0 ] ,
, ifn=

&.o

. Jl cAra? +cA‘BC 0
Q - Antlad
CA"A% 0 )

Furthermore, by Lemma 1.3, we obain

ifn>3.

no A0 n_ AT 0
(@) _(C(Ad)”“ 0)’ Q ‘(—CAd 1)'

for every n € N. We note that Q3Q™ = 0.
After computation we get:

AA™ B
[ ), ifn=1,
0 0
pr= ATAT  A"1ATR
( ], ifn>2.
0 0

n d\n -
wor=( B 0). wory=( @97 9). wor-( 49" 9),

After substituting this expressions into (19) we get that the statement of the theorem is valid. O
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Theorem 3.4. Let M =
and CAA™BC = 0 then

Ié g ), ( A and D are square) such that S = D — CAB = 0. If A2A™B = 0, A’BC = 0

k-1

k-1
d _ I AA™ 0 d\2i+2) d\i+l A2i g7 A B
where k = max{ind(A?), ind(BC)}.
Proof. We can split matrix M as

MAB AZAdB+AA”0

C CA‘B 0 CAB cC 0}/
A2A7 B
0 CA‘B

the symmetrical formulation of Theorem 3.1. Using similar method as in Theorem 3.3, we get that the
statement of the theorem is true. [

AAT 0

If we denote by P = ( cC 0 ) and Q = ( ), we have that matrices P and Q satisfy satisfy

Example 3.5. We give an example to demonstrate Theorem 3.3.

(A B 7x7
LetM_( cC D )GC where
1 010 1 00
0 00O 0 0O
A= 0 00 0V B= 01 1}/
01 00 01 1
0 1 1 1 0O 0 0
c=l1 1 1 1| D=1 1 1|
-1 -1 1 -1 -1 -1 -1

By computing we get that generalized Schur complement S = D — CA“B is equal to zero. Since CA2A™ = 0,
BCAAT = 0 and BCA® = 0, then it satisfies the conditions of Theorem 3.3. We have

1010 0010
, 0000 0000
ind(A) =2, A= ,(BO) = ,
0000 00110
0000 00310
then according to the formula in Theorem 3.3 we get
1 2 -2 1 1 -3 -3
0 0 0 0 0 0 O
o 0 0o o o i 1
M=o o o o o I I
0 0 1 0 0 0 O
1 2 -2 1 1 -1 -1
-1 -2 2 -1 -1 1 1
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