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Measurable Functions Similar to the It6 Integral and the
Paley-Wiener-Zygmund Integral over Continuous Paths

Dong Hyun Cho?

“Department of Mathematics, Kyonggi University, Suwon 16227, Republic of Korea

Abstract. Let C[0, T] denote an analogue of generalized Wiener space, the space of continuous real-valued
functions on the interval [0, T]. On the space C[0, T], we introduce a finite measure w,,g, and investigate
its properties, where ¢ is an arbitrary finite measure on the Borel class of R. Using the measure w, ,,, we
also introduce two measurable functions on C[0, T]; one of them is similar to the It6 integral and the other
is similar to the Paley-Wiener-Zygmund integral. We will prove that if p(IR) = 1, then w, g,, is a probability
measure with the mean function @ and the variance function 8, and the two measurable functions are
reduced to the Paley-Wiener-Zygmund integral on the analogue of Wiener space C[0, T]. As an application
of the integrals, we derive a generalized Paley-Wiener-Zygmund theorem which is useful to calculate
generalized Wiener integrals on C[0, T]. Throughout this paper, we will recognize that the generalized It6
integral is more general than the generalized Paley-Wiener-Zygmund integral.

1. Introduction

Let Co[0, T] denote the classical Wiener space, the space of continuous real-valued functions x on the
interval [0, T] with x(0) = 0. In [8], Paley, Wiener and Zygmund defined a stochastic integral which is based
on integration by parts and is now called the Paley-Wiener-Zygmund (PWZ) integral. When applied to
the classical Wiener space Co[0, T}, it is less general than the It6 integral [6], but the two integrals agree
when they are both defined. The PWZ stochastic integrals have been used in various papers, in particular,
concerning Feynman integration theories [2, 9]. In particular the PWZ stochastic integrals were used in
defining a Banach algebra S of functions on Cy[0, T] which was introduced by Cameron and Storvick in
[2]. In [5], Johnson showed that S is isometrically isomorphic to the Banach algebra of Fresnel integrable
functions as given by Albeverio and Heegh-Krohn [1]. Further work for relationships between the It6
integral and the PWZ integral were introduced by Pierce [10] on the generalized Wiener space C,[0, T]
which is a generalized classical Wiener space with the mean function o and the variance function g.

Let C[0, T] denote an analogue of a generalized Wiener space [4, 11, 12], the space of continuous real-
valued functions on the interval [0, T]. On the space C[0,T], we introduce a finite measure w,g, and
investigate its properties, where a, 8 : [0, T| — R are appropriate functions such that g is strictly increasing,
and ¢ is an arbitrary finite measure on the Borel class B(R) of R. Using this finite measure w,,,, we
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also introduce two measurable functions on C[0, T]; one of them is similar to the It6 type integral I, (g)
for g € Lilﬁ[O, T], where Li,ﬁ[O, T] is the L*-space with respect to the Lebesgue-Stieltjes measure induced
by a and 8, and the other is similar to the PWZ integral. And then, we investigate their properties and
relationships. In fact, we will prove that if ¢(R) = 1, then w,,, is a probability measure with the mean
function a and the variance function f, and the two measurable functions are reduced to the PWZ integral.
As an application of I,, we derive a generalized PWZ theorem which is useful to calculate generalized
Wiener integrals on C[0, T]; for a Borel measurable(integrable) function f : R* — C

1 5 1 n T 2
LIO’T] Fap(f)X), . Lo p(fu)(X)dwa,pp(x) = (P(]R)(E) N f(iD) EXp{—E 4 [uj _fo fj(t)da(t)] }dmZ(zZ’),

where @7 = (u1,...,uy), {fi,..., fu} is orthonormal in L(z),ﬂ[O, T] with f; € Li/ﬁ[O.T] for j =1,...,n and my
denotes the Lebesgue measure on B(IR). We note that Pierce used the pointwise convergence in C, [0, T]
to define the It6 integral in [10]. Throughout this paper, we will use the L?(C[0, T])-convergence to define
Io,g(9) on C[0,T] so that we can give an exact proof that I,z is more general than the generalized PWZ
integral.

2. An analogue of a generalized Wiener space

In this section, we introduce a finite measure over continuous paths and investigate its properties.

Leta, B : [0,T] — R be two functions, where f is strictly increasing. Let ¢ be a positive finite measure on
B(R). For FH = (to,t1,..., ) withO =ty <ty <---<t, <T,let ];ﬂ : C[0, T] = R™! be the function given by
Ji (x) = (x(to), x(t1), - .., x(ts)). For [T}y B; € B(R"™"), the subset ]t:nl(]_[;-'zo B)) of C[0, T is called an interval I

and let 1 be the set of all such intervals I. Define a premeasure 1,4, on I by
Ma (D) = f f Was(et, B, B, i, o)l (i )dep o),
Bo JIILL, B

where for 17, = (uy,...,u,;) € R*and uy € R,

n

1 2 1y [ —alt) —uja + a(ti-1)]?
[T 2B (E) - ﬁ(t,»_l)ll 9| ]Z; B(t) — B(ti1) }

The Borel o-algebra B(C[0, T]) of C[0, T] with the supremum norm, coincides with the smallest o-algebra
generated by 7 and there exists a unique positive finite measure w, g, on B(C[0, T]) with wy, g, (1) = 4,6, (1)
foralll € 7. This measure w, g, is called an analogue of a generalized Wiener measure on (C[0, T], B(CI[0, T1]))
according to ¢ [11, 12].

Wn(a/ ﬁ/ E’l/ LTV[I uO) = [

Theorem 2.1. If f : R"™ — C is a Borel measurable function, then the following equality holds:
[ R K00 K00 = [ )Wt o G ),
clo,T) R

where = means that if either side exists, then both sides exist and they are equal.
Using the same method as used in the proof of Theorem 3.1 of [3], we can prove the following Lemma.

Lemma 2.2. For A > 0, a € R and nonnegative integer n, we have

il nIA a2

(ﬁ)E fn;u” exp{—(u 2_;)2 }dmL(u) = 2 i =2

where [-] denotes the greatest integer function.
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By Theorem 2.1 and Lemma 2.2, we have the following theorem.

Theorem 2.3. If0 < t; <t, < t3 <ty < T, then we have for nonnegative integers m and n

f [x(t2) — x(t)]"[x(ts) — x(3)]" d ()
C[0,T]

n-2j (5] _ m—2k
- (R)[Z et a0 g - ey [ M pge - gy
=0 k=0

27 jl(n — 2j)! 2kl (m — 2Kk)!
Proof. Suppose that 0 =ty < t; < t, < t3 <ty < T. Then we have by Theorem 2.1

f [x(t2) = x(t1)]"[x(t4) — x(t3)]" dwa g, (x)
1o,

[M]' - a(t]') —Ujq + a(tj—l)]z}

4
(2 = u1)"(ug — u3)" exp { Z 2[B(tj) = B(tj-1)]

1
[H 2n[B(t)) = B(tj- 1)]] R® =

dmi (u1, u, s, ug)de(ito).

Letting v; = u; —u;q for j = 1,2,3,4, we have, by the change of variable theorem,

f [x(t2) — x(t)]"[x(ts) — x(03)]" 0 ()
C[0,T]

3 L [vj - alt)) + altjq)]?
(P“R)[Hz T T Pl L. 3056) ) oo s
| ]% [ ety expf oGP _ st P
20y €Xp

(”(R)[@n)zw(u) BB — FE] 2 Bl 2B — )]
dm%(vz, Uy).

By Lemma 2.2, we have the result. For the general case 0 < t; < t, < f3 < t; < T, we can prove the result
with minor modifications. [

By Theorem 2.3, we have the following corollary.
Corollary 2.4. Let t1,t, € [0, T]. Then

1. fc[o,T] [x(t2) — x(t1)|dwa g (x) = P(R)[a(t2) — a(t1)],

2. Joom(t) = x(t)Ix(ts) = x(t3)ldwa 5, (x) = p(R)[a(t2) — a(t)lla(ts) — at)| f 0 <t <ty <t <ty < T,
and

3. fc[(m [x(t2) = x(t1)Pdwa 50 (x) = pR)[IB(t2) = B(t1)] + [a(t2) = a(tr)]].
Theorem 2.5. Let 0 < t; <t < T. Then the followings hold:

L Jopom XE)dwa50(x) = pR)[a(tr) = a(0)] + [, udq(u).
2. If [, wPdep(u) < oo, then

fC[O . x(t)x(t2)dwa gp(x) = @R)[[a(t2) — a(t)][a(t) — a(0)] + B(t1) — B(0)]
— 2 _
+ [ 1a() - )+ 1Pt + latt) - at] [ g

In particular, we have

f ()Pt g () = PRIB(H) — O] + f [a(t) - a(0) + uPde().
C[0,T] R



D. H. Cho / Filomat 32:18 (2018), 6441-6456 6444

Proof. By Theorem 2.1 and Corollary 2.4, we have
[ s = [ [0 = 50+ X000 = plat) - a1 + [ widptw,
C[o,T] clo,T] R
If 0 < t; < T, then we have by Theorem 2.1

_[m = a(h) = uo + a(0)F

2 _ 1 2 )
fC[o,T][x(tl)] A pp(x) = [—Zﬂ[ﬁ(tl) —,B(O)]] fRZ u3 exp{ TR0 }dmL(ul)d(P(uo)
fR[ﬁ(tl) - B0) + [a(tr) + uo — a(0)*1de(uo)

which also holds for t; = 0. By Theorem 2.1 and Corollary 2.4, we have

f Xttt g (3)
10,77

f [x(t2) - x(t0)T[x(tr) — X(O) e p () + f [x(t0) Pl 5 (30
1o, C

[0,1]

. f [x(t2) — x(t)1x(O)0 5 ()
C[0,T]

PR)[[a(t2) = a(t)]la(tr) — a(0)] + B(t1) — B(O)] + f}R[a(tl) —a(0) +ul’

dp(u) + [a(t2) - altr)] f udep(u)
R
which completes the proof. 0O

Theorem 2.6. Let 0 <t < T. Let Xo(x) = x(0) and X;(x) = x(t) for x € C[0, T]. Let ¢x,, ¢x, and ¢x,—x, be the
Fourier-transforms of Xo, X; and X; — Xo, respectively. Then for £ € R

Px,(&) f]R expliCuldp(u),

2
Pxn® = e expl-S 150 - ) + isla(t) - 2]
and
ox(©) = ﬁqoxt_xo(éxpxn(a.
Proof. For & € R we have by Theorem 2.1
Pxox0(E) = f expliE[x(t) — x(0)]}di (1) = f exp{ =3 160 - BO)1 + iELat) - a(O)]Jp(uo)
o 1o,T] e R 2

and

Px (€ f exp{iéx(t)}dwa,ﬂ;(p (x)
clo,T]

f expliElx(t) — x(0)] + iEx(0)}dwa gy (X)
C[0,T]

1
= f exp{—zéz[ﬁ(t) - B0)] + iéla(t) — a(0)] + iéuo}d(p(uo).
R
Now this theorem follows easily. [

By Theorem 2.6, we have the following corollary.
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Corollary 2.7. Suppose that @ is a probability measure on B(R).
1. If0 <ty <ty < Tand X(x) = x(t) — x(t1) for x € C[0, T, then the characteristic function @x of X is given by

Px(8) = exp| -3 E1B(e2) — Blr)] + iEla) - a1

for & € R so that X is normally distributed with the mean a(t;) — a(t1) and the variance B(t;) — B(t1).
2.If0<t <t <t3 <ty < T, Xqi(x) = x(tz) — x(t1) and Xp(x) = x(t4) — x(t3) for x € C[0, T], then X3 and X,
are independent.
3. If0<t < T, Xo(x) = x(0) and X;(x) = x(t) — x(0) for x € C[0, T], then Xy and X; are independent.

Remark 2.8. Some results of Corollaries 2.4, 2.7 and Theorems 2.5, 2.6 were proved by Ryu using Theorem 2.1
[11,12].

3. An analogue of the It6 integral

In this section, we define a measurable function on C[0, T] that is similar to the Itd integral.
Let a be absolutely continuous on [0, T] and let 8 be continuous, strictly increasing on [0, T]. We observe
that the functions @ and f induce a Lebesgue-Stieltjes measure v, on [0, T] by vag = vo + v, where

vo(E) = fE d|a|(t) with the total variation |a| of a and v4(E) = fE dp(t) for a Lebesgue measurable subset E of
[0, T]. Define Li ;3[0' T] to be the space of functions on [0, T] that are square integrable with respect to the
measure v, g induced by a and f [10]; that is,

12,00,T1={f:10,7] - IR] fo L0 Pavagth < col.

The space Lilﬁ[O, T]is in fact a Hilbert space (as our notation suggests), and has the obvious inner product

T
fr Pap = fo fO)g(B)dvap(t).

Let S[0, T] be the collection of step functions on [0, T'] and let (€ S[0, T]) have the form ¢(t) = Z';zl cjx(f)
for t € [0, T], where ¢; € R and the intervals I; C [0, T] with endpoints ¢; ; and ¢; are mutually disjoint. For

x € C[0,T], we define fOT ¢(t)dx(t) as the Riemann-Stieltjes integral fOT ¢(Hdx(t) = Z';:l cj[x(tj) — x(tj-1)]. For
convenience, the norm on L%(C[0, T]) is denoted by || - ||c.

Lemma 3.1. If ¢ € S[0, T], then
L foom o oOd(Od0050(0) = pR) [} d(b)das),
2.1 f) pdx®IR = pMIGIE , + ) d(t)da(t)P), and
3. fOT Q(t)dx(t) is normally distributed with the mean J;)T P(t)da(t) and the variance ||¢)||§/Ig if p(R) = 1.

Proof. Let ¢(€ S[0, T]) have the form ¢(t) = 27:1 cjxi(t) fort € [0, T], wherec; € Rand the intervals I; C [0, T]
with endpoints ;1 and t; are mutually disjoint. By Corollary 2.4, we have

! T
fC[O,T]f() (B)dx(t)dwa,pp(x) = (R) fo P(tyda(t)
and

T
fo P(£)dx(t)

L[O,T] [Znn cjlx(t)) - x(tj—1)]]2dwa,ﬁ;(p(x)

j=1

;cﬁ fc ) = )P () + 2 Y o fc ) = XDl = x(tc)]

1<j<k<n

2
C
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dwa,ﬁ;(p(x)
= P 2Be) - pe0l+ Y, Y ciaddatt) - attllat) - att)]|
=1 j=1 k=1

<p<1R>[||¢||§,ﬁ + [ fo ' cp(t)da(t)r].

If (R) = 1, then from Corollary 2.7, the characteristic function of fOT ¢(H)dx(t) is given by

T n
j;[O,T] exp{iéj; Qb(t)dx(t)}dwa,ﬁ;cp(x) j;[O,T] eXP{icf ;‘ Cj[x(fj) - x(t]-_1)]}dwa,ﬁ;¢,(x)

exp{—%éz Z C?[‘B(t]') - ‘B(t]’—l)] +ié Z Cj[a(t]') - (X(f];l)]}

j=1 j=1

T
exp{ -39l + i6 fo o(bdan)}

for £ € R, which completes the proof. O

For f € Lilﬁ[O, T], let {¢4} be a sequence of the step functions in S[0, T] with limy e [l — fllap = O.
Define I, 4(f) by the L*(C[0, T])-limit

T
Lag(9 = fim [ 9u(0x0)
for all x € C[0, T] for which this limit exists. We note that S[0, T] is dense in Lilﬁ[O, T] so that the sequence

{¢n}in S[0, T] with limy, e[| — fllap = O exists. Moreover, we have the following lemma.

Lemma 3.2. If f € Li,ﬁ[O, T], then I, g(f) is well-defined; that is, I, g(f)(x) exists for wg g, a.e. x € C[0,T] and is
independent of choice of the sequence {¢,} in S[0, T].

Proof. For f € Li ﬁ[O, T], let {¢,} be a sequence of the step functions in S[0, T] with lim,, e [|f — ¢ullag = 0.

Then, each fOT ¢n(t)dx(t) is an element of L2(C[0, T]) by Lemma 3.1. We now have ¢, — ¢, € S[0, T] so that
by Lemma 3.1 and the Hélder’s inequality,

T T
a2 (B)d - w(Hd
fo 6 (Bix(D) fo G (Bx(D

(p(lR)[IIqbn - ‘75"1”543 + [jo‘T(qbn - qf)m)(t)da(t)]z]

PRpn = Pl g + val[0, TDIipn = bl o]
< @) max{l, va([0, T = Pull? 5

2
C

IA

which converges to 0 as m, n approach co. From this, we conclude that the sequence { fOT ¢n(t)dx(t)} is Cauchy
in L2(C[0, T]) so that Lo g(f)(x) exists for w, g, a.e. x € C[0,T]. Moreover, if lim, e ¢ = f = lim, 0 Py
in Li/ﬁ[O, T] for sequences {¢,} and {ip,} in S[0, T], then by Lemma 3.1, the Holder’s inequality and the
Minkowski’s inequality, we have

T T
fo Gu(x(t) - fo wn(t)dx(t)HCs[qa(]R)max{l,va([o,TD}]%[ucpn— Fllag +1f = Gllag]

which also converges to 0 as n approaches co. Now we have

T T
lnp(HE) = lim f Gu(B)x(®) = lim f Pn(Bx(®)
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in L*(C[0, T1) and conclude that the definition of I, g(f) is essentially independent of choice of the sequence
from S[0, T] that is used to define it. O

Theorem 3.3. Let f,g € Li 5[0/ T]and cq,ca € R. Then the followings hold:

If f € S[0, T, then I, (f)(x) = fOT f()dx(t) for wyp,p a.e. x € C[O, T].
Log(erf + c29)(x) = c1lap(f)(x) + c2lap(9)(x) for wa g, a.e. x € C[0, T].

Joo 11 T gAY 50 () = 9(R) [} F(B)da ()
Mo (FIE = pQRIFIR, + [, f(DdadP).
Jogor L s DM p (D)) e, (x) = PRIICE, Do + L, FdBLf, g(t)da(t)])

Lo g(f) is anormally distributed random variable with the mean fOT f(t)da(t) and the variance || f ||S,ﬁ ifp(R) = 1.
In this case, Cov(Log(f), Lap(q)) = {f, Dop-

Proof. The equality in Theorem 3.3.1 is trivial by the definition of I, s(f). Take {¢,} and {,} to be sequences
in S[0, T] with lim, e ¢, = f and lim, & P, = g in Lilﬁ[O, T]. Then c1¢, + 2y, belongs to S[0,T] and
llcrpn + copn — (crf + 29)llap < lcilllpn = fllap + Ic2lllipn — gllag so that c1f + c2g = lim,,eo(c1y + C2¢) in
Li/ﬁ[O, T]. Now we have by the linearity of Riemann-Stieltjes integral

Wap(c1pn + c2th) = [c1lap(f) + c2lap(@]llc < le1llllap(Pn) = Lap(Fllc + lealllla,p(Pn) — Lap(@)llc

which converges to 0 as n approaches co. By the uniqueness of limit in L?(C[0, T1), we have L, g(c1 f +c29)(x) =
c1la p(f)(x) +c2la p(g)(x) for wy s, a.e. x € C[0, T], which proves Theorem 3.3.2. We also have by the Holder’s
inequality

AN S N

2

f Lo p(pn)(X)dwa,pip(x) — f Lo g(f)(0)dwa o ()| < PR p(Prn) = L p(HIIE
C[o,T] Co,T]

which converges to 0 as n approaches oo by the definition of I, 4(f). Moreover,

T T
fo Pn(t)dalt) — fo f(bda(t)

which also converges to 0 as n approaches co. Now we have by Lemma 3.1

2
<vo([0, TDlls — fI2

T T
f Tap (N0 = T [ Tap(@u) (@it () = @(R) lim f Pu(Bida(t) = p(R) f f(bda)
C0,T] T] 0 0

which proves Theorem 3.3.3. Since I, 4(f) = lim; 0 Lo g(¢y) in L2(C[0, T]), we have

clo,

T 2
oI = fim )1 = R im I, + | [ (0]

by Lemma 3.1. Since 0 < [l|nllog — Il fllogl < lpn = fllog < llpn = fllap and lim,, e = fin Lirﬁ[O, T], we have
lim;, 00 |I¢n||§,,3 = ||f||§,,3 so that

ILapPIE = R, + fo f “’da(t’ﬁ

which proves Theorem 3.3.4. Furthermore, we have by Theorems 3.3.2 and 3.3.4

L (f + I

(p(IR)[Il falls+ [ fo T[ ft)+ 9(t)]dzx(t)]2]

g (OIE + e (9)IIE +2 f Lap(N) )] L p(9) () ]dW0a,p;p (x)
clo,T]
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T 2 T 2
— 2 2
= (P(IR)[Hf 6,6 + llgllg,5 + [ fo f(t)da(t)] + [ fo g(t)da(t)] ] +2 fc o o, () 0L () () [, ()
so that we have
T T
fc UG )i () = POR[(f, 9205+ | fo e fo s(tdao)|
which proves Theorem 3.3.5. Since limy, e Lo,p(¢n) = Los(f) in L*(C[0, T]), take a subsequence {I, s(¢u )},

of {Iog(Pn)} with imy_eo Lo g(Py, )(x) = Lo p(f)(x) pointwisely for w, g, a.e. x € C[0, T]. If p(IR) = 1, then we
have for £ € R

Elexpliéls(HN = fdo e i Jm L)) 0
= lim expliéla,p(Pn ) ()} dwe, g (x)
k=eo Jcr0,7]

" {—152|| ovie [ ond )
= mexpy—; Pullop + 1 ) Pn(H)da

T
= expl-3 B, + it [ foaco)

by the dominated convergence theorem and Lemma 3.1, so that the final results follow by Theorem 3.3.5. [

The following theorem is useful and the proof of it is motivated by results in [13].

Theorem 3.4. If f is of bounded variation on [0, T, then I, (f)(x) = fOT f(t)dx(t) for wyp, ae. x € C[O, T], where
T . o .

fo f(t)dx(t) denotes the Riemann-Stieltjes integral of f with respect to x.

Proof. Suppose that f is monotonically increasing on [0, T]. If f(T) = f(0), thatis, f is a constant function on

[0, T, then the result is trivial, so that we assume that f(T) > f(0). Let M = f(T) — f(0) and fork =1, ...,n,
let

k-1 k
D= {t € [O,T]‘f(O) + TM < f(t) < f(0) + EM}'

Since f is monotonically increasing, D, is either an interval or a point or an empty-set. If D, x is a point,
then adjoin the point to an its adjacent interval. In this way we have a decomposition of [0, T] into finitely
many disjoint intervals. If necessary, we decompose these intervals so that the lengths of the resulting
intervals [, (k =1,2,...,m,) with endpoints £, x_1 and t, are less than % Fort €[0,T], let

1My

an(t) = Z f(tn,k—l +)X]n/k(t)

k=1
forn=1,2,.... Then ¢, € S[0,T] and |p.(t) — f(t)| < M for Vo a.e. t € [0,T] so that
2 M
Lim llpn = fllyp < Lim —5-vas([0, T1) = 0.
Thus Lg(f) = limy, e Lug(¢n) is in L*(C[0, T]). Now there exists a subsequence {I,,(¢n )}, Of {Iap(Pn)},
with limy,e I (P, ) (x) = Lo p(f)(x) pointwisely for w, g, a.e. x € C[0, T]. For wyg,, a.e. x € C[0, T],

mrII

T
Lagp(F)(0) = im Lop(@n)() = im Y f(bn, -1 4)lx(h, ) = ¥t -1)] = fo f(Bdx(o).
=1
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If f is of bounded variation on [0, T], then there exist monotonically increasing functions f; and f, on [0, T]

with f = fi - fo. By Theorem 3.3, Ls(f)(®) = Lus(F)®) ~Log ()@ = [ AMOdxE)~ [, fddx(t) = [ F(Bdx(E)
for wg g, a.e. x € C[0, T], which completes the proof. [

By Theorems 3.3 and 3.4, we have the following corollary.

Corollary 3.5. Let f,g € Li 5[0' T and each be of bounded variation on [0, T]. Then

L[O,T][ff f(t)dx(t)][LT {](t)dx(t)]dwa,ﬁ;(p(x) = (P(R)[<f/ Pop + [LT f(t)dac(t)][j: !](f)da(t)“.

Theorem 3.6. Let {fi,..., fu} be a set of functions in L2 ﬁ[O T] which are independent in L2 ﬁ[O T, and let
fo f(t da(t) = (fo filtda(t),. "’fo fa@®)da(t)). If f : R" — C is Borel measurable, then we have

f f(la,ﬁ(fl)(x)/ (R Ia,ﬁ(fn)(x))dwa,ﬁ;(p(x)
lo,T]

: ¢<R>[m]; | savexp{-3(m| f flodato), f floaty) Jimin,

where -, -)r+ denotes the dot product on R" and M = [{f;, fj)ogluxn Which is positive definite and non-singular.
Moreover, if ¢ is a probability measure on B(R), then the random vector (Iog(f1), . - ., lap(fs)) has the multivariate

o ) T = . :
normal distribution with the mean vector fo f(t)da(t) and the covariance matrix M.

Proof. Let ¢g = —t=¢. Then ¢y is a probability measure on RR so that w, g, is also a probability measure

P(R)
on C[0, T]. By Theorem 3.3.6, I, 4(f;) with respect to w, g, is Gaussian with the mean fOT fi(t)da(t) and the

variance ||fil |2 fori=1,...,n. Forc=(cy,...,c,) €R",
(Mc, Oy = Z Z cici{fir fidop

i=1 j—1

= CiCj [Ia D)) = ElLag(fi)lllap(f)(x) = ElLa,s(f)1ldwa, g, (x)
i=1 j=1

- [O,T][Ia,ﬁ(; Cfff)(x) el )] it

= Y ij]' ’ >0
=

by Theorem 3.3.2. Moreover, if (Mc, C)r: = 0, then Z” 1¢ifj(t) = 0 for vg a.e. t € [0, T], which implies ¢ = 0
by the independence of {fy, ..., f,} in L2 [;[0 T]. Now M is positive definite and symmetric so that M is non-
singular and M™! is positive definite. By Theorem 4 of [10], we have (1) for ¢o. Since wy g = PR) W4 g,
by their definitions, the null sets with respect to w, B are equivalent to the null sets with respect to w, g,p,,
so that for f € L2 [0, T], 1, p(f) with respect to w, g, is also equivalent to I, g(f) with respect to w, g,p,. Now

we have (1) for arb1trary @, since

f f(la,ﬁ(fl)(x) aﬁ(fn (x))dwaﬁqo(x ]R)f fa, ﬁ(fl (x), - Ia,ﬁ(fn)(x))dwa,ﬁ;(po(x)r
1o,T]

where I, 4(f;) of the left-hand and right-hand sides are taken over Wgp,p and Wy g, respectively. The
remainder of this theorem immediately follows. [
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Using characteristic functions and Theorem 3.6, we can prove the following corollary.

Corollary 3.7 (Generalized PWZ Theorem). Let {f1,..., f,} be a set of functions in L‘ZX ﬁ[O, T, which are nonzero
and orthogonal in Lé,ﬁ[o, T]. Then, for a Borel measurable function f : R" — C,

fc P, g O 0

. \gﬁUMam )
2 om[[] [ |m|| ff(*)exp ——; o b @,

where il = (uy,...,U,). Moreover, if ¢ is a probability measure on B(R), then Log(f1), - .., Lap(fn) are independent
random variables.

Using Corollary 3.7, we can prove the following corollary suggested by Ryu [12].

Corollary 3.8. Assume that ¢ is a probability measure. Let be a set of nonzero orthogonal functions

(o, .., )

VTR
in L?[0, T] such that Z—l(j = 1,...,n) are of bounded variation on [0, T]. For j=1,...,n, let X;(x) = OT Zggd (t)
forx e C[O T] Then Xy, ..., X, are independent random variables and each X; has the normal distribution with the

\/—II

mean fo 0] da(t) and the variance || . Moreover, if f : R" — C is Borel measurable, then

n

Sada(t)P
fXa(x), ..., X (x))dwe, g (x) z [H - - f £(id) exp 21 Z fo B®
clo,7] j=1 27| \/_|| = I \/_”

Proof. By Theorems 3 3 and 3.4, each X; has the normal distribution with the mean fo ﬁf( )da(t) and the

®)
) vl -

0if [ # j; that is,
{ :j=1,...,n}is a set of nonzero orthogonal functions in L2 ;3[0 T] so that Xj, ..., X, are independent

b} @),

variance || 7 ||0 = ||—=I13,. By the assumption, we also have (I 75 ,>0,ﬁ

random variables and the equality = holds by Corollary 3.7. [

Remark 3.9. Suppose that ' is bounded away from zero. As B’ > 0, vg is mutually, absolutely continuous with
respect to my. We note that v, is absolutely continuous with respect to my, but that the converse need not hold. Thus
Va,p 18 absolutely continuous with respect to my and Li ﬁ[O, T] C L% ﬁ[O, T] € L?[0,T]in general. The inclusions mean

that they are continuously embedded as vector spaces, but that they need not be embedded isometrically.

Theorem 3.10. I, is a bounded linear operator from L2 ,3[0/ T] into L*(C[0, T]) and for all f € L2 ﬁ[O, T],

Iap(Fllc < [p(R) max{1,va([0, THI2 I fllap-
Moreover, the followings hold:

1. If p’ is bounded away from zero, then 1, g is injective.
2. If I, is injective, then the inverse operator I;lﬁ Im(lap) — L2 ﬁ[O, T is bounded if and only if Im(l, p) itself is

a Hilbert space.
3. If a is a constant function (or equivalently, fOT Lo g(f)(x)dwapp(x) = O for all f € S[0,T]), then for all
fel2o,T],
o (Fllc = [P fllp @)

so that I 1 Im(Ia}g) — 12 p,[O T} is bounded and Im(l, ) is a Hilbert space.
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4. If ais a constant function and p(R) = 1, then I, g is an isometric isomorphism between Li/ﬁ[O, T] and Im(I,p).

Proof. Since [ foT fhda®)]* < v ([0, TDIIf IIi0 by the Holder’s inequality, we have the inequality of this
theorem by Theorem 3.3.4 so that I, g is a bounded linear operator from Lilﬁ[o, T]into L2(C[0, T]) by Theorem
3.3.2. Suppose that ' is bounded away from zero and ||, g(f)llc = 0 for f € Li,ﬁ[O, T]. By Theorem 3.3.4,
||f||g/ﬁ < qﬁ”h,ﬁ(f)ﬂé = 0 so that ||fllog = 0 and ||fllw, = 0 by the above remark. Now we have || flls,0 = 0
since v, is absolutely continuous with respect to m;. Thus || f”i,ﬁ = f||[21,0 +| f”%,ﬁ = 0; thatis, f = 0
in Lirﬁ[O, T], which implies that I, is injective. Suppose that I, is injective and the inverse operator
I;,lﬁ s Im(lap) — Lilﬁ[O, T] is bounded. Then Im(l,) is a closed subspace of L%(C[0, T]) so that it is a Hilbert
space. Conversely, suppose that Im(l,) is a Hilbert space. Then I,z : Lilﬁ[O, T] — Im(l,p) is open by
the open mapping theorem so that I;}; s Im(lyg) — Li,ﬁ[O, T] is bounded. If a is a constant function, (2)

immediately follows from Theorem 3.3.4. Furthermore, if p(R) = 1, then I, : Li,ﬁ[O, T] — Im(lsp) is an
isometric isomorphism by Theorem 3.3.5. [

Corollary 3.11. Let f bein Li,ﬁ[O, T]and let { f,} be a sequence of functions in Li,ﬁ[O, T] with im0 || fu = fllag = O.

Then {1 5(fu)} converges to I, g(f) in L*(C[0, T]) so that it converges to I,g(f) in LY(C[0, T1). Moreover, if L 5(fu)(x)
— Y(x) pointwisely for w,p,, a.e. x € C[0,T] as n — oo, then Y(x) = L, g(f)(x) for wap,, a.e. x € C[0, T] so that
Log(fu) = Y in both L'(C[0, T1) and L*(C[0, T]) as n — oo.

Proof. Since I, is a bounded operator by Theorem 3.10, {I,g(f,)} converges to I, g(f) in L2(C[0, T]). We also
have by the Holder’s inequality

2
[fqor] L p(fu) (%) _Ia,ﬁ(f)(x)ldw(y,ﬁ;(p(x)] < QR p(fu) = L g (NI

which converges to 0 as n — oo; that is, {I,4(f:)} converges to I, 5(f) in L'(C[0, T]). Moreover, suppose
that I, g(f,)(x) — Y(x) pointwisely for w,g,, a.e. x € C[0,T] as n — oo. Since {I,p(f,)} converges to
Lo,p(f) in L*(C[0, T]), we can take an its subsequence {Io(fy,)};>, converging to I,s(f) pointwisely so that
Y(x) = limgo0 L g(fin, )(X) = Lo p(f)(x) for wa g, a.e. x € C[0, T]. O

By Theorems 3.3.5 and 3.3.6, Corollary 3.7 and Theorem 3.10, we have the following corollary.

Corollary 3.12. Suppose that « is a constant function. Let {f,} be a sequence in L* ;5[0' T]. Then, {f4} is orthogonal
in L2 ﬁ[O, T1if and only if {1,4(fu)} orthogonal in Im(I, ). Moreover, if @ is a probability measure, then we have the
followings:

1. {f,} is orthogonal in Li,ﬁ[O, T if and only if {1, 5(f,)} is a set of independent random variables on C[0, T].
2. {fu} is orthonormal in Li,ﬁ[o, T1if and only if {1, g(f,)} is orthonormal in Im(I,g).
3. {fu} is completely orthonormal in fo,ﬁ[o, T if and only if {1,5(f4)} is completely orthonormal in Im(1,p).

By Theorems 3.3 and 3.10, Corollary 3.12 and Proposition 2.3.3 of [7], we have the following theorem.

Theorem 3.13. Suppose that a is a constant function and @(R) is a probability measure. Let {f,} be completely
orthonormal in Li ﬁ[O, T]. Then for f € Li 5[0, T],

Lop(N@®) = Y ap(F) TapUDclap(F)@) = Y, Fidaplap(f) @)
n=1 n=1

in L*(C[0, T]) and pointwisely for Wapp a-e. x € C[O, T].
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4. An analogue of the Paley-Wiener-Zygmund integral

In this section, we define a generalized PWZ integral on C[0, T] and investigate its properties
Throughout the remamder of this paper, we give additional conditions for a and §; |a|, is bounded

+B
2 2

\/W is of bounded variation on [0, T]. In the case, La/ﬁ[O, T] = L 0 [O T] and the
equality means that they are equal as vector spaces and the two norms on them are equivalent so that they
have the same topology, but that they need not be equal isometrically. Moreover, we have the following
lemma.

away from zero and

Lemma 4.1. There exists an orthonormal basis {¢j};?°:1 of functions of bounded variation in L2 ﬁ[O, T] such that it is
orthogonal in L} 410, T1.

Proof. Let C(t) = lal'(t) + p'(t) for t € [0,T] and let {h]-}]f"’:1 be a complete orthonormal set of functions of
bounded variation in LZ[O T]. Note that possible such functions are the trigonometric functions on [0, T].
For j €N, let ¢; = Then we have

T hy(bh(t
<¢l/ ¢j>a,ﬁ = fov %dva,ﬁ(t) =y, hj>mL = 6lj/

il

where 6); denotes the Kronecker delta function, so that {¢ f}j is an orthonormal set in L2 [0 T]. Since zis

bounded away from zero, we have for some M > 0

T (Hhy(h)

Moy = M{h, hjdy, < j; 0

dvg(t) < (b, = B1j,

so that if [ # j, then

T hy(t)h(t
(P, Pjdop = j; AL )dVﬂ(t) =0,

c®)
which implies that {¢ ]-}]. is an orthogonal set in L ﬁ[O T]. We also have for f € L 0 T]

) ) :
Ve p(t) — AVa,
f ,mﬁfﬂ) ()= £6)] dvag )

NI () = £(5) () deL<s>
(U

2

'>a,ﬁ (P] - f
ap

VB =

which converges to 0 as n — oo, since {1;}%, is completely orthonormal in L?[0, T] and f VT € L2[0, T]. Now,
{o j}]f‘il is a complete orthonormal set of functions in Li /3[0, T]. In addition, if == is of bounded variation on
[0, T], then ¢; is of bounded variation on [0, T] since it is a product of two functions of bounded variation. [J

We note that {¢);}2, in Lemma 4.1 is orthogonal in L% [0, T] and Li,ﬁ[O, T]is separable. Moreover, {¢);}%2, is
orthogonal in L2 410, T]if it is orthogonal in both L2,[0,T]and L3 410, T], but that the converse need not hold.

For the mean functions a which are needed in several papers, the following example provides existences
of {¢ ]'}]f“’:1 satisfying the conditions of Lemma 4.1.
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Example 4.2. 1. Let \/‘1|_+ﬁ be of bounded variation, |a|" + B’ be bounded and ' be bounded away from zero.

Then, for some constants My and My, we have 0 < My < '(t) < (lal’ + p')(t) < M, forall t € [0, T] so that
0< %; <@ é)ﬁfﬁ,(t) forallt € [0, T); that is, M,ﬁ 7 is bounded away from zero. Now, { ¢>] | satisfying the
conditions of Lemma 4.1 exists in Li [0, T]. In the case, Li [0,T] = L3 410, T] = L2[0,T] and the equalities

means that they are equal as vector spaces and the norms on them are equivalent so that they have the same
topology, but that they need not be equal isometrically.
2. Let — \//3_ be of bounded variation on [0, T]. It is not difficult to show that « (or |@|) is a constant function on

[0, T1 if and only if ||fllao = O for all f € S[0, T]if and only if (f, g)ao = O for all f,g € S[0, T]. In this case,
f, Pap = {f, Dogpforall f,g € Laﬁ[o, T] so that Li,ﬁ[O' T] = Laﬁ[O, T] isometrically. Now, {(1)]-}}?11 satisfying
the conditions of Lemma 4.1 exists in Liﬁ[o, T].

3. Let % be of bounded variation on [0, T]. If for some constant ¢ > 0O, |a|(t) = cB(t) for all t € [0, T] which

is the condition suggested by Yoo, Kim and Kim [14], then (f, g)ap = {f, Poa+ap = (1 + )f, gop for
all f,g € L3 a +c)ﬁ[0 T] so that L2 [O T] = L2 [;[01 T] isometrically. In this case, {qu}]f’i1 satisfying the

conditions of Lemma 4.1 exists in Li 5[0 T].

0,(1+c)

Definition 4.3. Let {qb]-}]f"’:1 be a sequence in Liﬁ[O, T1] satisfying the conditions of Lemma 4.1. For f € Liﬁ[O, T], we
define a generalized PWZ integral (f, x)a,p by the formula

n T
(7 9hap = Jim Y 0as [ (000
=1

pointwisely for all x € C[0, T] for which this limit exists.

If p(R) =1, a(t) = 0 and f(t) = t for t € [0, T], then (f, x),p is exactly the PWZ integral on the analogue of
Wiener space introduced by Im and Ryu [4]. In the followings, we prove that for f € L2 ﬁ[O, T], the PWZ

integral (f, x)ap exists for w, g, a.e. x € C[0, T] and it is essentially independent of a particular choice of the
complete orthonormal set to define it.

Lemma 4.4. For f in Li/ﬁ[O, T1, the generalized PWZ integral (f, X)a,p exists for w,p,, a.e. x € C[0, T].

Proof. Suppose that ¢ is a probability measure. For each positive integer j, let X;(x) = (f, ¢)a J(.)T ¢Qj(t)dx(t)

for x € C[0, T]. By Theorems 3.3, 3.4 and Corollary 3.7, X; is Gaussian with the mean (f, ¢;)a J;)T ¢j(t)da(t)
and the variance (f, ¢>]>§ﬁ||¢]|| 0 and {X }]
we have

Z Var[X Z<f 2 gl < Z;<f, $2g = IIFIZ 5 < oo
=

By Proposition 2.3.3 of [7], Y% jzl[Xj(x) — E[X;]] converges pointwisely for w, g, a.e. x € C[0,T]. For m > n,
we have by the Holder’s inequality

, is a sequence of independent random variables. Furthermore,

Yo f 60| <0, T)Z(f 002

which converges to 0 as m,n — oco. Now Zj:l E[X;] converges so that Zjil(Xj(x) —-E[X;] + E[X;]) =
Y2 Xj(x) = (f,x)ap exists for wapg, ae. x € C[0,T]. If ¢ is an arbitrary positive finite measure, let
Qo = (p(]R)(p which is a probability measure. By the above argument, (f, x)a 4 exists for w, g, a.e. x € C[0, T].

Since the null sets with respect to w, g, are equivalent to the null sets with respect to w, g,,,, we have this
lemma. O



D. H. Cho / Filomat 32:18 (2018), 6441-6456 6454

Theorem 4.5. For f € Li/ﬁ[O, T1], we have (f,x)ap = Lap(f)(x) for wa g, a.e. x € C[0, T] and (f, x)ap is independent
of a particular choice of the complete orthonormal set as described in Definition 4.3 for w, g, a.e. x € C[0, T].

Proof. Forn € N, let f, = Z?:Kf/ O apdi- Then limy e [|fys = fllap = 0 so that limy, e [1ap(fu) = Lp(fllc = 0
by Corollary 3.11. By Theorem 3.4 and Lemma 4.4, I, s(f)(x) = (f, x)ap pointwisely for w, g, a.e. x € C[0, T]
as n — oo. By Corollary 3.11 again, we have (f, X)ap = lop(f)(x) for wy g, a.e. x € C[0, T]. Since the above
argument does not depend on a particular choice of {¢ ]-}]‘?il, we have the second part of this theorem. [J

By the linearity of (-, ¢;)as, we have the linearity of the generalized PWZ integral; for ¢;,c; € R and
frg €12,400,T],

(crf + 29, X)ag = c1(f, X)ap + C2(, X)ap

for wy g, a.e. x € C[0, T].
We now have the following theorem by Theorem 3.3.6 and Theorem 4.5.

Theorem 4.6. For f € Li/ﬁ[O, T, (f, )a,p is Gaussian with the mean fOT f(t)da(t) and the variance ||f||g,ﬁ ifp(R) = 1.
By Theorems 3.4 and 4.5, we have the following theorem.

Theorem 4.7. Let f be of bounded variation on [0, T]. Then for wyg, ae. x € C[0,T], we have (f,X)ap =
fOT f()dx(t), where foT f(t)dx(t) denotes the Riemann-Stieltjes integral of f with respect to x.

Remark 4.8. We can also obtain the results of Theorems 3.3, 3.6, 3.10, 3.13 and Corollaries 3.7, 3.11, 3.12 by
Theorem 4.5, with replacing I, g by the generalized PWZ integral. Note that, in order to use the genemlized PWZ

s 2

integral instead of 1, g, we need additional conditions for a and f3; |a|' is bounded away from zero and

+p

bounded variation on [0, T].

5. Applications and examples of the generalized PWZ integral
In this section, we provide examples and applications of the generalized PWZ integral.

Example 5.1. For t € [0, T], we have by Theorems 4.5 and 4.7

t
(tt1 p = Logo)) = [ ds) = x0) = x0
0
for wa g, a.e. x € C[0, T). In particular, (1, x)ap = (X[0,11, X)ap = X(T) — x(0).

Example 5.2. If a is a constant function and @(R) = 1, then we can prove Theorem 4.5 by Theorems 3.4 and 3.13.
Indeed, for f € wa[o, T], we have

(o] T (o]
(f,Xap = Y (F Bag fo Si(BAx(t) = Y (F, D aplap(@)(X) = Lop(H(X)
=1 =1

pointwisely for g, a.e. x € C[O T1, which does not depend on a particular choice of {qi)]-}}?":l. In this case, since
O =1 forall t [0, T]

W OF® is trivially bounded away from zero.

7 ‘al/"'ﬁ/
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Example 5.3. We can prove Theorem 4.6 using the characteristic function of the generalized PWZ integral if
@(R) =1. For f € Li,ﬁ[O, Tland n € N, let f, = Y7 1(f, §apj. Then for & € R, we have by Theorems 3.3, 3.4
and the dominated convergence theorem

E[ié(f, ')a,ﬁ]

f exp {1‘E ]}1_{?0 Ia,ﬁ (fn)(x)} dwa,ﬁ;q) (%)
1o,T]

= lim exp{iéla,ﬁ(fn)(x)}dwa,ﬁ;w(x)
e Jepo 1)

1 T
= timexp{-3 AR, +iE [ fra)
0

T
= exp{—%éﬂumaﬁ+iajz_ﬂndau§

using the same method as used in the proof of Theorem 3.3.4, which completes the proof.

Theorem 5.4. Assume that ' is bounded away from zero. If f € Li/ﬁ[O, T] and x is absolutely continuous on [0, T]
with x' € L2[0, T, then (f, X)a,p exists and it is given by (f, X)ap = fOT fO)x'(F)dmy(t).

Proof. Let f, be the function as given in Example 5.3. Then we have

T T
fﬂWM=®fﬂWM,
0 0

where (L) fOT fa(t)dx(t) denotes the Lebesgue-Stieltjes integral of f,, with respect to the measure induced by
x which is absolutely continuous on [0, T]. Since x” € L2[0, T] € L'[0, T], we have that x’ € L'[0, T] and

T T T
Lﬂwm=mﬁﬂwm=£ﬁwmmm. 6
Now we have for g € wa[o, T]

lgli2, < Mgl 5 < MilgIZ 4)

for some constant M > 0, since 8’ is bounded away from zero. Thus we have by the Ho6lder’s inequality
and (4)

T T 2
Lﬁﬁ@ﬂ%m@—ﬁf@ﬂ%m@]QW—NMM%SMM—NMW%,

which converges to 0 as 1 — co. Now, by (3), we have lim,_,« fOT fa@®)dx(t) = fOT fH)x' (t)dmy(t) with the

existence of the limit. By the definition of (f, x),s, we have (f, X)ap = lim; e J(;T fa®)dx(t) = fOT f@)x' t)dmy(t)
as desired. [
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