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Abstract. B−1-convexity is an abstract convexity type. We obtained Hermite-Hadamard inequality for
B−1-convex functions. But now, there are new and more general integral operator types that are fractional
integrals. Thus, we need to prove Hermite-Hadamard inequalities involving different fractional integral
operator types with this article.

1. Introduction

Recently, abstract convexity which becomes different convexity types is studied more than classic
convexity. Because, abstract convexity has an important area in convexity theory and also, abstract convexity
has significant applications variety fields like mathematical economy, operation research, inequality theory
and optimization theory. Additionally, one of these abstract convexity types is B−1-convexity ([5, 7]). It has
applications to mathematical economy and inequality theory ([7, 18]). Many articles were written about
B−1-convexity ([4, 6, 12, 16]).

As an application on inequality theory for abstract convexity types, we can give the Hermite-Hadamard
inequalities that are shown for integral mean value of a convex function. ([1–3, 9–11, 14, 17]). For B−1-
convex functions Hermite-Hadamard inequality via classic integral was proven in [18]. Hermite-Hadamard
inequality is an integral inequality and it has be given with classic integral operator up to now. But,
recently, fractional integral operators because of generallity have been used when proven the integral
inequalities ([8, 15]). Also, fractional integral operators can be compared in themselves according to
generality. Therefore, we study Hermite-Hadamard inequalities involving different fractional integral
operator types for B−1-convexity and we compare generality of these inequalities.

In this article, three parts that are definitions of fractional integral types, required definitions and
theorems ofB−1-convexity and Hermite-Hadamard inequality forB−1-convex functions are given in Section
2. In third section, we give Hermite-Hadamard type inequalities involving Riemann - Liouville fractional
integral. Next, Hermite-Hadamard type inequalities involving Hadamard fractional integral is shown. In
last section, we prove Hermite-Hadamard type inequalities involving fractional integrals of a function with
respect to another function. Consequently, we show that the last inequalities are more general.
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2. Preliminaries

In this section, we give some required definition and theorems.

2.1. Fractional Integral Types

Lets recall the following definitions of fractional integral types. Along the paper, let f : [a, b] → R be a
given function, where 0 ≤ a < b < +∞ and f ∈ L1 [a, b]. Also, Γ (α) is the Gamma function.

Definition 2.1. [13] The left-sided Riemann-Liouville integral Jαa+ f and the right-sided Riemann-Liouville integral
Jαb− f of order α > 0 with a ≥ 0 are defined by

Jαa+ f (x) =
1

Γ (α)

∫ x

a
(x − t)α−1 f (t) dt, x > a (1)

and

Jαb− f (x) =
1

Γ (α)

∫ b

x
(t − x)α−1 f (t) dt, x < b (2)

respectively.

Definition 2.2. [13] The left-sided Hadamard fractional integral Jαa+ of order α > 0 of f is defined by

Jαa+ f (x) =
1

Γ (α)

∫ x

a

(
ln

x
t

)α−1 f (t)
t

dt, x > a (3)

provided that the integral exists. The right-sided Hadamard fractional integral Jαb− of order α > 0 of f is defined by

Jαb− f (x) =
1

Γ (α)

∫ b

x

(
ln

t
x

)α−1 f (t)
t

dt, x < b (4)

provided that the integral exists.

Definition 2.3. [13] Let 1 : [a, b]→ R be an increasing and positive monotone function on (a, b], having a continuous
derivative 1′ (x) on (a, b). The left-sided fractional integral of f with respect to the function 1 on [a, b] of order α > 0
is defined by

Iαa+;1 f (x) =
1

Γ (α)

∫ x

a

1′ (t) f (t)[
1 (x) − 1 (t)

]1−α dt, x > a (5)

provided that the integral exists. The right-sided fractional integral of f with respect to the function 1 on [a, b] of
order α > 0 is defined by

Iαb−;1 f (x) =
1

Γ (α)

∫ b

x

1′ (t) f (t)[
1 (t) − 1 (x)

]1−α dt, x < b (6)

provided that the integral exists.
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2.2. B−1-convexity
For r ∈ Z−, the map x→ ϕr(x) = x2r+1 is a homeomorphism fromR∗ = R\{0} to itself; x = (x1, x2, ..., xn)→

Φr(x) = (ϕr(x1), ϕr(x2), ..., ϕr(xn)) is homeomorphism from Rn
∗ to itself.

For a finite nonempty set A =
{
x(1), x(2), ..., x(m)

}
⊂ Rn

∗ the Φr-convex hull (shortly r-convex hull) of A,
which we denote Cor(A) is given by

Cor(A) =

Φ−1
r

 m∑
i=1

tiΦr(x(i))

 : ti ≥ 0,
m∑

i=1

ti = 1

 .

We denote by
m
∧
i=1

x(i) the greatest lower bound with respect to the coordinate-wise order relation of

x(1), x(2), ..., x(m)
∈ Rn, that is:

m
∧
i=1

x(i) =
(
min

{
x(1)

1 , x
(2)
1 , ..., x

(m)
1

}
, ...,min

{
x(1)

n , x
(2)
n , ..., x

(m)
n

})
where, x(i)

j denotes jth coordinate of the point x(i).

Thus, we can define B−1-polytopes as follows:

Definition 2.4. [5] The Kuratowski-Painleve upper limit of the sequence of sets {Cor(A)}r∈Z− , denoted by
Co−∞(A) where A is a finite subset of Rn

∗ , is called B−1-polytope of A.

The definition of B−1-polytope can be expressed in the following form in Rn
++.

Theorem 2.5. [5] For all nonempty finite subsets A =
{
x(1), x(2), ..., x(m)

}
⊂ Rn

++ we have

Co−∞(A) = lim
r→−∞

Cor(A) =
{

m
∧
i=1

tix(i) : ti ≥ 1, min
1≤i≤m

ti = 1
}
.

Next, we give the definition of B−1-convex sets.

Definition 2.6. [5] A subset U of Rn
∗ is called a B−1-convex if for all finite subsets A ⊂ U the B−1-polytope

Co−∞(A) is contained in U.

By Theorem 2.5, we can reformulate the above definition for subsets of Rn
++:

Theorem 2.7. [5] A subset U of Rn
++ is B−1-convex if and only if for all x(1), x(2)

∈ U and all λ ∈ [1,∞) one
has λx(1)

∧ x(2)
∈ U.

Remark 2.8. As a result of Theorem 2.7, we can say that B−1-convex sets in R++ are positive intervals.

Definition 2.9. [12] For U ⊂ Rn
∗ , a function f : U → R∗ is called a B−1-convex function if epi∗( f ) ={(

x, µ
) ∣∣∣x ∈ U, µ ∈ R∗, µ ≥ f (x)

}
is a B−1-convex set.

In Rn
++, we can give the following fundamental theorem which provides a sufficient and necessary

condition for B−1-convex functions [12].

Theorem 2.10. Let U ⊂ Rn
++ and f : U → R++. The function f is B−1-convex if and only if the set U is

B−1-convex and one has the inequality

f
(
λx ∧ y

)
≤ λ f (x) ∧ f

(
y
)

(7)

for all x, y ∈ U and all λ ∈ [1,+∞).
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2.3. Hermite-Hadamard Inequality for B−1-convex Functions

We proved the following theorem that gives the Hermite-Hadamard inequality involving classic integral
for B−1-convex functions in [18].

Theorem 2.11. Suppose f : [a, b] ⊂ R++ −→ R++ is a B−1-convex function. Then the following inequality
holds

1
b − a

∫ b

a
f (t) dt ≤


f (a)(a+b)

2a , b
a ≤

f (b)
f (a)

2b f (a) f (b)−a
[
( f (a))2

+( f (b))2
]

2(b−a) f (a) , 1 ≤ f (b)
f (a) <

b
a .

(8)

3. Hermite-Hadamard Type Inequalities Involving Riemann - Liouville Fractional Integral

Lets recall the Riemann-Liouville fractional Hermite-Hadamard inequalities for B−1-convex functions
which were given the following theorems for left-sided integral and right-sided integral, respectively ([19]).

Theorem 3.1. Let f : [a, b] ⊂ R++ → R++ and f ∈ L1 [a, b]. If f is a B−1-convex function on [a, b], then the
following inequality holds:

Jαa+ f (b) ≤


f (a)(b−a)α(αa+b)

aΓ(α+2) , b
a ≤

f (b)
f (a)

( f (a))α+1
(b−a)α(αa+b)−(b f (a)−a f (b))α+1

a( f (a))αΓ(α+2)
, 1 ≤ f (b)

f (a) <
b
a

(9)

with α > 0.

Theorem 3.2. Let f : [a, b] ⊂ R++ → R++ and f ∈ L1 [a, b]. If f is a B−1-convex function on [a, b], then the
following inequality holds:

Jαb− f (a) ≤


f (a)(b−a)α(αb+a)

aΓ(α+2) , b
a ≤

f (b)
f (a)

a(α+1)( f (a))α f (b)(b−a)α−(a f (b)−a f (a))α+1

a( f (a))αΓ(α+2)
, 1 ≤ f (b)

f (a) <
b
a

(10)

with α > 0.

4. Hermite-Hadamard Type Inequalities Involving Hadamard Fractional Integral

Hadamard fractional integral is one of the important fractional integral types. So, the authors introduced
Hermite-Hadamard type inequalities including Hadamard fractional integral in [20].

Theorem 4.1. Let α > 0. If f is a B−1-convex function on [a, b], then

Jαa+ f (b) ≤


f (a)
Γ(α)

∫ b
a

1

(
ln b

λa

)α−1
dλ, b

a ≤
f (b)
f (a)

f (a)
Γ(α)

∫ f (b)
f (a)

1

(
ln b

λa

)α−1
dλ +

f (b)
(
ln b f (a)

a f (b)

)α
Γ(α+1) , 1 ≤ f (b)

f (a) <
b
a .

(11)

Theorem 4.2. Let α > 0. If f is a B−1-convex function on [a, b], then

Jαb− f (a) ≤


f (a)
Γ(α)

∫ b
a

1
(lnλ)α−1 dλ, b

a ≤
f (b)
f (a)

f (a)
Γ(α)

∫ f (b)
f (a)

1 (lnλ)α−1 dλ +
f (b)

Γ(α+1)

[(
ln b

a

)α
−

(
ln f (b)

f (a)

)α]
, 1 ≤ f (b)

f (a) <
b
a .

(12)
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5. Hermite-Hadamard Type Inequalities Involving Fractional Integral with respect to The Function 1

Theorem 5.1. Let α > 0 and 0 ≤ a < b < +∞, 1 : [a, b] → R be an increasing and positive monotone function on
(a, b], having a continuous derivative 1′ (x) on (a, b). If f : [a, b]→ R++ is a B−1-convex function and f ∈ L1 [a, b],
then

Iαa+;1 f (b) ≤


a f (a)
Γ(α)

∫ b
a

1
1′(λa)λ

[1(b)−1(λa)]1−α dλ, b
a ≤

f (b)
f (a)

a f (a)
Γ(α)

∫ f (b)
f (a)

1
1′(λa)λ

[1(b)−1(λa)]1−α dλ +
f (b)

[
1(b)−1

( a f (b)
f (a)

)]α
Γ(α+1) , 1 ≤ f (b)

f (a) <
b
a .

(13)

Proof. Since B−1-convexity of f : [a, b]→ R++, the inequality (7) is valid for all λ ∈ [1,+∞) and 0 < a < b <
+∞. We have to multiply both sides of this inequality by 1′(min{λa,b})

[1(b)−1(λa)]1−α and integrate the resulting inequality

with respect to λ over [1,+∞) to obtain desired inequality. We have the following equation for left hand
side of inequality

∫ +∞

1

1′ (min {λa, b})[
1 (b) − 1 (λa)

]1−α f (min {λa, b}) dλ

=

∫ b
a

1

1′ (min {λa, b})[
1 (b) − 1 (λa)

]1−α f (min {λa, b}) dλ +

∫ +∞

b
a

1′ (min {λa, b})[
1 (b) − 1 (λa)

]1−α f (min {λa, b}) dλ

=

∫ b
a

1

1′ (λa) a[
1 (b) − 1 (λa)

]1−α f (λa) dλ +

∫ +∞

b
a

0 f (b) dλ

=

∫ b

a

1′ (t)[
1 (b) − 1 (t)

]1−α f (t) dt

= Γ (α) Iαa+;1 f (b) .

For the right hand side of inequality, we have to consider two cases:
Firstly, it can be b

a ≤
f (b)
f (a) . In this case, for the right hand side we obtain that

∫ +∞

1

1′ (min {λa, b})[
1 (b) − 1 (λa)

]1−α min
{
λ f (a) , f (b)

}
dλ

=

∫ b
a

1

1′ (λa) a[
1 (b) − 1 (λa)

]1−αλ f (a) dλ

= a f (a)
∫ b

a

1

1′ (λa)λ[
1 (b) − 1 (λa)

]1−α dλ .

Hence,

∫ +∞

1

1′ (min {λa, b})[
1 (b) − 1 (λa)

]1−α f (min {λa, b}) dλ ≤

∫ +∞

1

1′ (min {λa, b})[
1 (b) − 1 (λa)

]1−α min
{
λ f (a) , f (b)

}
dλ

Γ (α) Iαa+;1 f (b) ≤ a f (a)
∫ b

a

1

1′ (λa)λ[
1 (b) − 1 (λa)

]1−α dλ

Iαa+;1 f (b) ≤
a f (a)
Γ (α)

∫ b
a

1

1′ (λa)λ[
1 (b) − 1 (λa)

]1−α dλ .



I. Yesilce, G. Adilov / Filomat 32:18 (2018), 6457–6464 6462

When we handle the second case 1 ≤ f (b)
f (a) <

b
a , we meet following;

∫ +∞

1

1′ (min {λa, b})[
1 (b) − 1 (λa)

]1−α min
{
λ f (a) , f (b)

}
dλ

=

∫ f (b)
f (a)

1

1′ (λa) a[
1 (b) − 1 (λa)

]1−αλ f (a) dλ +

∫ b
a

f (b)
f (a)

1′ (λa) a[
1 (b) − 1 (λa)

]1−α f (b) dλ

= a f (a)
∫ f (b)

f (a)

1

1′ (λa)λ[
1 (b) − 1 (λa)

]1−α dλ +
f (b)

[
1 (b) − 1

( a f (b)
f (a)

)]α
α

.

Thus, we have that

Iαa+;1 f (b) ≤
a f (a)
Γ (α)

∫ f (b)
f (a)

1

1′ (λa)λ[
1 (b) − 1 (λa)

]1−α dλ +
f (b)

[
1 (b) − 1

( a f (b)
f (a)

)]α
Γ (α + 1)

.

Theorem 5.2. Let α > 0 and 0 < a < b < +∞, 1 : [a, b] → R be an increasing and positive monotone function on
(a, b], having a continuous derivative 1′ (x) on (a, b). If f : [a, b]→ R++ is a B−1-convex function and f ∈ L1 [a, b],
then the following inequality for fractional integrals holds:

Iαb−;1 f (a) ≤


a f (a)
Γ(α)

∫ b
a

1
1′(λa)λ

[1(λa)−1(a)]1−α dλ, b
a ≤

f (b)
f (a)

a f (a)
Γ(α)

∫ f (b)
f (a)

1
1′(λa)λ

[1(λa)−1(a)]1−α dλ +
f (b)

[
(1(b)−1(a))α−

(
1
( a f (b)

f (a)

)
−1(a)

)α]
Γ(α+1) , 1 ≤ f (b)

f (a) <
b
a .

(14)

Proof. For the B−1-convex function f : [a, b]→ R++, we have the following inequality

f (min {λa, b}) ≤ min
{
λ f (a) , f (b)

}
(15)

for all λ ∈ [1,+∞). To obtain the inequality (14), we should multiply both sides of (15) by 1′(min{λa,b})

[1(min{λa,b})−1(a)]1−α

and integrate the resulting inequality with respect toλ over [1,+∞). Thus, for the left hand side of inequality
we obtain that

∫ +∞

1

1′ (min {λa, b})[
1 (min {λa, b}) − 1 (a)

]1−α f (min {λa, b}) dλ

=

∫ b
a

1

1′ (λa) (λa)′[
1 (λa) − 1 (a)

]1−α f (λa) dλ +

∫ +∞

b
a

1′ (b) b′[
1 (b) − 1 (a)

]1−α f (b) dλ

=

∫ b

a

1′ (t)[
1 (t) − 1 (a)

]1−α f (t) dt = Γ (α) Iαb−;1 f (a) .

Additionally, for the right hand side of inequality, we meet two possibilities. One of these is possibility
of b

a ≤
f (b)
f (a) . In this case, the equality is

∫ +∞

1

1′ (min {λa, b})[
1 (min {λa, b}) − 1 (a)

]1−α min
{
λ f (a) , f (b)

}
dλ =

∫ b
a

1

1′ (λa)[
1 (λa) − 1 (a)

]1−αλ f (a) dλ

= a f (a)
∫ b

a

1

1′ (λa)λ[
1 (λa) − 1 (a)

]1−α dλ .
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Then we deduce that

Γ (α) Iαb−;1 f (a) ≤ a f (a)
∫ b

a

1

1′ (λa)λ[
1 (λa) − 1 (a)

]1−α dλ

Iαb−;1 f (a) ≤
a f (a)
Γ (α)

∫ b
a

1

1′ (λa)λ[
1 (λa) − 1 (a)

]1−α dλ . (16)

In the possibility of 1 ≤ f (b)
f (a) <

b
a , we have to analyse the following:

∫ +∞

1

1′ (min {λa, b})[
1 (min {λa, b}) − 1 (a)

]1−α min
{
λ f (a) , f (b)

}
dλ

=

∫ f (b)
f (a)

1

1′ (λa) a[
1 (λa) − 1 (a)

]1−αλ f (a) dλ +

∫ b
a

f (b)
f (a)

1′ (λa) a[
1 (λa) − 1 (a)

]1−α f (b) dλ

= a f (a)
∫ f (b)

f (a)

1

1′ (λa)λ[
1 (λa) − 1 (a)

]1−α dλ +
f (b)

[(
1 (b) − 1 (a)

)α
−

(
1
( a f (b)

f (a)

)
− 1 (a)

)α]
α

.

Therefore, we deduce that

Γ (α) Iαb−;1 f (a) ≤ a f (a)
∫ f (b)

f (a)

1

1′ (λa)λ[
1 (λa) − 1 (a)

]1−α dλ +
f (b)

[(
1 (b) − 1 (a)

)α
−

(
1
( a f (b)

f (a)

)
− 1 (a)

)α]
α

Iαb−;1 f (a) ≤
a f (a)
Γ (α)

∫ f (b)
f (a)

1

1′ (λa)λ[
1 (λa) − 1 (a)

]1−α dλ +
f (b)

[(
1 (b) − 1 (a)

)α
−

(
1
( a f (b)

f (a)

)
− 1 (a)

)α]
Γ (α + 1)

. (17)

As a result, from (16) and (17), we have the inequality (14).

Theorem 5.1 and Theorem 5.2 which are proven above are the most general Hermite-Hadamard in-
equalities for B−1-convex functions.

Corollary 5.3. The inequalities (9) and (10) can be obtained the inequalities (13) and (14), respectively.

Actually, if we observe that for 1 (x) = x, the fractional integral (5) reduces to the left-sided Riemann-
Liouville fractional integral (1), and the fractional integral (6) reduces to the right-sided Riemann-Liouville
fractional integral (2) in general.

Additionally, this hypothesis are valid for our results. Namely, if we get 1 (x) = x in (13), the inequality
return to (9). Similarly, getting 1 (x) = x in (14), it gives (10).

Corollary 5.4. Hermite-Hadamard inequality via generalized fractional integral operator for B−1-convex function
is generalized form of the Hermite-Hadamard inequality involving Hadamard fractional integral.

The conclusion can be proven by using the same method in Corollary 5.3. For this, observe that for
1 (x) = ln x, the fractional integral (5) reduces to the left-sided Hadamard fractional integral (3), and the
fractional integral (6) reduces to the right-sided Hadamard fractional integral (4).
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