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Abstract. In the present work, Mittag-Leffler functions with its normalization are considered. Several
results are obtained so that these functions have certain geometric properties including starlikeness, con-
vexity, close-to-convexity of order α, and radius of starlikeness of order α. Furthermore, we obtain certain
condition so that the normalized Mittag-Leffler functions belongs to the Hardy space and to the class of
bounded analytic functions. Results obtained are new and their usefulness are depicted by deducing several
interesting corollaries and examples.

1. Introduction

A special function of growing importance is the generalized Mittag-Leffler function defined by [30, 31]

Eλ,µ(z) =

∞∑
n=0

zn

Γ(λn + µ)
(λ, µ, z ∈ C;<(λ) > 0;<(µ) > 0). (1)

The Mittag-Leffler function is an entire functions of order ρ = 1/λ and type σ = 1 [10, Corollary 1.2]. The
Mittag-Leffler function is a generalization of the exponential function, to which it reduces for λ = µ = 1.
Mittag-Leffler functions are important in mathematics as well as in theoretical and applied physics. A
primary reason for the recent surge of interest in these functions is their appearance on solving fractional
differential and integral equations [12, 18, 25]. The Mittag-Leffler function plays the same role for fractional
calculus that the exponential function plays for conventional calculus. The Mittag-Leffler functions are
important to investigate fractional generalization of kinetic equation, random walks, Lévy flights, super-
diffusive transport and in the study of complex systems [9, 12, 25, 27].

Despite a wealth of analytical information about Eλ,µ, its behavior as a holomorphic function largely
unexplored, also its mapping properties in the complex plane are largely unknown. It is therefore desirable
to explore the behavior of Eλ,µ for the parameters λ, µ and complex argument z. Given this objective, the
present article reports the geometrical behavior of image domain of Eλ,µ, when z is in open unit disk and
λ, µ ∈ R.
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Note that the function E1,−m(z) = zm+1ez, m ∈ Z+, has zero at the origin of multiplicity m + 1, and
E1,1(z) = ez does not have any zero in C. Except for these two cases the function Eλ,µ(z) has an infinite
number of zeros. Indeed the zeros of the function E2,3(z) are described by the formula zn = −(2πn)2, n ∈N,
and have multiplicity 2, which is the unique case of an infinite number of multiple zeros of the function
Eλ,µ(z). Wiman [31] stated that all zeros of the Mittag-Leffler function Eλ,1(z) are real, negative, simple, and
ordered in the sequence {zn = zn,λ,1}n∈N, satisfy the inequalities

−

(
πn

sin(π/λ)

)λ
< zn < −

(
π(n − 1)
sin(π/λ)

)λ
, n ∈N.

Though Wiman does not given any proof of this result, but Polya [20] proved that all the zeros of Eλ,1(z) are
negative and simple, but only in the case where λ ≥ 2. After a long time gap, Ostrovskii and Peresyolkova
[19] proved the negativeness and simpleness of all zeros of the functions Eλ,1(z) and Eλ,2(z) for all λ ≥ 2.

Let Dr = {z ∈ C : |z| < r, r > 0} and set D1 = D. Let H denote the class of analytic functions in D and
A denote the class of analytic functions f in D normalized by f (0) = 0 = f ′(0) − 1, that have Taylor series
expansion

f (z) = z +

∞∑
n=2

an zn, z ∈ D. (2)

For functions f , 1 ∈ A, f is given by (2) and 1(z) = z +

∞∑
n=2

bn zn, we define the Hadamard product (or

convolution) of f (z) and 1(z) by

( f ∗ 1)(z) := z +

∞∑
n=2

an bn zn =: (1 ∗ f )(z), z ∈ D.

Let S denote the subclass of functions in A that are univalent in D. A function f ∈ A is called starlike
function of order α (0 ≤ α < 1), class of such functions denoted by S∗(α), if and only if <

(
z f ′(z)/ f (z)

)
> α,

z ∈ D. Further, the real number

r∗α( f ) = sup
{

r > 0 :<
(

z f ′(z)
f (z)

)
> α, ∀ |z| < r

}
,

is called the radius of starlikeness of order α of the function f . Note that r∗( f ) = r∗0( f ) is the largest radius
such that the image domain f (Dr∗( f )) is a starlike domain with respect to the origin. A function f ∈ A
is called convex function of order α (0 ≤ α < 1), class of such functions denoted by K (α), if and only if
1 +<

(
z f ′′(z)/ f ′(z)

)
> α, z ∈ D. It is well known that S∗(0) = S∗ andK (0) = K .

A function f belonging to the classA is said to be in the class R(β) if it satisfies the inequality<( f ′(z)) >
β (z ∈ D, β < 1). Further, a function f belonging to the classH is said to be in the class P(β) if f (0) = 1 and
satisfies the inequality <( f (z)) > β (z ∈ D, β < 1). For β = 0, we denote P(β) and R(β) simply by P and R
respectively.

LetH∞ denote the space of all bounded functions onD. This is Banach algebra with respect to the norm
‖ f ‖∞ = supz∈D | f (z)|. For the functions f ∈ H , set

Mp(r, f ) =


(

1
2π

∫ 2π

0

∣∣∣ f (reiθ)
∣∣∣p dθ

)1/p

, 0 < p < ∞,

max
|z|≤r
| f (z)| p = ∞.

(3)

The function f is said to belongs toHp (0 < p ≤ ∞) and is called Hardy space, if Mp(r, f ) is bounded for all
r ∈ [0, 1). Clearly, we have [7, p. 2]

H
∞
⊂ H

q
⊂ H

p for 0 < p < q < ∞.
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For 1 ≤ p ≤ ∞, Hp is a Banach space with the norm defined by (cf. [7, p. 23])

‖ f ‖p = lim
r→1−

Mp(r, f ) (1 ≤ p ≤ ∞). (4)

Following are two widely known results [14] for the Hardy spaceHp:

<( f ′(z)) > 0 =⇒ f ′ ∈ Hp for all p < 1 (5)
=⇒ f ∈ Hq/(1−q) for all 0 < q < 1.

Kim and Srivastava [13], also Ponnusamy [26] have studied the Hardy space of hypergeometric functions.
By using the same idea Baricz [3] obtained the conditions for generalized Bessel functions to belong to
Hardy space, and similarly Yagmur and Orhan [32, 33] studied the same problem for generalized Struve
functions and Lommel functions.

For real (or complex numbers) α, β and γ (γ , 0,−1,−2, ...), the Gaussian hypergeometric function is
defined by [1, p.333]:

2F1(α, β;γ; z) =

∞∑
n=0

(α)n(β)n

(γ)n

zn

n!
,

where (x)k is the Pochhamer symbol defined by (x)0 = 1; (x)k = x(x + 1) · · · (x + k − 1) (k ∈ N). We note that
the above series converges absolutely inD, and hence, represents an analytic function inD.

We consider the following two normalizations of the Mittag-Leffler function Eλ,µ(z):

Eλ,µ(z) = Γ(µ) zEλ,µ(z) (6)

= z +

∞∑
n=2

Γ(µ)
Γ(λ(n − 1) + µ)

zn (λ > 0, µ > 0, z ∈ D)

and

Eλ,µ(z) =
(
Γ(µ) zµEλ,µ(z)

) 1
µ (7)

= z +
Γ(µ)

µΓ(λ + µ)
z2 + · · · (λ > 0, µ > 0, z ∈ D).

Note that Eλ,µ(z) = exp
{

1
µ Log

(
Γ(µ)zµEλ,µ(z)

)}
,where Log represents the principal branch of the logarithm.

Whilst formula (6) and (7) holds for complex-valued λ, µ, however we shall restrict our attention to the
case of λ > 0, µ > 0. We observe that the functions Eλ,µ(z) and Eλ,µ(z) belongs to the classA.

It is important to mention here that in the recent years there was a vivid interest on geometric properties
of special functions, like Bessel, Struve, Lommel, hypergeometric, Wright and Mittag-Leffler functions; see
the papers [2, 4–6, 17, 22, 23] and the references therein.

In this article, we obtain a sufficient condition for the function Eλ,µ to be starlike function of order α.
Also, we obtain radius of starlikeness of order α for the functions Eλ,µ and Eλ,µ. Further, we obtain results
so that function Eλ,µ belongs to the Hardy spacesHp andH∞.

2. Key Lemmas

In order to derive our main results, we recall here the following lemmas:

Lemma 2.1. (Popov and Sedletskii [21, Theorem 3.1.1]) Let {zn,λ,µ}
∞

n=1 denote the set of all zeros of the function
Eλ,µ(z). For any λ ∈ (2,∞) and µ ∈ (0, 2λ − 1], all the zeros of the function Eλ,µ(z) in C lie on (−∞, 0), are simple
and being ordered in a sequence {zn,λ,µ}n∈N, satisfying the inequalities

−ξλ1 (1/λ, µ) < z1,λ,µ < −
Γ(µ + λ)

Γ(µ)
,

−ξλn(1/λ, µ) < zn,λ,µ < −ξλn−1(1/λ, µ), n ≥ 2,

(8)
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where ξn(1/λ, µ) is given by

ξn(1/λ, µ) =
π(n + 1

λ (µ − 1))
sin(π/λ)

.

Lemma 2.2. [15, Part 1] An entire function f (z) of finite order ρ may be represented in the form

f (z) = zmePq(z)
∞∏

n=1

G
( z

an
, p

)
,

where

G(u, p) =

{
1 − u, p = 0
(1 − u) exp

{
u + u2

2 + · · · + up

p

}
, p > 0,

and a1, a2, · · · are all nonzero roots of the function f (z), p ≤ ρ, Pq(z) is a polynomial in z of degree q ≤ ρ, and m is the
multiplicity of the root at the origin.

Using Lemma 2.2, we obtain following infinite product representation of Mittag-Leffler function:

Lemma 2.3. Let λ ∈ (2,∞) and µ ∈ (0, 2λ − 1]. If {zn,λ,µ}n∈N denotes the set of all zeros of Eλ,µ(z), then the
Mittag-Leffler function Eλ,µ(z) can be represented by

Eλ,µ(z) =
1

Γ(µ)

∞∏
n=1

1 −
z2

z2
n,λ,µ

 . (9)

Proof. It is well known [10, Corollary 1.2] that Eλ,µ(z) is an entire function of order ρ = 1/λ < 1/2. In view
of Lemma 2.2, Pq(z) is a polynomial in z of degree q ≤ ρ < 1/2. Hence q must be zero, i.e. Pq(z) is a constant
c(say). In view of Lemma 2.1, zeros {zn,λ,µ}n∈N lies on negative real axis, are simple and being ordered as the
inequality (8). Further, the multiplicity of the zeros of Eλ,µ(z) at origin is zero, hence m = 0. From Lemma
2.1, we observe that

∞∑
n=1

1
|zn,λ,µ|

2 < ∞.

Thus, the Mittag-Leffler function can represented by

Eλ,µ(z) = ec
∞∏

n=1

1 −
z2

z2
n,λ,µ

 .
When z→ 0, Eλ,µ(z)→ 1/Γ(µ), hence ec = 1/Γ(µ). Hence the desired result.

Lemma 2.4. [29] For α < 1, β < 1, we have P(α) ∗ P(β) ⊂ P(δ), where δ = 1 − 2(1 − α)(1 − β). The value of δ is
best possible.

Lemma 2.5. [8] If the function f , convex of order α (0 ≤ α < 1), is not of the form

f (z) =

{
k + d z(1 − zeiγ)2α−1, α , 1/2,
k + d log(1 − zeiγ), α = 1/2,

for some complex numbers k and d, and for some real number γ, then the following statements hold:

1. There exists δ = δ( f ) > 0 s.t. f ′ ∈ Hδ+1/[2(1−α)];
2. If 0 ≤ α < 1/2, then there exists ε = ε( f ) > 0 such that f ∈ Hε+1/(1−2α)

3. If α ≥ 1/2, then f ∈ H∞.
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3. Starlikeness Properties of Eλ,µ(z) and Eλ,µ(z)

Theorem 3.1. Let 0 ≤ α < 1. For all λ ∈ (2,∞) and µ ∈ (0, 2λ − 1] the following statements are true:

a. The radius of starlikeness of order α for the functionEλ,µ(z) is given by r∗α(Eλ,µ(z)) = xλ,µ,α, where xλ,µ,α denotes
the smallest positive root of the equation

(1 − α) + Γ(µ)
∞∑

n=1

(n + 1 − α)
Γ(λn + µ)

rn = 0.

b. The radius of starlikeness of order α for the function Eλ,µ(z) is given by r∗α(Eλ,µ) = yλ,µ,α, where yλ,µ,α denotes
the smallest positive root of the equation

(1 − α)µ + Γ(µ)
∞∑

n=1

(n + (1 − α)µ)
Γ(λn + µ)

rn = 0.

Proof. For all λ ∈ (2,∞) and µ ∈ (0, 2λ − 1], we need to show that the inequalities

<

zE′λ,µ(z)

Eλ,µ(z)

 > α and <

zE′λ,µ(z)

Eλ,µ(z)

 > α (10)

are valid for all |z| < xλ,µ,α and |z| < yλ,µ,α, respectively, and the above inequalities does not hold in any larger
disk. If zn,λ,µ denotes the set of all zeros of the Mittag-Leffler function Eλ,µ(z), then it has infinite product of
the form (9), which is uniformly convergent on each compact subset of C. The Logarithmic differentiation
of (9) provides

zE′λ,µ(z)

Eλ,µ(z)
= −

∞∑
n=1

2z2

z2
n,λ,µ − z2

. (11)

Differentiatiating (6)-(7) and using (11), we obtain

zE′λ,µ(z)

Eλ,µ(z)
= 1 −

∞∑
n=1

2z2

z2
n,λ,µ − z2

and
zE′λ,µ(z)

Eλ,µ(z)
= 1 −

1
µ

∞∑
n=1

2z2

z2
n,λ,µ − z2

.

Let us denote by zλ,µ the least (in absolute value) real zero of the function Eλ,µ(z). Then clearly, zλ,µ < 0.
Therefore (see [24, p. 550])

|zλ,µ−ε| < |zλ,µ|

if µ > ε > 0. Under the hypothesis z1,λ,µ > z2,λ,µ > z3,λ,µ > · · · , and the smallest positive zero (in absolute
value) is less than Γ(µ+λ)

Γ(µ) = zλ,µ (say). This implies that xλ,µ,α < zλ,µ and yλ,µ,α < zλ,µ, that is, for all α < 1 and
n ∈ {2, 3, · · · }we haveDxλ,µ,α ⊂ Dzλ,µ ⊂ Dzn,λ,µ andDyλ,µ,α ⊂ Dzλ,µ ⊂ Dzn,λ,µ . One can easily observe that, if z ∈ C
and δ ∈ R such that δ > |z|, then

|z|
δ − |z|

≥ <

( z
δ − z

)
≥
−|z|
δ + |z|

. (12)

Using this inequality, we have

<

zE′λ,µ(z)

Eλ,µ(z)

 = 1 −<

 ∞∑
n=1

2z2

z2
n,λ,µ − z2


≥ 1 −

∞∑
n=1

2|z|2

z2
n,λ,µ − |z|

2
=
|z| E′λ,µ(|z|)

Eλ,µ(|z|)
(z ∈ Dz,µ)
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and

<

zE′λ,µ(z)

Eλ,µ(z)

 = 1 −
1
µ
<

 ∞∑
n=1

2z2

z2
n,λ,µ − z2


≥ 1 −

1
µ

∞∑
n=1

2|z|2

z2
n,λ,µ − |z|

2
=
|z| E′λ,µ(|z|)

Eλ,µ(|z|)
(z ∈ Dz,µ)

with equality when z = |z| = r. The minimum principle for harmonic functions and the above inequality
imply that the corresponding inequalities in (10) are valid if and only if we have |z| < xλ,µ,α and |z| < yλ,µ,α,
where xλ,µ,α and yλ,µ,α are the smallest positive roots of the equations

rE′λ,µ(r)

Eλ,µ(r)
= α and

rE′λ,µ(r)

Eλ,µ(r)
= α,

respectively, that are equivalent to

(1 − α) + Γ(µ)
∞∑

n=1

(n + 1 − α)
Γ(λn + µ)

rn = 0

and

(1 − α)µ + Γ(µ)
∞∑

n=1

(n + (1 − α)µ)
Γ(λn + µ)

rn = 0,

respectively. This completes the proof.

In particular, when α = 0, the following results holds.

Corollary 3.2. For all λ ∈ (2,∞) and µ ∈ (0, 2λ − 1] the following statements are true:

a. The radius of starlikeness of the function Eλ,µ(z) is xλ,µ,0, which is the smallest possitive root of the equation

1 + Γ(µ)
∞∑

n=1

(n + 1)
Γ(λn + µ)

rn = 0.

b. The radius of starlikeness of the function Eλ,µ(z) is yλ,µ,0, which is the smallest possitive root of the equation

µ + Γ(µ)
∞∑

n=1

(n + µ)
Γ(λn + µ)

rn = 0.

Theorem 3.3. Let 0 ≤ α < 1 and λ ≥ 1. If µ ≥ µ1, where µ1 is the largest root of

(1 − α)(µ2
− µ − 1)(µ − 1) − µ(µ + 1) = 0,

then Eλ,µ(z) ∈ S∗(α).

Proof. It is well known [28, p. 110, Theorem 1] that, if a function f ∈ A of the form (2) satisfies
∞∑

n=2

(n−α)|an| ≤

1−α (0 ≤ α < 1), then f ∈ S∗(α). Hence to proveEλ,µ(z) ∈ S∗(α), it is sufficient to show that Ω(λ, µ, α) ≤ 1−α,
where

Ω(λ, µ, α) =

∞∑
n=2

(n − α)Γ(µ)
Γ(λ(n − 1) + µ)

.
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For λ ≥ 1, µ > 0, n ∈N and ν > 0, the following inequalities holds

(µ)n Γ(µ) ≤ Γ(λn + µ), (ν)n = ν(ν + 1)n−1, ν
n
≤ (ν)n, n + 1 ≤ 2n. (13)

Hence we get

Ω(λ, µ, α) =

∞∑
n=1

nΓ(µ)
Γ(λn + µ)

+ (1 − α)
∞∑

n=1

Γ(µ)
Γ(λn + µ)

≤

∞∑
n=1

n
(µ)n

+ (1 − α)
∞∑

n=1

1
(µ)n

=
1
µ

∞∑
n=0

n + 1
(µ + 1)n

+
1 − α
µ

∞∑
n=0

1
(µ + 1)n

<
1
µ

∞∑
n=0

(
2

µ + 1

)n

+
1 − α
µ

∞∑
n=0

(
1

µ + 1

)n

=
1
µ

µ + 1
µ − 1

+
1 − α
µ

µ + 1
µ
≤ 1 − α,

which gives the result.

Remark 3.4. Observe that on taking α = 0 in Theorem 3.3, we obtain that, for λ ≥ 1 and µ ≥ x, where x ≈ 3.21432
is the largest root of x3

− 3x2
− x + 1 = 0, then Eλ,µ(z) ∈ S∗. Incidently, this improve our previous result [5, Theorem

2.2], which state that, for λ ≥ 1 and µ ≥ (3 +
√

17)/2 ≈ 3.56155, the function Eλ,µ(z) ∈ S∗.

4. Hardy Space of Mittag-Leffler function

Theorem 4.1. Let 0 ≤ α < 1 and λ ≥ 1, then the following statements are true:

(a) If µ ≥ µ2, where µ2 is the largest root of

(1 − α)(µ2
− µ − 1)(µ2

− 4µ + 3) − (2 − α)µ(µ2
− 2µ − 3) − µ(µ2

− 1) = 0, (14)

then Eλ,µ(z) ∈ K (α).

(b) If µ > 1+
√

5−4α
2(1−α) , then Eλ,µ(z)

z ∈ P(α).

Proof. (a) It is known [28, p. 110, Corollary] that, if function f ∈ A of the form (2) satisfies
∞∑

n=2

n(n− α)|an| ≤

1−α (0 ≤ α < 1), then f ∈ K (α). Hence to proveEλ,µ(z) ∈ K (α), it is sufficient to show that ∆(λ, µ, α) ≤ 1−α,
where

∆(λ, µ, α) =

∞∑
n=2

n(n − α)Γ(µ)
Γ(λ(n − 1) + µ)

.
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Using inequalities in (13) and (n + 1)2
≤ 4n (n ∈N), we have

∆(λ, µ, α) =

∞∑
n=1

n2 Γ(µ)
Γ(λn + µ)

+ (2 − α)
∞∑

n=1

n Γ(µ)
Γ(λn + µ)

+ (1 − α)
∞∑

n=1

Γ(µ)
Γ(λn + µ)

≤

∞∑
n=1

n2

(µ)n
+ (2 − α)

∞∑
n=0

n
(µ)n

+ (1 − α)
∞∑

n=1

1
(µ)n

=
1
µ

∞∑
n=0

(n + 1)2

(µ + 1)n
+

(2 − α)
µ

∞∑
n=0

n + 1
(µ + 1)n

+
(1 − α)
µ

∞∑
n=0

1
(µ + 1)n

<
1
µ

∞∑
n=0

(
4

µ + 1

)n

+
2 − α
µ

∞∑
n=0

(
2

µ + 1

)n

+
1 − α
µ

∞∑
n=1

(
1

µ + 1

)n

=
1
µ

µ + 1
µ − 3

+
(2 − α)(µ + 1)
µ(µ − 1)

+
(1 − α)(µ + 1)

µ2 ≤ 1 − α,

which show that if µ ≥ µ2, where µ2 is the largest root of (14), then Eλ,µ(z) ∈ K (α).

(b) To prove our result, we need to show that |1(z) − 1| < 1, where 1(z) =
1

1 − α

(
Eλ,µ(z)

z
− α

)
. Using

inequalities (13), we have

|1(z) − 1| =
1

1 − α

∣∣∣∣∣∣∣
∞∑

n=1

Γ(µ)
Γ(λn + µ)

zn

∣∣∣∣∣∣∣ ≤ 1
µ(1 − α)

∞∑
n=1

1
(µ + 1)n−1

≤
1

µ(1 − α)

∞∑
n=1

(
1

µ + 1

)n

=
µ + 1

µ2(1 − α)
< 1.

This implies that under the hypotheis
Eλ,µ(z)

z
∈ P(α).

If we take α = 0 in Theorem 4.1, we get the following Corollary.

Corollary 4.2. Let λ ≥ 1, then the following statements are true:

(a) If µ ≥ µ3, where µ3 ≈ 6.18757 is the largest root of µ4
− 8µ3 + 10µ2 + 8µ − 3 = 0, then Eλ,µ(z) ∈ K .

(b) If µ > 1+
√

5
2 , then Eλ,µ(z)

z ∈ P.

If we take α = 1/2 in Theorem 4.1, we get the following Corollary.

Corollary 4.3. Let λ ≥ 1, then the following statements are true:

(a) If µ ≥ µ4, where µ4 ≈ 8.40811 is the largest root of µ4
− 10µ3 + 12µ2 + 12µ − 3 = 0, then Eλ,µ(z) ∈ K (1/2).

(b) If µ > 1 +
√

3, then Eλ,µ(z)
z ∈ P(1/2).

Theorem 4.4. Let 0 ≤ α < 1 and λ ≥ 1. If µ ≥ µ2, where µ2 is the largest root of (14), then

Eλ,µ(z) ∈
{
H

1/(1−2α), α ∈ [0, 1/2)
H
∞, α ≥ 1/2.



J. K. Prajapat et al. / Filomat 32:18 (2018), 6475–6486 6483

Proof. Note that

k +
zd

(1 − zeiγ)1−2α = k + z d 2F1

(
1, 1 − 2α; 1; zeiγ

)
(α , 1/2)

and
k + d log(1 − z eiγ) = k − d z 2F1(1, 1, 2; zeiγ) (α = 1/2),

which shows that Eλ,µ(z) is not of the forms k +
zd

(1 − zeiγ)1−2α
(α , 1/2) and k + d log(1 − z eiγ) (α = 1/2).

We know by part (a) of Theorem 4.1 that, function Eλ,µ is convex of order α. Hence using Lemma 2.5, the
desired result holds.

Theorem 4.5. Let λ ≥ 1 and µ > 1 +
√

3. If f ∈ R of the form (2) then the convolution Eλ,µ ∗ f is inH∞ ∩ R.

Proof. If f ∈ R, then f ′ ∈ P. Consider u(z) = Eλ,µ(z) ∗ f (z), which is equivalent to

u′(z) =
Eλ,µ(z)

z
∗ f ′(z). (15)

We know by part (b) of Corollary 4.3 that, function Eλ,µ(z)
z ∈ P(1/2). It follows from Lemma 2.4 that u′(z) ∈ P.

Thus by (5) we have u′(z) ∈ Hq for all q < 1, and hence u(z) ∈ Hq/(1−q) for all 0 < q < 1, or equivalently,
u(z) ∈ Hp for all 0 < p < ∞.

Using the well-known bound for Caratheodory functions, we find that, if f ∈ R of the form (2), then
|an| ≤ 2/n (n ≥ 2) [16, p. 533, Theorem 1]. Using this fact and first inequality of (13), we find that

|u(z)| ≤ |z| +
∞∑

n=2

Γ(µ)
Γ(λ(n − 1) + µ)

|an||z|n ≤ 1 +

∞∑
n=2

Γ(µ)
Γ(λ(n − 1) + µ)

2
n

= 1 +

∞∑
n=1

Γ(µ)
Γ(λn + µ)

2
n + 1

≤ 1 +

∞∑
n=1

2
(n + 1)(µ)n

< ∞.

This shows that under the stated condition the power series for u(z) converges absolutely for |z| = 1. Further,
it is well known that [7, P. 42, Theorem 3.11], u′(z) ∈ Hq implies continuity of u(z) on D, the closure of D.
Finally, the continuous functions u(z) on the compact set D are bounded. Hence u(z) is bounded analytic
function inD. Therefore u(z) ∈ H∞. This completes the proof.

Theorem 4.6. Let λ ≥ 1 and µ > 1+
√

5−4α
2(1−α) . If f ∈ R(β) (β < 1) of the form (2), then Eλ,µ ∗ f ∈ R(γ) where

γ = 1 − 2(1 − α)(1 − β).

Proof. If f ∈ R(β), then f ′ ∈ P(β). Consider u(z) = Eλ,µ(z) ∗ f (z), which is equivalent to

u′(z) =
Eλ,µ(z)

z
∗ f ′(z). (16)

We know by part (b) of Theorem 4.1 that, under the stated conditions function Eλ,µ(z)
z ∈ P(α). It follows from

Lemma 2.4 that u′(z) ∈ P(γ) or equivalently, u(z) ∈ P(γ). This completes the proof.

5. Some observations and concluding remarks

In this section, we examine the geometrical descriptions of image domains of functions in Theorem 4.5.
Consider

f (z) = −z − 2 log(1 − z) = z +

∞∑
n=2

2
n

zn.
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We can see easily that f (z) ∈ R and Fig. 1(a) showing that f (z) < H∞. As per Theorem 4.5, taking λ ≥ 1 and
µ > 1 +

√
3 ≈ 2.73205, the convolution Eλ,µ ∗ f ∈ H∞ ∩ R. To see the validity our result, we set λ = 1 and

µ = 3 in Theorem 4.5, we have

u(z) = E1,3(z) ∗ f (z) =
2(ez
− z − 1)

z
∗ f (z)

= z +

∞∑
n=2

2
n (n + 1)!

zn.

As shown in Figure 1(b) below it is true that u(z) ∈ H∞. Further, Figure 1(c) showing that <(u′(z)) > 0,
hence u(z) ∈ R. Therefore E1,3 ∗ f ∈ H∞ ∩ R.

(a) Mapping of f (z) overD (b) Mapping of u(z) overD (c) Mapping of u′(z) overD

Figure 1: Mapping of f (z), u(z) and u′(z) overD.

Furthermore, taking λ = 1 and µ = 4 in Theorem 4.5, we have

v(z) = E1,4(z) ∗ f (z) =
6(ez
− 1 − z) − 3z2

z2 ∗ f (z)

= z +

∞∑
n=2

12
n(n + 2)!

zn.

Clearly, as shown in figure 2(a) below it is true that v(z) ∈ H∞. Further, Figure 2(b) showing that<(v′(z)) > 0,
hence v(z) ∈ R. Therefore E1,4 ∗ f ∈ H∞ ∩ R.

We conclude this paper by remarking that, by appropriately selecting parameters and functions, our
main results would lead to new results and further applications. These consideration can fruitfully be
worked out and we skip the details in this regard.

Acknowledgments: The authors are indebted to the anonymous referees for their careful reading and
valuable suggestions that helped to improve the presentation of the manuscript.
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(a) Mapping of v(z) overD (b) Mapping of v′(z) overD

Figure 2: Mapping of v(z) and v′(z) overD.
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