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Hyers-Ulam Stability of Substitution Vector-Valued Integral Operator

Zahra Moayyerizadeh?

*Department of Mathematical Sciences, Lorestan University, Khorramabad, Iran

Abstract. For a substitution vector-valued integral operator T, we determine necessary and sufficient
conditions to have Hyers-Ulam stability using conditional expectation operators. Then, we present an
example to illustrate our result.

1. Introduction and Preliminaries

It seems that S. M. Ulam [15] first raised the stability problem of functional equations. The problem can
be stated as follows. Let G; be a group and (G, d) a metric group. Given € > 0, does there exists 6 > 0 such
that if f : Gi — G, satisfies d(f(xy), f(x)f(y)) < 0, for each x,y € Gy, then a homomorphism T : G; — G,
exists with d(f(x), T(x)) < e, for each x,y € G1? The first (partial) answer to it was published in 1941 by
Hyers[5]. It reads as follows. Let E and Y be Banach spaces and € > 0. Then, for each g : E — Y with

sup [lg(x +y) — g(x) — gl < €,

x,y€E

there is a unique solution f : E — Y of the Cauchy equation f(x + y) = f(x) + f(y) such that sup,, llg(x) -
f(@)Il < €. This result is called the Hyers-Ulam stability of the additive Cauchy equation.

For the last 50 years, that issue has been a very popular subject of investigations and we refer the reader to
[1, 2, 6-8, 10] for further information, some discussions, and examples of recent results.

T. Miura, S. Miyajima and S. -E. Takahasi [9] introduced the notion of the Hyers-Ulam stability of a
mapping between two normed linear spaces as follows:

Definition 1.1 ([91). Let X,Y be normed linear spaces and T be a (not necessarily linear) mapping from X into Y .
We say that T has the Hyers-Ulam stability if there exists a constant M > 0 with the following property:

Forany g € T(X), € > 0 and f € T(X) satisfying |[Tf — gll < €, we can find fy € T(X) such that Tfy = g and
If - foll < Me.

We call M a HUS constant for T, and denote the infimum of all HUS constants for T by Mr. We refer
the reader for the Hyers-Ulam stability of substitution operators on function spaces to [4, 9, 13, 14] and the
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references cited therein.

From now on, by an operator we will a non-zero linear operator. Let 8 be a Banach space and let T be
an operator from 8 into itself. The linearity of T implies that T has the H-U stability if and only if there
exists a constant M with the following property:

For any € > 0 and f € 8 with ||Tf]| < € there exists fy € Bsuch that Tfy = 0 and ||f — fill < Me.

For a bounded operator T : 8 — B, we denote the null space of T by N(T), the range of T by R(T) and
the induced one-to-one operator T from the quotient space 8/N(T) — B defined by T(f + N(T)) = Tf, for
all f € B. Clearly R(T) = R(T).

Takagi, Miura and Takahashi [13] investigated the relation of the Hyers-Ulam stability of T and the inverse
operator T~! from R(T) into B/N(T) in the following sense.

Theorem A ([13],Theorem2). For a bounded linear operator T on a Banach space, the following
statements are equivalent:

1. T has the Hyers-Ulam stability.
2. T has closed range.
3. T7!is bounded.

Moreover, in this case Mt = ||T7!|.

The aim of this paper is to carry some of the results obtained for the linear operators on function spaces
in [4, 9, 13, 14] to a substitution vector-valued integral operator on L!(X) space.

Firs of all, we introduce notations, definitions and preliminary facts that are used throughout the paper.

Let (X, X, u) be a o-finite measure space and ¢ : X — X be a non-singular measurable transformation;
ie. po@ < u. Here the non-singularity of ¢ guarantees that the operator f — f o ¢ is well defined
as a mapping on L°(X) where L(X) denotes the linear space of all equivalence classes of Z-measurable
functions on X. Let iy = du o ¢~ /du be the Radon-Nikodym derivative. We also assume that hj is almost
everywhere finite-valued, or equivalently ¢~}(X) C X is a sub-o-finite algebra see[12]. As usual, X is
said to be @-invariant if (X) € T, where ¢(X) = {p(A),A € L}. The measure y is said to be normal if
u(A) = 0 implies that p(A) € L and p(@p(A)) = 0. The support of a measurable function f is defined by
o(f) = {x € X: f(x) # 0}. All comparisons between two functions or two sets are to be interpreted as holding
up to a y-null set. For a sub-o-finite algebra A C ¥, the conditional expectation operator associated with A
is the mapping f — E”f, defined for all non-negative f as well as for all f € L(X),1 < p < co, where E/f,
by Radon-Nikodym Theorem, is the unique A-measurable function satisfying

ffdyszﬂfdy, YA e A.
A A

We recall that E™' : [2(X) — L?(A) is an orthogonal projection. For more details on the properties of E”! see
[11]. Throughout this paper, we assume that A = ¢~'(Z) and E? ' ® = E.

For a given complex Hilbert space H, let u : X — H be a mapping. We say that u is weakly measur-
able if for each h € H the mapping x + (u(x),h) of X to C is measurable. We will denote this map by
(u, h). Let LP(X) be the class of all measurable mappings f : X — Csuch that ”f”Z = fX |f(x)Pdu < coforp > 1.

Let ¢ : X — X be a non-singular measurable transformation and let  : X — H be a weakly measurable
function. Then the pair (1, ¢) induces a substitution vector-valued integral operator TY : [P(X) — H defined
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by
(Tff,h)zf(u,h)prdy, heH, fell(xD).
X

It is easy to see that T is well defined and linear. Moreover for each f € L/(X),

Ty
sup (T} f, )| < sup Ty fllllall = IT% £l = KTy, £, —f>| <sup Ty f, h)l,
heH, heH, ||T(5f|| heH,
where H; is the closed unit ball of H. Hence IITf fll = sup |<T;’L,J f, M), for each f € LP(Z). Some fundemental

heH,

properties of this operator on L?(X) space are studied by the author et al in [3].

Definition 1.2. Let u : X — H be a weakly measurable function. We say that (u, @, H) has absolute property,
if for each f € LP(X), there exists hy € Hy such that SUPjeqy, fxl(u,h>||f o@ldu = fXKu,hf)IIf o @ldu, and
(u, hpy = a8 SP+00(y, 5|, for a constant 6.

Proposition 1.3 ([3]). Assume that (u, @, H) has the absolute property. Then
sup| | (u,h)f o pdu| = sup f K, IDIIf o pldp.
hetH, X heH, VX

Throughout of this paper we assume that (1, ¢, H) has the absolute property.

2. The main results

In this section, we determine the Hyers-Ulam stability the substitution vector-valued integral operator
T{ : LY(Z) — H, with the norm of the inverse of the one-to-one operator induced by this operator.

First, we present an auxiliary lemma which plays a key role in the sequel.

Lemma 2.1. Let ¥ be p-invariant. If T, : LY(Z) — H is a bounded substitution vector-valued integral operator.
Then we have

If + (T = f I

P(Unert, ol h))
Proof. Put O = @(Upepy, 0l{ut, b)) and D = X'\ D. we can write

LYX, %, u) = LND, Iy, p) & LY(D, 2o, 1),
where 21 = ZN D and X, = X N D°. Moreover we have
NTH ={fel'(X):|fl=0 on D}=LYZ,).

If T{ is one-to-one, then (D¢) = 0 and hence there is nothing to prove. Choose g € N(Ty) arbitrary. Thus
for each f € L'(Z) we obtain

f@lfldy:fDIfWIdquXIfWIdu:||f+9||.

Therefore, we deduce that fD Ifldp < |If + N(TD)|I. Now, putp = —xof. It is easy to see that p € N(TY).
Hence, we get that for all f € L1(Z),

1 + NCTO < If + pll = I1FCL = xo)ll = [f o)l = f@ fldu

Therefore the lemma is proved. [
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In the following theorem we give necessary and sufficient conditions for T§ : L'(Z) — H to have the
Hyers-Ulam stability.

Theorem 2.2. Let T}, be a bounded operator from L\(Z) into H. Also let ¥ be g-invariant. If u is normal, then the
following assertions are equivalent:

(i) TY has the Hyers-Ulam stability.
(i) TY has closed range.

(iii) There exists r > 0 such that sup,,.,, hoE(I(u, h)]) o @71 > 1 for p-almost all x € Uyeg,0(Jy), where J, =
hoE(u, I))) 0 @71
(iv) @(Uperollu, b)) C {x € X; SUPjeqy, hoE(|{u, h)|) o (p‘l(x) > r}, for some r > 0.

(v) There exists M > 0 such that ||f + N(T))|| < MIT fl|, for each f € L'(Z).
Proof. The implication (i) = (ii) is direct consequent of Theorem A.
(ii) = (iii) Assume T; has closed range. Then T} |y, (L]}, (L)) is closed in H for each h € H;. Since
T% |5, is injective for each i € H; see([3], Theorem 2.12). Hence we can deduce that there exists a constant
d > 0 such that ||Tf|6(]h)f|| > d||fll for any f € LY|,(,)(X) and for each h € H;. Now, by the contrary assume

that (iii) is not hold. Then for each r > 0 and for each i € H; we have hoE((u, b)) o ™1 < r on Uyeqy, a(Ji).
Put f = xp with u(B) < co and B C Ujeg, 0(J1,). Therefore we have

dllxsll < IT¢ o xall = sup f hoE(|(u, W) 0 ™" xpdu < ru(B).
he(Hl X

It is sufficient put r = d, but this is a contradiction. Hence we conclude that (iii) is hold.
(iii) = (iv) We have sup, ., hoE(I(u, h)]) o @1 > r on Ujeqy,0(Jy) for some r > 0. It is enough to prove
that @(Upeg, ol{u, 1)) € Upepq,o(Jn). If Ty is one-to-one, then Ujeq,0(J;) = X and hence there is nothing to

prove. If @(Upea,ol{u, b)) € Upep,0(J1), then we can choose C C Ujeqy, 0l{u, 1)| such that 0 < u(p(C)) < oo
with @(C) N (Upeqr,0(Jn)) = 0. For any h € H; we have

0= f)(@(C)hoE(KM,h)D ° (P_ld!l = f X¢—1(¢(C))|<M,h>|d!l'
X X
On the other hand we have

(C) = w(C N (Unerq ol M) = p(Upers, (C N alu, 1))

< 1(Uner, (97" (@(C)) N alu, W) < Z we~ (p(C)) N alu, b))
heH,

Since u is normal, we get that u(¢(C)) = 0. But this is a contradiction.

(iv)=> (V) PutA:={xeX: SUPycqy, hoE({u, ) o @™t > r}. Take e arbitrary, then there exists /1; € H; such
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that B := {x € X : hoE(I(u, h1)[) 0 ¢! > r — €} with A C B. By Lemma 2.1, we obtain that

i+ N = [ i< [ 1fdu == [ -l
U0l ) A r—eJa

1
< :£h05(|(u,h1>|)°(ﬂ_l|fldy

1
——sup | hoE(Iu, hyl) o o7 | fldu
—€ 1167{1 X

1
—T(P,
—IIT{ S

IA

for each f € L'(X). Since € was arbitrary, consequently there is a constant M = 1.

(v) = (i) It is trivial by using Theorem A and definition of the Hyers-Ulam stability. [J

Theorem 2.3. Under the same assumptions as in Theorem 2.2, if R = sup{r > 0 : @(Upeqr,0lKu, h)|) C {x €
X; supy,eqq, NE(u, m)) 0 97" > ). Then My = 1/R.

Proof. By theorem 2.2, if r is taken over all numbers satisfying

O(Upep, ol{u, h)]) S {sup hoE([(u, h)]) o o~ > 7},
h€7‘{1

~ 1 ~,—1

we obtain My = IT? "|| < 1/R. For the opposite inequality, assume that IT? "|| < 1/r and for each h € H;,
@(Upep,0l{u, b)) € {Jy = r} for some r > 0. Hence we can choose A C @(Upeqq, 0l{ut, 1)]), with 0 < p(A) < oo
such that sup;,.., hoE(Ku, 1)) o @ Ya<r Putfy= %. Then we get that

1
IT% foll = sup f hoE(I(u, b)) o (p_l—y)a)dy = sup f hoE(I(u, b)) 0 ™' ———
X

du<r.
heH, heH, JA p(A) H

Therefore

¢ e ol e
1=lfoll = Ifoldu = llfo + N(THI =1IT,, (Ti foll <NIT MIT3 foll < 1.
(U, o))

~ -1

Which is a contradiction. Hence we deduce thatif ||T! || < 1/rthen @(Uner,0{u, )|) € {supheﬂ1 hoE(|{u, h)|)o
~ -1

@~! > r}. This follows that 1/R < T ). o

Example 2.4. Let X = (0,1), X be the Lebesgue subsets of X and let u be the Lebesgue measure on X. Also let
@ : X = X be defined by

() = 2x 0<x<i,
PO 1220 L<x<l
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Direct computation shows that ho(x) = 1. Define u: X — R by u(x) = x + 1. Then for each h € H,, we have

fx HoEIu(x), )] 0 ¢~ Ydys = f E{u(x), )] 0 ¢~ Ydpi o )

©.3)

+ ﬁ El(u(x), hy| o o~ *du o (p‘l

.

= [ e, [ B, Bida
¢7(0,3) P (1)

(.

_ f (), Il + f (), Il
»1(0,3) o 1(3,1)
1 x 1 X

=53 ) JoGy s s [ - 5w

Hence for each h € Hy we get that

oK), ) 0 70 = 3 (), I + K1 = 2), 1)

N —

Therefore

_ 1/( xh xh 1
hoEu(x), by o @ 1= 5 (I? + h| + |2h - 3|) > §|3h|.

This implies that sup;,.q hoElu(x), k)| o ™" > 2, where Ry is the closed unit ball of R. It is sufficient put r = 2 —¢,
for € arbitrary. Then, by Theorem 2.2 we deduce that T}, on L'(X) has the Hyers-Ulam stability.
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