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Abstract. This article investigates the source identification in the fractional diffusion equations, by per-
forming a single measurement of the Cauchy data on the accessible boundary. The main results of this
work consist in giving an identifiability result and establishing a local Lipschitz stability result. To solve
the inverse problem of identifying fractional sources from such observations, a non-iterative algebraical
method based on the Reciprocity Gap functional is proposed.

1. Introduction

The main purpose of this paper is the identification of source term F that represents the number, the
positions and the intensities of monopolar sources located in an open bounded domain Ω ⊂ Rd, d = 2, 3,
and with smooth regular boundary Σ. The corresponding forward problem is given by:

c
0Dα

t u − ∆u = F in ΩT,
u(x, 0) = 0 x ∈ Ω,
u = f on ΣT,

(1.1)

where c
0Dα

t represents the Caputo fractional derivatives of order α defined in definition 2.1, f ∈ L2(ΣT) and
F(x, t) is the source term that have the following form:

F(x, t) =

m∑
j=1

λ j(t) δS j (x), (1.2)

λ j(t) :=


β j > 0, t ∈ [0,T)

0, t ≥ T
(1.3)

where m ∈ N, S j ∈ Ω, and λ j(t), j = 1, . . . ,m, represent respectively the number, the locations, and the
intensities of the monopolar sources inactive after the finite time T > 0 which represents the time of
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observation. We denote by ΩT := Ω× (0,T) the space time domain, and ΣT := Σ× (0,T) its lateral boundary.
For 0 < α < 1, equation (1.1) is called a fractional diffusion equation, and it is called a fractional diffusion-
wave equation in the case when 1 < α < 2. Note that if α = 0, α = 1 and α = 2, the equation (1.1) represents
the sources identification via the Helmholtz equation, the heat equation, and the wave equation which are
studied by many authors [5, 15, 17, 27, 28]. In this paper, we are interested mainly in the fractional diffusion
case (we restrict the order α to the case 0 < α < 1).
The fractional equation is one of tools for modeling several atypical phenomena in nature and in the theory
of complex systems. The fractional diffusion equation has been introduced in physics to describe diffusions
in media with fractal geometry see [32], to show anomalous diffusion in a highly heterogeneous aquifer see
[2]. Metzler and Klafter [29] proved that a fractional diffusion equation governs a non-Markovian diffusion
process with a memory. Ginoaet et al in [20] presented a fractional diffusion equation describing relaxation
phenomena in complex viscoelastic materials.
The main motivation of this work concerns the inverse problem of identifying of contaminants sources in
groundwater. There is a little work on inverse problems for fractional differential equations. Murio et al in
[30] introduced a regularization technique for the approximate reconstruction of spatial and time varying
source terms using the observed solutions of the forward time fractional diffusion problems on a discrete
set of points. Nakagawa et al in [31] proposed that the solution can be uniquely determined by data in any
small subdomain over time interval. Tuan [37] presented that by taking suitable initial distributions only
finitely many measurements on the boundary are required to recover uniquely the diffusion coefficient of
a one-dimensional fractional diffusion equation. Zhang and Xu [40] outlined that the unknown source
term can also be uniquely determined by u(0, t), 0 < t < T. Wei and Zhang in [38] solve a nonlinear
ill-posed problem for identifying a Robin coefficient in a time-fractional diffusion problem, they combine
the integral equation method and the boundary element method to obtain a simple minimization problem
with H1 penalty terms. We remark that α involved in all the above articles was assumed to be in the
interval (0, 1), and most of the above fractional inverse problems are involved in one-dimensional spaces.
Other recent results are obtained for the time-dependent source problem for multi-dimensional fractional
diffusion equation. Wei et al in [39] studied the direct problem, showed that the inverse problem has a
unique solution, and used the Tikhonov regularization method to solve the inverse source via an iterative
method. Liu et al in [26] established multiple logarithmic stability and proposed a fixed point iteration for
the numerical reconstruction. Wang et al in [34] gave a conditional stability for this inverse problem and
proposed two regularization methods (an integral equation method and a standard Tikhonov regularization
method) for the reconstruction of the time-dependent source term. Ruan et al. studied simultaneously in
[35] the uniqueness of spacewise source term and the fractional order of 1D and 2D time fractional diffusion
equations by using the Laplace transformation method and analytic continuation technique, and adopted
an alternating minimization algorithm to solve the inverse problem.
In this work, equation (1.1) is supplemented by the boundary condition

∂u
∂ν

(x, t) = ϕ(x, t), (x, t) ∈ ΣT (1.4)

where ν represents the outward unit normal vector to Σ pointed outside Ω, ϕ ∈ L2(ΣT), The inverse problem
consists in identifying the source distribution F in the fractional problem (1.1) from the compatible boundary
data ( f , ϕ).
This paper is organized as follows:
In section 2, we recall some results concerning the fractional diffusion equation and we discuss the question
of existence and uniqueness of the direct problem. In section 3, an identifiability result is established. Local
Lipschitz stability result is given in section 4. Finally, in section 5, an explicit non-iterative identification
procedure is proposed.

2. Preliminaries

We start this section by giving some definitions and fundamental facts of fractional integrals and
fractional derivatives, which can be found in [25, 33].
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Let α > 0 and n the integer satisfying n − 1 ≤ α < n, a, b ∈ R.

Definition 2.1. Let 1 : [a, b]→ R be a function, and Γ the Euler gamma function.

1. The left and right Riemann-Liouville fractional integrals of order α are defined respectively by:

aIαt 1(t) :=
1

Γ(α)

∫ t

a
(t − s)α−11(s) ds, (2.1)

and

tIαb 1(t) :=
1

Γ(α)

∫ b

t
(s − t)α−11(s) ds. (2.2)

2. The left and right Riemann-Liouville fractional derivatives of order α are defined respectively by

aDα
t 1(t) :=

dn

dtn aIn−α
t 1(t) =

1
Γ(n − α)

dn

dtn

∫ t

a
(t − s)n−α−11(s) ds, (2.3)

and

tDα
b1(t) := (−1)n dn

dtn tIn−α
b 1(t) =

(−1)n

Γ(n − α)
dn

dtn

∫ b

t
(s − t)n−α−11(s) ds (2.4)

In particular, if α = 0
aD0

t 1(t) = tD0
b1(t) = 1(t)

and if α = k ∈N
aDk

t1(t) = tDk
b1(t) = 1(k)(t).

3. The left and right Caputo fractional derivatives of order α are defined by

c
aDα

t 1(t) :=a In−α
t 1(n)(t) =

1
Γ(n − α)

∫ t

a
(t − s)n−α−11(n)(s) ds, (2.5)

and

c
tD

α
b1(t) := (−1)n

tIn−α
b 1(n)(t) =

(−1)n

Γ(n − α)

∫ b

t
(s − t)n−α−11(n)(s) ds (2.6)

In particular, if 0 < α < 1, we denote by

∂αt 1(t) :=c
0 Dα

t 1(t) =
1

Γ(1 − α)

∫ t

0
(t − s)−α1′(s)ds.

Lemma 2.2. [25] If 1(t) ∈ ACn[a, b], then the Riemann-Liouville fraction derivative and the Caputo fractional
derivative are connected with each other by the following relation

aDα
t 1(t) =c

a Dα
t 1(t) +

n−1∑
k=0

1(k)(a)
Γ(1 + k − α)

(t − a)k−α. (2.7)

and

tDα
b1(t) =c

t Dα
b1(t) +

n−1∑
k=0

(−1)k1(k)(b)
Γ(1 + k − α)

(b − t)k−α. (2.8)
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Here

ACn[a, b] =

{
1 : [a, b]→ R such that

dn−1

dxn−1 (1) ∈ AC[a, b]
}
,

1 ∈ AC[a, b]⇔ there exists ϕ ∈ L(a, b) such that 1(x) = c +

∫ b

a
ϕ(t) dt, c ∈ R

and L(a, b) is the set of Lebesgue complex-valued measurable functions on [a, b].

Remark 2.3. In problem (1.1), 0 < α < 1, then

0Dα
t u(x, t) =c

0 Dα
t u(x, t) +

u(x, 0)
Γ(1 − α)

t−α, (2.9)

in addition u(x, 0) = 0, then 0Dα
t u(x, t) =c

0 Dα
t u(x, t).

In order to formulate the boundary integral equation corresponding to (1.1), we need to calculate the
fundamental solution G with the initial condition G(·, 0) = 0 in Ω. This function is constructed by taking
the Laplace-transform in the time and the Fourier-transform in the spatial variable of the fractional diffusion
equation

∂αt G(x, t) − ∆G(x.t) = δ(x, t) in Rd
×R,

where δ(x, t) is the Dirac’s delta function [19, 23, 36].
The fundamental solution is given by:

G(x, t) =


H20

12

[
1
4 |x|

2t−α|(α,α)
( d

2 ,1),(1,1)

]
π

d
2 |x|dt1−α

, t > 0.

0, t < 0.

(2.10)

Here H20
12 is the Fox H-function, which is defined via Mellin-Barnes integral representation

H20
12(z) := H20

12

[
z|(α,α)

( d
2 ,1),(1,1)

]
=

1
2πi

∫
C

Γ( d
2 + s)Γ(1 + s)
Γ(α + αs)

z−s ds, (2.11)

where C is an infinite contour on the complex plane circulating the negative real axis counterclockwise,
z , 0 and z−s = exp(−s[ln |z| + i arg z]), ln |z| represents the natural logarithm of |z| and arg z is not necessary
the principal value.
We shall solve the problem (1.1) by using the Laplace transform and considering the equivalent problem
on the space Laplace domain. For s ∈ C with Re(s) > 0, and by applying the Laplace transform of the
Riemann-Liouville fractional derivative to the problem (1.1) in time, we get

sαũ(x, s) − ∆ũ(x, s) =

m∑
j=1

β j(1 − e−sT)
s

δS j in Ω,

ũ(x, s) = f̃ (x, s) on Σ.

(2.12)

where ũ(x, s) = L(u) =

∫
∞

0
e−stu(x, t) dt and f̃ (x, s) =

∫
∞

0
e−st f (x, t) dt represent respectively the Laplace

transform of u and f .

We set w(x, s) = ũ(x, s) −
1 − e−sT

s

m∑
j=1

β j G̃(x − S j, s), where G̃ represents the Laplace transform of G defined
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by (2.10), which is the fundamental solution of the Helmholtz equation with wave number k = is
α
2 . Using

the properties of the Fox H-functions ([24], Chapter 2), we write G̃ in the following form

G̃(x, s) =


i
4 H(1)

0 (is
α
2 |x|), d = 2

e−s
α
2 |x|

4π|x|
, d = 3.

(2.13)

where H(1)
0 is the Hankel function of first kind and order 0 see [1].

Then, w is solution of the following problem{
∆w(x, s) − sαw(x, s) = 0 in Ω,
w(x, s) = 1(x, s) on Σ.

(2.14)

where 1(x, s) := f̃ (x, s) −
m∑

j=1

β j(1 − e−sT)
s

G̃(x − S j, s).

We notice that we realize (2.14) in the weak sense i.e. given 1 ∈ H
1
2 (Σ), find w ∈ H1(Ω) such that for all

v ∈ H1(Ω) ∫
Ω

∇w · ∇v̄ + sαwv̄ = 〈Λ(1), v̄〉

where Λ : H
1
2 (Σ)→ H−

1
2 (Σ) denotes the Dirichlet to Neumann map and 〈 , 〉Σ represents the duality paining

on H−
1
2 (Σ) ×H

1
2 (Σ).

Following the definition given in [22], we say that u is a weak solution of (1.1) if ũ is a weak solution of
(2.12). To prove that (2.12) has a unique weak solution, it is sufficient to prove that (2.14) has a unique weak
solution.
It is well known that the spectrum of (−∆) with Dirichlet condition consists of a sequence of eigenvalues,
counted according to their multiplicities, is a subset of (0, ∞) see [10]. We remark that for s ∈ C with
Re(s) > 0, if arg(s) represents the principal argument of s, and −π2 < arg(s) < π

2 , since 0 < α < 1, then
−
π
2 < −α

π
2 < α arg(s) < απ2 <

π
2 , then −sα = −|s|αeiα arg(s) is negative if arg(s) = 0 or −sα is a complex number,

which implies that −sα is not a Dirichlet eigenvalue of −∆. The existence and the uniqueness of the problem
(2.14) are deduced from the following theorem given in [11]

Theorem 2.4. [11] Let Ω be a bounded domain with C2 boundary ∂Ω such that k2 is not a Dirichlet eigenvalue of
−∆. Then for every 1 ∈ H

1
2 (∂Ω), there exists a unique weak solution u ∈ H1(Ω) of the Helmholtz equation in Ω such

that u = 1 on ∂Ω in the sense of the trace theorem.

3. Identifiability

The first question we might ask for the study of this type of problem concerns the uniqueness of the

solution F of the inverse problem from the measurements of u and
∂u
∂ν

on the boundary ΣT. To prove
Theorem 3.2, we need the following lemma and we recall its proof:

Lemma 3.1. [21] Let B be a bounded domain in Rd and v ∈ C2(B) ∩ C(B̄) satisfies

∆v + k2v = 0 in B, (3.1)

and

v = 0 on ∂B. (3.2)

Suppose that Im(k) > 0, where Im(k) represents the imaginary part of the complex wave number k. Then v = 0 in B̄.
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Proof. Multiplying both sides of (3.1) by v̄ and integrating over B give∫
B

∆vv̄ + k2
∫

B
vv̄ = 0

Green’s identity and the boundary conditions of v yield

−

∫
B
|∇v|2 + k2

∫
B
|v|2 = 0 (3.3)

Now if Re(k) , 0 (Re(k) represents the real part of k), the imaginary part of (3.3) gives
∫

B |v|
2 = 0 hence v = 0.

In the case where Re(k) = 0, since Im(k) > 0, we have∫
B
|∇v|2 + Im(k)2

∫
B
|v|2 = 0,

therefore v = 0 in B̄.

In the following theorem, we give the uniqueness result of the inverse problem.

Theorem 3.2. (uniqueness)

Let ur, r = 1, 2 be the solution of problem (1.1) with Fr =

m(r)∑
j=1

λ(r)
j δS(r)

j
as source terms, where

λ(r)
j (t) :=


β(r)

j > 0, t ∈ [0,T),

0, t ≥ T.
(3.4)

Assume that u1|ΣT = u2|ΣT and
∂u1

∂ν |ΣT

=
∂u2

∂ν |ΣT

, then F1 = F2 up to a permutation.

Proof. Consider the difference U = u2 − u1, U satisfies the following problem:
∂αt U(x, t) − ∆U(x, t) = F2(x, t) − F1(x, t) in ΩT,
U(·, 0) = 0 in Ω,
U(x, t) = 0 on ΣT,
∂U
∂ν

(x, t) = 0 on ΣT.

(3.5)

Now, applying the Laplace transform of the Riemann-Liouville fractional derivative to the problem (3.5),
and using the second condition of this problem, and for s ∈ C with Re(s) > 0 and Im(is

α
2 ) = Re(s

α
2 ) > 0, we

get 
sαŨ(x, s) − ∆Ũ(x, s) = F̃2(x, s) − F̃1(x, s) in Ω,
Ũ(x, s) = 0 on Σ,
∂Ũ
∂ν

(x, s) = 0 on Σ,

(3.6)

where

Ũ(x, s) =

∫
∞

0
e−stU(x, t) dt and F̃r =

m(r)∑
j=1

β(r)
j (1 − e−sT)

s
δS(r)

j
, r = 1, 2.

We set k = is
α
2 and B = Ω \ {∪S(r)

j , r = 1, 2}, then we obtain{
∆Ũ + k2Ũ = 0 in B,
Ũ = 0 on Σ.

(3.7)
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From Lemma 3.1, Ũ = 0 in B̄.
Extending Ũ out of Ω by 0, one gets

∆Ũ + k2Ũ = F̃1 − F̃2 in Rd.

We can then obtain its explicit expression by a convolution with the fundamental solution Φs of the
Helmholtz equation with the wave number k = is

α
2

Ũ(x) =

m(1)∑
j=1

β(1)
j (1 − e−sT)

s
Φs(x − S(1)

j ) −
m(2)∑
j=1

β(2)
j (1 − e−sT)

s
Φs(x − S(2)

j ),

where

Φs(x) =
1

(2π)
d
2

(
|x|
s
α
2

)1− d
2

K d
2−1(s

α
2 |x|), d = 2, 3,

K d
2−1 is the modified bessel function of the third kind or Macdonald function [1].

Since Ũ is analytic in the connected domain Rd
\ {∪S(r)

j , r = 1, 2} and null outside of Ω, it is null also in

Rd
\ {∪S(r)

j , r = 1, 2}. Therefore for all x in Rd
\ {∪S(r)

j , r = 1, 2}, one has:

m(1)∑
j=1

β(1)
j Φs(x − S(1)

j ) −
m(2)∑
j=1

β(2)
j Φs(x − S(2)

j ) = 0. (3.8)

Now suppose that it exists j0 ∈ {1, . . . ,m(2)
} such that S(2)

j0
, S(1)

k , for all k ∈ {1, . . . ,m(1)
}. From (3.8) we have

m(1)∑
j=1

β(1)
j Φs(x − S(1)

j ) −
m(2)∑

j=1, j, j0

β(2)
j Φs(x − S(2)

j ) = −β(2)
j0

Φs(x − S(2)
j0

) (3.9)

Since for small arguments 0 < |z| �
√

n + 1, we have:[1]

Kn(z) ∼
{
− ln( z

2 ) − γ, n = 0
Γ(n)

2

(
2
z

)n
n > 0.

(3.10)

where γ is the Euler-Mascheroni constant. Then,

lim
x→S(2)

j0

|β(2)
j0

Φs(x − S(2)
j0

)| = ∞

and

lim
x→S(2)

j0

|

m(1)∑
j=1

β(1)
j Φs(x − S(1)

j ) −
m(2)∑

j=1, j, j0

β(2)
j Φs(x − S(2)

j )| < ∞

Then, by letting x tends to S(2)
j0

in equation (3.9) we obtain a contradiction. Thus, the sets {S(r)
j , 1 ≤ j ≤ m(r)

},

(r = 1, 2), must be identical. Then, one can write S(1)
j = S(2)

j after renumbering of (S j ) if necessary and the

same argument yields β(1)
j = β(2)

j . The proof is completed.
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Remark 3.3. The proof of theorem 3.2 is also valid for the problem (1.1) with a more general source term of the

following form F(x, t) =

m∑
j=1

λ j(t) δS j (x) with

λ j(t) :=


β j > 0, t ∈ [0,T j)

0, t ≥ T j

(3.11)

where T j is the time of activity of the source S j, from the measurements of u and
∂u
∂ν

on the boundary ΣT. Indeed,

following the line of the prove of Theorem 3.2, if ur, r = 1, 2 are the solutions of problem (1.1) with Fr =

m(r)∑
j=1

λ(r)
j δS(r)

j

as source terms, where

λ(r)
j (t) :=


β(r)

j > 0, t ∈ (0,T(r)
j ),

0, t ≥ T(r)
j .

(3.12)

we show that S(1)
j = S(2)

j and β(1)
j (1 − e−sT(1)

j ) = β(2)
j (1 − e−sT(2)

j ). If we take s > 0 sufficiently large, we conclude that

β(1)
j = β(2)

j and T(1)
j = T(2)

j . We will see in section 5 that the proposed method for the identification of the source term
F does not separately give the intensities β j and the times T j, which justifies the choice (1.3) of F.

4. Stability Result

In this section, we study the continuous dependence of the unknown source term on the measured data
on the boundary ΣT, which is the crucial issue for numerical application. The question of stability has been
the concern of several authors in different contexts. Alessandrini et al [3, 4], and Bellout et al [9] have dealt
with stability for an inverse conductivity problem. The notion of local Lipschitz stability which has been
used by several authors [6, 12, 13]. In many works, local Lipschitz stability results was obtained, derived
from algebraic relations, for elliptic sources identification problems [7, 16, 18, 28].
In this section, we give a local Lipschitz stability result inspired from the stability result given in [28] for
the problem of identification of sources via the Helmholtz equation, which is derived from the Gâteaux
differentiability, by establishing that the Gâteaux derivative is not zero.

We suppose that Ω contains m monopolar sources located at S j with respectively intensities τ j, j =

1, . . . ,m. We define the perturbed source term Fh by:

Fh = −

m∑
j=1

τh
j δSh

j
,

where
(τh

j , Sh
j ) := (τ j + h µ j,S j + h R j), 1 ≤ j ≤ m,

{(µ j, R j), 1 ≤ j ≤ m} ⊂ R × R2,

h being sufficiently small to insure that S j + h R j remain in Ω. We denote by u0 and uh the solutions of (4.1)
with respectively source terms F = F0 and F = Fh. ∆u + k2u = F in Ω

∂u
∂ν

= ϕ on Σ,
(4.1)

ϕ ∈ H−
1
2 (∂Ω) being the flux on ∂Ω (ϕ , 0 on ∂Ω), k is the wave number on Ω. We set u0|∂Ω = f , uh|∂Ω = f h.
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Theorem 4.1. [28] (Local Lipschitz stability). Assume that k2 is not an eigenvalue of−∆ with Neumann condition

in the boundary. Then, lim
h→0

| f h
− f |L2(∂Ω)

|h|
exists and is strictly positive.

Now, we are ready to give the main result of this section. Assuming that the domain Ω contains m
monopolar sources S1, . . . ,Sm with respectively intensities λ1(t), . . . , λm(t) where

λ j(t) :=
{
β j > 0 if t ∈ (0,T)
0 if t ≥ T

We denote by µ̃ j the piecewise function defined by

µ̃ j :=
{
µ j if t ∈ (0,T)
0 if t ≥ T

where µ j ∈ R, and let τ j ∈ R2 such that ‖τ j‖ ≤ 1 for j = 1, . . . ,m.
We set

Φ := (λ j,S j), Φh := (λh
j ,S

h
j ) = (λ j + hµ j,S j + hτ j),

and

Fh :=
m∑

j=1

λh
jδSh

j
,

h , 0 being sufficiently small to insure that Sh
j remains in Ω. Let u0 and uh be the solutions of problems

(1.1)-(1.4) with respectively sources F0 and Fh, we set u0 = f and uh = f h on ΣT. Then, our main result of
stability is given in the following theorem

Theorem 4.2. (Local Lipschitz stability)
If µ j , 0, then

lim
h→0

| f h
− f |L2(ΣT)

h
, 0.

Proof. Extending the functionϕ and f by 0 outside the interval [0, T], consider the time-integrated quantities

Θh(x) :=
∫
∞

0
e−stuh(x, t) dt, and Θ0(x) :=

∫
∞

0
e−stu0(x, t) dt, Re(s) > 0

which are well-defined since all sources are assumed inactive for t ≥ T. Applying the Laplace transform to
the problems (1.1)-(1.4) corresponding respectively to the sources Fh and F0, for s ∈ C with Re(s) > 0 and
Im(is

α
2 ) > 0, the function Θh is solution of the Helmholz equation with the wave number k = is

α
2 :

∆Θh + k2Θh = −F̃h in Ω
∂νΘh = ϕ̃ on Σ

Θh = f̃ h on Σ

(4.2)

where

f̃ h(x, s) =

∫
∞

0
e−st f h(x, t) dt, f̃ (x) =

∫
∞

0
e−st f (x, t) dt,

F̃h(x, s) =

m∑
j=1

λ̃h
j (s)δSh

j
(x), F̃0(x) =

m∑
j=1

λ̃ j(s)δS j (x),

λ̃h
j (s) =

β j(1 − e−sT)
s

+ h
µ j(1 − e−sT)

s



A. Ghanmi et al. / Filomat 32:18 (2018), 6189–6201 6198

and

λ̃ j(s) =
β j(1 − e−sT)

s

The source F̃h represents the linear perturbation of the source F̃0 in the direction Ψ = {(µ j(1−e−sT)
s , τ j)1≤ j≤m},

having the same number m of sources as {( β j(1−e−sT)
s ,S j)1≤ j≤m} for the problem of identifying monopolar

sources S j, located in Ω with respectively intensities β j(1−e−sT)
s , j = 1, . . . ,m via the Helmholtz equation with

wave number k = is
α
2 , which is not an eigenvalue of −∆ with Neumann condition in the boundary, from

the given Cauchy data ϕ̃ and f̃ on Σ. We have

(λ̃h
j (s),Sh

j ) = (λ̃ j(s) + h
µ j(1 − e−sT)

s
,S j + h τ j)

From Theorem 4.1, which its proof is also valid for the wave number k = is
α
2 where s ∈ Cwith Re(s) > 0 and

Im(is
α
2 ) > 0, we deduce the following result:

lim
h→0

| f̃ h
− f̃ |L2(Σ)

h
, 0.

From Cauchy-Lipschitz inequality one has

| f̃ h
− f̃ |L2(Σ) ≤

1√
2Re(s)

| f h
− f |L2(ΣT),

then, we obtain the following local Lipschitz result:

lim
h→0

| f h
− f |L2(ΣT)

h
, 0.

Remark 4.3. If lim
h→0

| f h
− f |L2(ΣT)

|h|
= ` ∈ R∗+ or if lim

h→0

| f h
− f |L2(ΣT)

h
= ∞, then there exists δ > 0 and c > 0 such that

if |h| < δ, then |h| < c | f h
− f |L2(ΣT), which implies that there exists c̃ > 0 such that for |h| < δ

m∑
j=1

‖Sh
j − S j‖ + ‖λh

j − λ j‖L2(0, T) ≤ c̃ | f h
− f |L2(ΣT)

which gives the local Lipschitz stability result for the identification of monopolar sources problem. The result of the
Theorem 4.2 means that one can distinguish between Φh and Φ by measurements of the trace of u on ΣT, provided
that the error in measurements is o(h).

5. Identification Process

We present in this section a quasi-explicit method to recover the point sources (1.2) from the lateral

observations
∂u
∂ν

and u on ΣT. This method is inspired from the algorithm given in [14, 16] for the monopolar
source identification via the Laplace equation in 2D case. This algorithm is based on the reciprocity gap
functional defined by (5.2) which has been introduced by Bellout et al in [9] and has been formalized
by Andrieux et al in [6], who used it in numerical reconstruction procedure for the inverse planar crack
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problem. To develop this algorithm we need the following result concerning integration by parts formulas.
For α > 0 and n ∈N such that n − 1 ≤ α < n, we have [8]:∫ b

a
1(t)c

aDα
t f (t) dt =

∫ b

a
f (t)tDα

b1(t) dt +

n−1∑
j=0

[
tD

α+ j−n
b 1(t) · tD

n−1− j
b f (t)

]b

a
(5.1)

We begin by considering the subsetH0 defined by:

H0 = {v : (tDα
T − ∆)v = 0, in ΩT}

Let v ∈ H0, multiplying equation (1.1) by v and integrating on ΩT, by applying (5.1) in time and the second
Green’s identity in the spatial variable, and using boundary condition, the problem (1.1)-(1.4) admits the
following variational formulation:

m∑
j=1

β j

∫ T

0
v(S j, t) dt = R(u, v), (5.2)

where

R(u, v) =

∫
ΣT

(u
∂v
∂ν
−
∂u
∂ν

v)dΣT +

∫
Ω

[
tI1−α

T v(x, t)u(x, t)
]T

0
dx (5.3)

Now, with the observation u(·,T) made on Ω the reciprocity gap functional (5.3) is known (if v is). The
reciprocity gap (RG) in the equation (5.2) links the causes hidden in Ω to their measurable consequences.
The inverse problem consists to find the number, the locations and the intensities of the sources from
equation (5.2). In the following along the lines followed in papers [14], we will show how an appropriate
choice of test functions unveils these information. The problem is reduced to the problem of determining
the parameters (m,S j, β j) by the knowledge of the right hand side of (5.2). From now on, a spatially two-
dimensional setting is assumed, with complex polynomials used for adjoint fields. Associating R2 with C
through x1 + ix2 = z, the following family of test functions defined by:

vk(z, t) = (T − t)α−1zk
∈ H0, k ∈N

In fact, the functions vk are holomorphic, have harmonic real and imaginary parts in spatial variable:

∆vk(·, t) = 0

and, since tDα
T(T − t)α−1 = 0 ([25],p73), then

tDα
Tvk(z, ·) = 0

Since tI1−α
T (T − t)α−1 = Γ(α) see ([25],p88), then the components of the equality (5.2) are then given by:

R(u, vk) =
Tα

α

m∑
j=1

β j σ
k
j , k ∈N (5.4)

where

R(u, vk) =

∫
ΣT

(u
∂vk

∂ν
−
∂u
∂ν

vk)dΣT + Γ(α)
∫

Ω

u(x,T) zkdx,

and σ j denotes the affix of the j-th source location S j. The source reconstruction thus consists in finding
the number of sources m, the locations σ j, the intensities β j, and the extinction times T j of the sources S j
verifying the equality (5.4).
Let M be an upper bound of the exact number m of the unknown monopolar sources (M ≥ m), let:

αk :=
α R(u, vk)

Tα
, k = 0, . . . .2M − 1,
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µn =


αn
αn+1
...

αM+n−1

 ∈ CM, Λm =


β1
β2
...
βm

 ∈ Rm, (5.5)

and the matrix

An,M =


σn

1 σn
2 . . . σn

m
σn+1

1 σn+1
2 . . . σn+1

m
...

...
...

...
σM+n−1

1 σM+n−1
2 . . . σM+n−1

m

 ∈ MM×m(C).

Following the line of the algorithm given in [14], the unknown m, σ j, and β j can then be deduced from the
following lemma:

Lemma 5.1. [14]

1. The rank of the family (µ0, µ1, . . . , µM−1) is r = m, and the vectors (µ0, µ1, . . . , µm−1) are independent.
2. The affixes σ j of the monopolar sources S j are the eigenvalues of the matrix T which is defined by Tµ j = µ j+1,

for j = 0, . . . ,m − 1.
3. β1, . . . , βm are solutions of the linear system A0,mΛm = µ0 where A0,m is the Vandermonde matrix of σ j.

Remark 5.2. 1. In the case where Ω contains a unique monopolar source S1, then:

β1 = α0 and σ1 =
α1

α0
.

2. In the case where Ω contains two monopolar sources S1, S2, and if (a,b) are the components of the vector µ2 in
the basis (µ0, µ1), then:

σ1 =
b +
√

b2 + 4a
2

, σ2 =
b −
√

b2 + 4a
2

,

β1 =
α1 − α0σ2

σ1 − σ2
and β2 =

α1 − α0σ1

σ2 − σ1
.

3. For α = 1, we find the family of test functions used in [5, 15] for monopolar source identification problem via
the heat equation. For the numerical experiments of this algorithm, we refer the reader to [5, 7, 27].
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