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Abstract. In this paper we will present the Julia set and the global behavior of a quadratic second order
difference equation of type

xn+1 = axnxn−1 + ax2
n−1 + bxn−1

where a > 0 and 0 ≤ b < 1 with non-negative initial conditions.

1. Introduction

In general, polynomial difference equations and polynomial maps in the plane have been studied in both
the real and complex domains (see [3, 4]). First results on quadratic polynomial difference equation have
been obtained in [1, 2] but these results gave us only a part of the basins of attraction of equilibrium points
and period-two solutions. In [6], the general second order difference equation is completely investigated and
described the regions of initial conditions in the first quadrant for which all solutions tend to equilibrium
points, period-two solutions, or the point at infinity, except for the case of infinitely many period-two
solutions. Also, the new method of proof for the non-hyperbolic case is presented in [6]. Our results are
based on the theorems which hold for monotone difference equations. Our principal tool is the theory of
monotone maps, and in particular cooperative maps, which guarantee the existence and uniqueness of the
stable and unstable invariant manifolds for the fixed points and periodic points (see [5]). Consider the
difference equation

xn+1 = f (xn, xn−1), n = 0, 1, . . . (1)

where f is a continuous and increasing function in both variables. The following result has been obtained
in [1]:

Theorem 1.1. Let I ⊆ R and let f ∈ C[I × I, I] be a function which increases in both variables. Then for every
solution of Eq.(1) the subsequences {x2n}

∞

n=0 and {x2n+1}
∞

n=−1 of even and odd terms of the solution do exactly one of
the following:
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(i) Eventually they are both monotonically increasing.

(ii) Eventually they are both monotonically decreasing.

(iii) One of them is monotonically increasing and the other is monotonically decreasing.

As a consequence of Theorem 1.1 every bounded solution of Eq.(1) approaches either an equilibrium
solution or period-two solution and every unbounded solution is asymptotic to the point at infinity in a
monotonic way. Thus the major problem in dynamics of Eq.(1) is the problem of determinig the basins of
attraction of three different types of attractors: the equilibrium solutions, period-two solution(s) and the
point(s) at infinity. The following result can be proved by using the techniques of proof of Theorem 11 in
[5].

Theorem 1.2. Consider Eq.(1) where f is increasing function in its arguments and assume that there is no minimal
period-two solution. Assume that E1(x1, y1) and E2(x2, y2) are two consecutive equilibrium points in North-East
ordering that satisfy

(x1, y1) �ne (x2, y2)

and that E1 is a local attractor and E2 is a saddle point or a non-hyperbolic point with second characteristic root in
interval (−1, 1), with the neighborhoods where f is strictly increasing. Then the basin of attraction B(E1) of E1 is the
region below the global stable manifoldWs(E2). More precisely

B(E1) = {(x, y) : ∃yu : y < yu, (x, yu) ∈ Ws(E2)}.

The basin of attraction B(E2) =Ws(E2) is exactly the global stable manifold of E2. The global stable manifold extend
to the boundary of the domain of Eq.(1). If there exists a period-two solution, then the end points of the global stable
manifold are exactly the period two solution.

Now, the theorems applied in [6] provided the two continuous curves Ws (E2) (stable manifold) and
W

u (E2) (unstable manifold), both passing through the point E2(x2, y2) according to Theorem 1.2, such that
W

s (E2) is a graph of a decreasing function and Wu (E2) is a graph of an increasing function. The curve
W

s (E2) splits the first quadrant of initial conditions into two disjoint regions, but we do not know the
explicit form of the curveWu (E2). In this paper we investigate the following difference equation

xn+1 = axnxn−1 + ax2
n−1 + bxn−1 (2)

where a > 0 and b ∈ [0, 1), that has infinitely many period-two solutions and we expose the explicit form of
the curve that separates the first quadrant into two basins of attraction of a locally stable equilibrium point
and of the point at infinity. One of the major problems in the dynamics of polynomial maps is determining
the basin of attraction of the point at infinity and in particular the boundary of the basin known as the Julia
set, what we managed to do for Eq.(2). We also obtain the global dynamics in the interior of the Julia set,
which includes all the points for which solutions are not asymptotic to the point at infinity. It turns out that
the Julia set for Eq.(2) is the union of the stable manifolds of some saddle equilibrium points, nonhyperbolic
equilibrium points or period-two points. We first list some results needed for the proofs of our theorems.
The main result for studying local stability of equilibria is linearized stability Theorem 1.1 in [7].

Theorem 1.3. (linerized stability): Consider the difference equation

xn+1 = f (xn, xn−1) (3)

and let x̄ be an equilibrium point of difference equation (3). Let p =
∂ f (x̄,x̄)
∂u and q =

∂ f (x̄,x̄)
∂v denote the partial derivatives

of f (u, v) evaluated at the equilibrium x̄. Let λ1 and λ2 roots of the quadratic equation λ2
− pλ − q = 0.

a) If |λ1| < 1 and |λ2| < 1, then the equilibrium x̄ is locally asymptotically stable (sink).
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b) If |λ1| > 1 or |λ2| > 1, then the equilibrium x̄ is unstable.

c) |λ1| < 1 and |λ2| < 1⇔ |p| < 1 − q < 2. Equilibrium x̄ is a sink.

d) |λ1| > 1 and |λ2| > 1⇔ |q| > 1 and |p| < |1 − q|. Equilibrium x̄ is a repeller.

e) |λ1| > 1 and |λ2| < 1⇔ |p| > |1 − q|. Equilibrium x̄ is a saddle point.

f) |λ1| = 1 or |λ2| = 1⇔ |p| = |1 − q| or q = −1 and |p| ≤ 2. Equilibrium x̄ is called a non-hyperbolic point.

The next theorem (Theorem 1.4.1. in [8]) is a very useful tool in establishing bounds for the solutions of
nonlinear equations in terms of the solutions of equations with known behaviour.

Theorem 1.4. Let I be an interval of real numbers, let k be a positive integer, and let F : Ik+1
→ I be a function which

is increasing in all its arguments. Assume that {xn}
∞

n=−k, {yn}
∞

n=−k and {zn}
∞

n=−k are sequences of real numbers such
that

xn+1 ≤ F(xn, . . . , xn−k), n = 0, 1, . . .

yn+1 = F(yn, . . . , yn−k), n = 0, 1, . . .

zn+1 ≥ F(zn, . . . , zn−k), n = 0, 1, . . .

and

xn ≤ yn ≤ zn, f or all − k ≤ n ≤ 0.

Then

xn ≤ yn ≤ zn, f or all n > 0.

2. Main results

By applying the Theorem 1.3 we obtain the following results on local stability of the zero equilibrium
of Eq.(2):

Proposition 2.1. The zero equilibrium of Eq.(2) is one of the following:

a) locally asymptotically stable if b < 1,

b) non-hyperbolic and locally stable if b = 1,

c) unstable if b > 1.

The linearized equation at the positive equilibrium x̄ is

zn+1 = pzn + qzn−1 = ax̄zn + (3ax̄ + b)zn−1.

Now, in view of Theorem 1.3 we obtain the following results on local stability of the positive equilibrium
of Eq.(2):

Proposition 2.2. The positive equilibrium of Eq.(2) is one of the following:

a) locally asymptotically stable if p + q < 1,

b) non-hyperbolic and locally stable if p + q = 1,
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c) unstable if p + q > 1,

d) saddle point if p > |q − 1|,

e) repeller if 1 − q < p < q − 1.

Theorem 2.3. Consider the difference equation (2) in the first quadrant of initial conditions, where a > 0 and
b ∈ [0, 1). Then Eq.(2) has a zero equilibrium and a unique positive equilibrium x̄ = 1−b

2a . The line a(x + y) = 1 − b is
the Julia set and separates the first quadrant into two regions: the region below the line is the basin of attraction of
point E0(0, 0), the region above the line is the basin of attraction of the point at infinity and every point on the line
except E+(x̄, x̄) is a period-two solution of Eq.(2) .

Proof. The equilibrium points of Eq. (2) are the solutions of quadratic equation

x = ax2 + ax2 + bx,

which implies two equilibria: zero equilibrium and positive equilibrium x̄ = 1−b
2a . Since a > 0 and b ∈ [0, 1)

then by applying Proposition (2.1) the zero equilibrium is locally asymptotically stable. Denote by f (x, y) =
axy + ay2 + by and let p and q denote the partial derivatives of function f at point E+. By straightforward
calculation we obtain that the following hold:

p + q = 4ax̄ + b = 2 − b > 1,

q − p = 2ax̄ + b = 1.

Hence, according to Proposition (2.2) the positive equilibrium is an unstable non-hyperbolic point. Period-
two solution u, v satisfies the system

u = (av + au + b)u

v = (au + av + b)v.

Since v > 0 this implies a(u + v) + b = 1. Therefore every point of the set {(x, y) : a(x + y) + b = 1} is a
period-two solution of Eq.(2) except point E+. Let {xn} be a solution of Eq.(2) for initial condition (x−1, x0)
which lies below the line a(x + y) + b = 1. Then

a(x−1 + x0) + b < 1

and
x1 = (a(x−1 + x0) + b)x−1 < x−1,
x2 = (a(x0 + x1) + b)x0 < (a(x0 + x−1) + b)x0 < x0.

Thus (x1, x2) and (x−1, x0) are two points in North-East ordering (x1, x2) ≤ne (x−1, x0) which means that the
point (x1, x2) is also below the line a(x + y) + b = 1 and so

a(x1 + x2) + b < 1.

Similarly we find
x3 = (a(x2 + x1) + b)x1 < x1,
x4 = (a(x3 + x2) + b)x2 < (a(x1 + x2) + b)x2 < x2.

Continuing in this way we get

(0, 0) ≤ne . . . ≤ne (x3, x4) ≤ne (x1, x2) ≤ne (x−1, x0)

which implies that both subsequences {x2n} and {x2n+1} are monotonically decreasing and bounded below
by 0. Since below the line a(x+ y)+b = 1 there are no period-two solutions it must be x2n → 0 and x2n+1 → 0.
On the other hand, if we consider solution {xn} of Eq.(2) for initial condition (x−1, x0) which lies above the
line a(x + y) + b = 1 then

a(x−1 + x0) + b > 1
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and by applying the method shown above we obtain the following condition:

(x−1, x0) ≤ne (x1, x2) ≤ne (x3, x4) ≤ne . . .

Therefore both subsequences {x2n} and {x2n+1} are monotonically increasing, hence x2n →∞ and x2n+1 →∞

as n→∞.

In view of Theorem 1.4 which implies results on difference inequalities we get the following:

Proposition 2.4. Consider the difference equation of type

xn+1 = axnxn−1 + bx2
n−1 + cxn−1, (4)

where parameters a, b, c satisfy conditions a, b > 0 and 0 ≤ c < 1. Then the global stable manifold of the positive
equilibrium is between two lines

p1 : min{a, b}(x + y) + c = 1 (5)

and

p2 : max{a, b}(x + y) + c = 1. (6)

Proof. It is easy to show that Eq. (4) has two equilibria: since c < 1 the zero equilibrium is always locally
asymptotically stable thus the positive equilibrium must be unstable equilibrium point. More precisely, if
the positive equilibrium is a saddle point or a non-hyperbolic point then by Theorem 4 in [6] there exists a
global stable manifold which contains point E+(x̄, x̄),where x̄ is the positive equilibrium. In this case global
behavior of Eq. (4) is described by Theorem 9 in [6]. If the positive equilibrium is a repeller then there exists
a period-two solution. By using Theorem 8 in [6] we obtain that the period-two solution is a saddle point
and there are two global stable manifolds which contain points P1(u, v) and P2(v,u) wehre (u, v) is unique
period-two solution of Eq.(4). In this case the global behavior of Eq.(4) is described by Theorem 10 in [6].
Furthermore

xn+1 ≥ min{a, b}(xnxn−1 + x2
n−1) + cxn−1

and
xn+1 ≤ max{a, b}(xnxn−1 + x2

n−1) + cxn−1

for all n, by applying Theorem (1.4) for solution {xn} of Eq.(4) the following inequality holds

yn ≤ xn ≤ zn,

for all n, where {yn} is a solution of the difference equation

xn+1 = min{a, b}(xnxn−1 + x2
n−1) + cxn−1, (7)

and {zn} is a solution of the difference equation

xn+1 = max{a, b}(xnxn−1 + x2
n−1) + cxn−1. (8)

Since Eq. (7) and Eq. (8) satisfy all conditions of Theorem (2.3) this implies that the statement of Proposition
(2.4) holds.

Let

A = min{a, b} and B = max{a, b}.

One can show that the distance between lines p1 and p2 is given by

d = d(p1, p2) =
1 − c

AB
√

2
(B − A).
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If we set C = A+B
2 then the line

p3 : C(x + y) + c = 1 (9)

is between the lines p1 and p2. Clearly, smaller C implies that the distance from the point (0, 0) to the line p3
increses. LetWs denotes the global stable manifold of the positive equlibrium of Eq.(4). Now, if we choose
constants a and b such that

1 − c

AB
√

2
(B − A) < ε

where ε > 0 is a small enough, then
∣∣∣p3 (x) −Ws (x)

∣∣∣ < ∣∣∣p1 (x) − p2 (x)
∣∣∣ < ε for all x ≥ 0, where p1 (x), p2 (x),

p3 (x) andWs (x) denote the values of corresponding functions evaluated at the point x, which completely
determine the global behavior of this equation. That means the line p3 is approximation of stable manifold(s)
W

s. All this leads to the following theorem:

Theorem 2.5. Consider Eq. (4) where parameters a, b, c satisfy conditions a, b > 0 and 0 ≤ c < 1. Let A = min{a, b}
and B = max{a, b} and assume that

1 − c

AB
√

2
(B − A) < ε

where ε > 0 is a small enough real number. Then the line p3 given by (9) is approximation of global stable manifold(s)
of Eq. (4) corresponding to the positive equilibrium of Eq.(4) or period-two solutions.

It is easy to show that the area between lines p1 and p2 in the first quadrant is given by

P =
(1 − c)2

2
B2
− A2

B2A2 .

Hence, if we assume that

1 − c
AB

(B + A) < ε

where ε > 0 is small enough real number, then the inequality below holds

1 − c
AB

B − A < ε.

In this case we get P < ε2

2 and so both lines p1 and p2 are approximations of global stable manifold(s) of Eq.
(4) corresponding to the positive equilibrium of Eq. (4) or period-two solutions. This proves the following
Theorem:

Theorem 2.6. Consider Eq. (4) where parameters a, b, c satisfy conditions a, b > 0 and 0 ≤ c < 1. Let A = min{a, b}
and B = max{a, b} and assume that

1 − c
AB

(B + A) < ε

where ε > 0 is a small enough real number. Then the lines p1 and p2 given by (5) and (6) are pproximations of global
stable manifold(s) of Eq. (4) corresponding to the positive equilibrium of Eq. (4) or period-two solutions.

Next Figures support and illustrate Theorems (2.3) and (2.5) with wide dynamics. All figures are
generated by Mathematica 6.0 and Dynamica 3.0
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Figure 1: Case when Eq.(4) has no period-two solutions

Figure 2: Case when Eq.(2) has period-two solutions
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3. Conclusion

In this paper we restrict our attention to certain polynomial quadratic second order difference equation
Eq. (2). It is important to mention that we have accurately determined the Julia set of Eq. (2) and the basins
of attractions for the zero equilibrium and the positive equilibrium point. In general, all theoretical concepts
which are very useful in proving the results of global attractivity of equilibrium points and period-two so-
lutions only give us existence of global stable manifold(s) whose computation leads to very uncomfortable
calculus. Also, the last part of this paper is devoted to the approximation of the global stable manifold(s) for
a class of quadratic difference equations given by (4). The given results are more special but very applicable.
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