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Quotient Operators and the Open Mapping Theorem
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Abstract. Quotients of bounded operators on normed spaces have been discussed. Open mapping theorem
for quotients of bounded operators and its consequences are given.

1. Introduction

Saichi Izumino introduced the notion of quotient of bounded operators on a Hilbert space and showed
explicit formulae for computing the quotients which correspond to the sum, product, closure, adjoint and
weak adjoint of given quotients [2–4]. A quotient is then possibly an unbounded linear operator and is
what was called “semiclosed operator” by Kaufman [5]. In fact, the quotient of two compact operators need
not be compact [1]. In this paper we explore quotients on normed spaces and find sufficient conditions for
the set of quotients being complete. We prove open mapping theorem for quotients of bounded operators.

We conclude this introduction by establishing some notation and terminology. We consider normed
spaces X,Y,Z over a field K of real or complex scalars. The set of linear operators from a normed space X
to a normed space Y will be denoted byL(X,Y) and the set of bounded linear operators will be denoted by
B(X,Y). If T ∈ L(X,Y), then R(T) andN(T) denote range and null space of T respectively.

2. Concepts and Results

Definition 2.1. [2] Let X,Y,Z be normed spaces and A ∈ L(X,Y), B ∈ L(X,Z) with N(A) ⊆ N(B). The mapping
Ax 7→ Bx defined on R(A) is called a quotient of linear operators B and A and is denoted by B/A. The condition
N(A) ⊆ N(B) is described by saying that B is determined by A. Given A ∈ B(X,Y),B ∈ B(X,Z), a stronger version
is that for some k > 0, ‖Bx‖ ≤ k‖Ax‖, for every x ∈ X, which says that B is majorized by A.

Let A ∈ L(X,Y) be fixed. We form a set, say LA(X,Z) the set of all linear operators B from X to Z such
that B/A is defined. That is,

LA(X,Z) =
{
B ∈ L(X,Z) : N(A) ⊆ N(B)

}
.
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Note that LA(X,Z) contains the operator A and the zero operator from X to Z. It is easy to show that
LA(X,Z) is a subspace of L(X,Z), for each fixed A in L(X,Y). Motivated by the space LA(X,Z), for a fixed
A ∈ L(X,Y), we define the following set of quotient operators

QA(R(A),Z) :=
{
B/A : N(A) ⊆ N(B)

}
.

Addition and scalar multiplication are defined by

B/A + C/A = (B + C)/A
α(B/A) = αB/A

for B/A,C/A in QA(R(A),Z) and scalars α in K. It can be proved that QA(R(A),Z) is a linear space by
verifying the null space inclusions. Generally

LA(X,Z) ⊆
{
B ∈ L(X,Z) : ‖B(.)‖ ≤ k‖A(.)‖ for some k > 0

}
⊆ L(X,Z).

The second inclusion may fail if we replace L(.) by bounded operators B(.) : without boundedness, we
have

L(R(A),Z) = L(Y,Z)|R(A) =
{
B|R(A) : B ∈ L(Y,Z)

}
.

For Banach spaces, if R(A) is not closed then it cannot be another Banach space, although it is an “operator
range.”

Theorem 2.2. Let X, Y, Z be linear spaces and let A : X → Y be linear. If X and Z are of finite dimensions, then
dim(QA(R(A),Z)) = dim(R(A)) dim(Z).

Proof. The relation holds good when A is the zero operator. Let dim(X) = n, dim(Z) = m and dim(N(A)) = k.
Then dim(R(A)) = n − k. By rank-nullity theorem, we observe that the quantity in the right side of
the last equality is finite. When A is injective, B/A can be formed for every member of L(X,Z). Thus
nm = dim(QA(R(A),Z)) = dim(L(X,Z)) = nm.

We now assume that N(A) and R(A) are nonzero subspaces. Let {v1, v2, . . . , vk} be a basis of N(A).
We extend this to get a basis of X, say {v1, v2, . . . , vk, vk+1, . . . , vn}. Let {w1,w2, . . . ,wm} be a basis of Z. For
1 ≤ p ≤ m, 1 ≤ q ≤ n − k, define Tp,q : X→ Z by

Tp,q(vi) = δk+q,i wp

for i = 1, . . . ,n. AsN(A) ⊆ N(Tp,q) for 1 ≤ p ≤ m, 1 ≤ q ≤ n − k, Tp,q/A ∈ QA(R(A),Z). Let B/A ∈ QA(R(A),Z).
Then B(vi) = 0, i = 1, . . . , k. Now for each j ∈ {k + 1, k + 2, . . . ,n}

Bv j =

m∑
`=1

α`, j−k w`

for some scalars αp,q, 1 ≤ p ≤ m, 1 ≤ q ≤ n − k. To prove B/A =

m∑
p=1

n−k∑
q=1

αp,q(Tp,q/A) on R(A), it is enough to

prove the relation at each basis element of R(A). Let {u1, . . . ,un−k} be a basis of R(A). For each fixed j in
1 ≤ j ≤ n − k, there is some x ∈ X such that u j = Ax. Let x = β1v1 + · · · + βnvn, for unique scalars β1, . . . , βn.
Then u j = βk+1Avk+1 + · · · + βnAvn. Consider

(B/A)u j = Bx = βk+1Bvk+1 + · · · + βnBvn

= βk+1(α1,1w1 + · · · + αm,1wm) + · · · + βn(α1,n−kw1 + · · · + αm,n−kwm)
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and

m∑
p=1

n−k∑
q=1

αp,q(Tp,q/A)u j =

m∑
p=1

n−k∑
q=1

αp,qTp,q(x)

=

m∑
p=1

n−k∑
q=1

αp,q(βk+1Tp,q(vk+1) + · · · + βnTp,q(vn))

= βk+1(α1,1w1 + · · · + αm,1wm) + · · · + βn(α1,n−kw1 + · · · + αm,n−kwm).

Therefore
{
Tp,q/A : 1 ≤ p ≤ m, 1 ≤ q ≤ n − k

}
spans QA(R(A),Z).

Suppose
m∑

i=1

αi,1(Ti,1/A) + · · · + αi,n−k(Ti,n−k/A) = 0/A

for some scalars αi, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n − k. Then

m∑
i=1

(αi,1Ti,1 + · · · + αi,n−kTi,n−k)/A = 0/A.

Evaluating A(v j), k + 1 ≤ j ≤ n, in the above operator relation, we get
∑m

i=1 αi,1wi = 0. Hence αi, j = 0, for all
1 ≤ i ≤ m, 1 ≤ j ≤ n − k.

Theorem 2.3. Let X be a division Banach algebra (with identity) over the complex plane C. Then

dim(QA(R(A),Z)) = dim(X) dim(Z) or (dim(X) − 1) dim(Z).

Proof. Gelfand mapping theorem [6] says that every complex Banach division algebra is isometrically
isomorphic to the complex plane C. As the null space of the non-zero operator A is of dimension zero or
one, the proof follows.

We now discuss a collection of bounded operators for a fixed linear operator A from X to Z. We define

BA(X,Z) =
{
B ∈ B(X,Z) : N(A) ⊆ N(B)

}
.

Presence of the zero operator in BA(X,Z) proves that BA(X,Z) is non-empty. It is easy to verify that for
normed spaces X,Z, BA(X,Z) is a closed subspace of B(X,Z). The following result tells that if X,Z are also
Banach spaces, then so is BA(X,Z).

Theorem 2.4. Let X,Z be Banach spaces. The set BA(X,Z) of bounded linear operators B with N(A) ⊆ N(B) is a
Banach space.

Proof. Let {Bn} be a Cauchy sequence in BA(X,Z). Since B(X,Z) is complete, there exists B ∈ B(X,Z) such
that Bn → B in the norm of B(X,Z). Let x ∈ N(A). Since for each n, Bn ∈ BA(X,Z), we have Bn(x) = 0.
Convergence of the sequence {Bnx − Bx} to zero in Z shows that x ∈ N(B).

Under the above settings, let us take Bb
A(X,Z) =

{
B ∈ BA(X,Z) : B/A is bounded

}
. Since 0/A is bounded,

the set given above is nonempty.

Theorem 2.5. Bb
A(X,Z) is a normed subspace of BA(X,Z).
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Proof. First it is required to prove that Bb
A(X,Z) is closed under linear space operations.

Let α be a scalar and B,C ∈ Bb
A(X,Z). Note that for any D ∈ Bb

A(X,Z)

‖D/A‖ = sup
{
‖(D/A)y‖ : y ∈ R(A), ‖y‖ ≤ 1

}
= sup

{
‖Dx‖ : x ∈ X, ‖Ax‖ ≤ 1

}
.

Let x ∈ X be such that ‖Ax‖ ≤ 1. Therefore

‖(B + C)x‖ ≤ ‖Bx‖ + ‖Cx‖ ≤ ‖B/A‖ + ‖C/A‖ and
‖(αB)x‖ = |α| ‖Bx‖ ≤ |α| ‖B/A‖

imply that

‖(B + C)/A‖ ≤ ‖B/A‖ + ‖C/A‖ < ∞ and
|α(B/A)‖ ≤ |α| ‖B/A‖ < ∞.

Theorem 2.6. Let Z be a Banach space. If the set
{
x ∈ X : ‖Ax‖ ≤ 1

}
is bounded in X, then Bb

A(X,Z) is Banach.

Proof. Let {Bn} be a Cauchy sequence in Bb
A(X,Z). Since BA(X,Z) is complete, there exists B ∈ BA(X,Z) such

that Bn → B in the norm of BA(X,Z). Now it suffices to show that B/A is bounded. Let M = sup{‖x‖ : x ∈
X, ‖Ax‖ ≤ 1} and x ∈ X be such that ‖Ax‖ ≤ 1. Since {‖Bn‖} converges, there exists K such that ‖Bn‖ ≤ K for
all n. Choose N such that ‖(Bn − B)x‖ ≤ 1 for all n ≥ N. Then for each x ∈ X such that ‖Ax‖ ≤ 1,

‖Bx‖ ≤ ‖Bnx‖ + 1 ≤ ‖Bn‖ ‖x‖ + 1 ≤ KM + 1,

for all n ≥ N. Therefore ‖B/A‖ = sup
{
‖Bx‖ : x ∈ X, ‖Ax‖ ≤ 1

}
is finite.

Let A ∈ B(X,Y) be fixed. Now let us take Qb
A(R(A),Z) =

{
B/A ∈ QA(R(A),Z) : B,B/A are bounded

}
. We

now show that Qb
A(R(A),Z) is Banach when Z is a Banach space and

{
x ∈ X : ‖Ax‖ ≤ 1

}
is a bounded set in

X.

Theorem 2.7. Qb
A(R(A),Z) is a normed subspace of BA(X,Z).

Proof. We start first by showing that the operator norm is a norm on Qb
A(R(A),Z).

Let B/A ∈ Qb
A(R(A),Z) be such that ‖B/A‖ = 0. Then Bx = 0 for all x in X such that Ax , 0. Whenever

Ax = 0, due to the nullspace inclusion, we have Bx = 0. Thus B is the zero operator. Hence B/A = 0/A.
Let B/A ∈ Qb

A(R(A),Z) and α be a scalar. Now

‖αB/A‖ = sup
{
‖(αB)x‖ : x ∈ X, ‖Ax‖ ≤ 1

}
= |α| sup

{
‖Bx‖ : x ∈ X, ‖Ax‖ ≤ 1

}
= |α| ‖B/A‖.

Let B/A,C/A ∈ Qb
A(R(A),Z). Then

‖B/A + C/A‖ = sup
{
‖Bx + Cx‖ : x ∈ X, ‖Ax‖ ≤ 1

}
≤ sup

{
‖Bx‖ : x ∈ X, ‖Ax‖ ≤ 1

}
+ sup

{
‖Cx‖ : x ∈ X, ‖Ax‖ ≤ 1

}
= ‖B/A‖ + ‖C/A‖.

Theorem 2.8. Let Z be a Banach space. If
{
x ∈ X : ‖Ax‖ ≤ 1

}
is a bounded set in X, then Qb

A(R(A),Z) is Banach.
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Proof. Let {Bn/A} be a Cauchy sequence in Qb
A(R(A),Z). We claim that {Bn} is a Cauchy sequence in B(X,Z).

Let ε > 0 be given. Since {Bn/A} is Cauchy, there exists N such that

‖Bn/A − Bm/A‖ <
ε

‖A‖ + 1
for all n,m ≥ N.

That is, for all n,m > N,
sup

{
‖(Bn − Bm)x‖ : x ∈ X, ‖Ax‖ ≤ 1

}
<

ε
‖A‖ + 1

.

Let x be an element in X such that ‖x‖ ≤ 1. Then ‖Ax‖ ≤ ‖A‖. Now for all n,m > N,

‖(Bn − Bm)x‖ = ‖((Bn − Bm)/A)Ax‖
≤ ‖(Bn − Bm)/A‖ ‖Ax‖
≤ ‖(Bn − Bm)/A‖ ‖A‖

≤
ε

‖A‖ + 1
‖A‖ < ε.

Thus ‖Bn − Bm‖ = sup{‖(Bn − Bm)x‖ : x ∈ X, ‖x‖ ≤ 1} < ε for all n,m > N. Let B be the linear uniform limit of
{Bn} and M = sup{‖x‖ : x ∈ X, ‖Ax‖ ≤ 1}. By Theorem 2.6, we see that B/A is bounded. For a given ε > 0,
convergence of {Bn} to B gives an integer N such that ‖Bn − B‖ < ε

M+1 for all n > N. Thus for all n > N,

‖Bn/A − B/A‖ = ‖(Bn − B)/A‖

= sup
{
‖(Bn − B)x‖ : x ∈ X, ‖Ax‖ ≤ 1

}
≤ sup

{
‖Bn − B‖ ‖x‖ : x ∈ X, ‖Ax‖ ≤ 1

}
= ‖Bn − B‖ sup

{
‖x‖ ∈ X : ‖Ax‖ ≤ 1

}
= ‖Bn − B‖M < ε.

Example 2.9. The condition
{
x ∈ X : ‖Ax‖ ≤ 1

}
is bounded in X is sufficient but it is not a necessary condition.

Consider the zero map on R. Now Qb
0({0},R) being singleton is a Banach space but the set

{
x ∈ R : |0x| ≤ 1

}
= R is

not bounded with the usual metric.

We denote Qb
A(R(A),Z) by Qb

A(R(A)) when X = Y = Z. QA(R(A)) is an algebra with respect to the
multiplication defined by (B/A).(C/A) = (BC)/A.

Theorem 2.10. If
{
x ∈ X : ‖Ax‖ ≤ 1

}
is bounded in a Banach space X and ‖A‖ ≤ 1, then QA(R(A)) is a Banach

algebra.

Proof. Let B/A, C/A ∈ QA(R(A)). Now

‖(B/A).(C/A)‖ = sup
{
‖(BC)x‖ : x ∈ X, ‖Ax‖ ≤ 1

}
= sup

{
‖(B/A)ACx‖ : x ∈ X, ‖Ax‖ ≤ 1

}
≤ sup

{
‖B/A‖ ‖(AC)x‖ : x ∈ X, ‖Ax‖ ≤ 1

}
= ‖B/A‖ sup

{
‖(AC)x‖ : x ∈ X, ‖Ax‖ ≤ 1

}
≤ ‖B/A‖ sup

{
‖A‖ ‖Cx‖ : x ∈ X, ‖Ax‖ ≤ 1

}
= ‖B/A‖ ‖A‖ sup

{
‖Cx‖ : x ∈ X, ‖Ax‖ ≤ 1

}
= ‖B/A‖ ‖A‖ ‖C/A‖ ≤ ‖B/A‖ ‖C/A‖.
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3. Open Mapping Theorem and Its Consequences

We now prove the open mapping theorem for quotient operators without using its boundedness. We
derive the following lemma first.

Lemma 3.1. Let X,Y,Z be Banach spaces and let A ∈ B(X,Y) with closed range, and B ∈ B(X,Z) withN(A) ⊆ N(B).
If (B/A)(Br(0)) contains an open ball centered at the origin in Z, then

(B/A)(Br(0)) ⊆ (B/A)(B2r(0)).

Proof. Suppose Bs(0) ⊆ (B/A)(Br(0)) for some s > 0. Let w ∈ (B/A)(Br(0)). We choose a sequence {vn} in Br(0)
such that∥∥∥∥w −

n∑
i=1

1
2i−1

(B/A)(vi)
∥∥∥∥ =

∥∥∥∥w − (B/A)
( n∑

i=1

1
2i−1

vi

)∥∥∥∥ < s
2n

for all n. Since
{∑n

i=1
1

2i−1 vi

}
is Cauchy and R(A) is complete,

∑
∞

i=1
1

2i−1 vi ∈ R(A). Each vi in Br(0) gives
‖
∑
∞

i=1
1

2i−1 vi‖ < 2r. For each i, let ui = 1
2i−1 A−1(vi). The open mapping theorem produces A as a homeomor-

phism from X to R(A).
Now

‖u1 + · · · + un‖ =
∥∥∥∥A−1

( n∑
i=1

1
2i−1

vi

)∥∥∥∥
≤ ‖A−1

‖

∥∥∥∥ n∑
i=1

1
2i−1

vi

∥∥∥∥
implies

{∑n
i=1 ui

}
is Cauchy; and hence

{∑
∞

i=1 ui

}
∈ X. Continuity of A−1 and B give

∑
∞

i=1 ui = A−1(
∑
∞

i=1
1

2i−1 vi)
and B(

∑
∞

i=1 ui) =
∑
∞

i=1 B(ui) respectively. Thus

w =

∞∑
i=1

(B/A)
( 1
2i−1

vi

)
=

∞∑
i=1

(B/A)
( 1
2i−1

vi

)
=

∞∑
i=1

(B/A)A(ui) =

∞∑
i=1

B(ui)

= B
( ∞∑

i=1

ui

)
= (B/A)

(
A
( ∞∑

i=1

ui

))
= (B/A)

( ∞∑
i=1

1
2i−1

vi

)
.

Theorem 3.2. Let X,Y,Z be Banach spaces. Let A ∈ B(X,Y) be injective and B ∈ B(X,Z) be surjective. If
N(A) ⊆ N(B) and R(A) is closed, then B/A is an open mapping on R(A).

Proof. Let G be a nonempty open set in R(A) and w ∈ (B/A)(G). Now w = (B/A)(v) for some v ∈ G.
From the openness of G in R(A) there is some r > 0 such that Br(v) ⊆ G; from the linearity of B/A,
(B/A)(v) + (B/A)(Br(0)) = (B/A)(Br(v)) ⊆ (B/A)(G).

Now, (B/A)(Br(0)) contains an open ball centered at the origin. Surjectiveness of B pressures the same
for (B/A) from range of A. Thus Z = B(X) = (B/A)(R(A)) = (B/A)(∪∞n=1Bn(0)) = ∪∞n=1(B/A)(Bn(0)). From
Baire’s theorem, we get a > 0 such that B′a(0) ⊆ (B/A)(B1(0)) and hence B′ar(0) ⊆ r(B/A)(B1(0)) = (B/A)(Br(0)).
By Lemma 3.1, (B/A)(Bn0 (0)) ⊆ (B/A)(B2n0 (0)). So (B/A)(G) ⊃ (B/A)(v) + B′ar(0) = B′ar(w).
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