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Abstract. In this paper we introduce the notion of weak quasi-entwining structure as a generalization of
quasi-entwining structures and weak entwining structures. Also, we formulate the notions of weak cleft
extension, weak Galois extension, and weak Galois extension with normal basis associated to a weak quasi-
entwining structure. Moreover, we prove that, under some suitable conditions, there exists an equivalence
between weak Galois extensions with normal basis and weak cleft extensions. As particular instances, we
recover some results previously proved for Hopf quasigroups, weak Hopf quasigroups and weak Hopf
algebras.

1. Introduction

In recent years, there has been a growing interest about the notion of entwining structure and its
generalizations. This kind of structures were introduced by Brzeziniski and Majid in [12] to understand
some symmetry properties of classical principal bundles in non-commutative geometry. In this setting, as
was pointed in [13], an entwining structure can be viewed as a symmetry of a non-commutative manifold.
From a formal viewpoint, an entwining structure in a category of modules over a commutative ring R,
is a triple (A, C, 1) where A is an algebra, C is a coalgebraand ¢ : C® A — A ® C (® denotes the tensor
product over R) is a map, called the entwining map, satisfying four conditions. Entwining structures are in
one-to-one correspondence with A-coring structures on A ®z C and one of the main examples comes from
the Hopf algebra setting because any comodule algebra over a Hopf algebra induces an entwining structure.
Moreover, entwining structures are a powerful tool to unify, using its categories of entwining modules,
various categories of Hopf modules introduced by several authors in the last decades as, for example,
Sweedler Hopf modules [27], [16], Doi and Takeuchi relative Hopf modules [17], [18]], [19], Doi-Koppinen
modules [20], [21], Yetter-Drinfeld modules [29], etc.

On the other hand, the notion of Galois extension associated to a Hopf algebra H was introduced in
1981 by Kreimer and Takeuchi in the following way: let A be a right H-comodule algebra with coaction
pa(a) = ag) ® ag). An extension A%H — A, where A = {a € A ; pa(a) = a® 1y} is the subalgebra
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of coinvariant elements, is H-Galois if the canonical morphism y4 : A ®4t A — A ® H, defined by
ya(a ®b) = abg) ® by, is an isomorphism. This definition has its origin in the approach to Galois theory
of groups acting on commutative rings developed by Chase, Harrison and Rosenberg and in the extension
of this theory to coactions of a Hopf algebra H acting on a commutative algebra A, developed in 1969 by
Chase and Sweedler [16]. An interesting class of H-Galois extensions has been provided by those for which
there exists a convolution invertible right H-comodule morphism / : H — A called the cleaving morphism.
These extensions were called cleft and it is well known that, using the notion of normal basis introduced
by Kreimer and Takeuchi in [24], Doi and Takeuchi proved in [18] that A°f < A is a cleft extension if and
only if is H-Galois with normal basis, i.e., the extension A®H < A is H-Galois and A is isomorphic to the
tensor product of A“H with H as left A°f-modules and right H-comodules.

The result obtained by Doi and Takeuchi admits a generalization to the entwining structure setting. In
[10] Brzeziniski proved that if (A, C,¢) is an entwining structure such that A is an entwined module, the
existence of a convolution invertible C-comodule morphism / : C — A is equivalent to say that A is a
Galois extension by the coalgebra C (see [11] for the definition) and A is isomorphic, as left A°H-module
and right C-comodule, to the tensor product of the coinvariant subalgebra A“C with C, i.e., the “normal
basis condition” holds.

The generalization of entwining structures to the weak setting was proposed, with the name of weak
entwining structures, by Caenepeel and De Groot in [14] to treat algebra extensions by weak Hopf algebras
[9]. Similarly with the entwining case, there exists a bijective correspondence between weak entwining
structures and canonical weak coring structures, in the sense of Wisbauer, on A®g C. Also, weak entwining
structures unify the more relevant categories of Hopf modules associated to weak Hopf algebras and, as in
the Hopf algebra case, the main family of examples comes from the theory of comodule algebras over weak
Hopf algebras. As a consequence, we can apply its properties to obtain results about Hopf-Galois extensions
in this context. For example, in [1] the notion of weak cleft extension was defined in a monoidal setting, and
Theorem 2.11 of [1] stated that for a weak entwining structure (4, C, 1) such that A is an entwined module, if
the functor A ® — preserves coequalizers, A is a weak C-cleft extension of the coinvariants subalgebra if and
only if is a weak C-Galois extension and the normal basis property, defined in [1I]], holds. Then we get the
weak entwining version of the result proved by Doi and Takeuchi and, since Galois extensions associated
to weak Hopf algebras are examples of weak Galois extensions for weak entwining structures, we obtain
that this characterization of weak cleft extensions in terms of weak Galois extensions satisfying the normal
basis condition can be applied to them.

A different generalization of the notion of (weak) entwining structure was proposed by Caenepeel and
Janssen in [15] with the name of partial entwining structures. In this case the motivation was to introduce
a theory of partial actions and coactions of Hopf algebras and then to obtain a Hopf-Galois theory in
this context. To this end, these authors introduced the more general notion of lax entwining structure
that includes partial and weak entwining structures as special cases. Taking inspiration from the weak
entwining case, in [3] we introduced the notions of lax Galois extension with normal basis and lax cleft
extension, and we proved, under the same conditions we used in the weak entwining setting, that these
notions are equivalent. Using that every partial entwining structure is a lax entwining structure we also
obtained in [3]] the corresponding result for partial entwining structures.

In the previous cases we always work with associative algebras (Hopf algebras and weak Hopf algebras)
but, recently, many Hopf non-associative algebraic structures were introduced generalizing the notions of
Hopf algebra and weak Hopf algebra. For example, Hopf quasigroups and weak Hopf quasigroups belong
to this family of non-associative Hopf algebra objects. The first ones were introduced by Klim and Majid
in [22] to understand the structure and relevant properties of the algebraic 7-sphere and they are particular
instances of the notion of unital coassociative H-bialgebra introduced in [26]. As examples, they include the
enveloping algebra of a Malcev algebra (see [22] and [25]) and the quasigroup algebra of an I.P. loop. On the
other hand, by weakening the unitality and associativity conditions on the Hopf algebra definition, recently
we proposed in [5] a new notion called weak Hopf quasigroup, that encompass weak Hopf algebras and
Hopf quasigroups. A family of non trivial examples of these algebraic objects can be obtained by working
with bigroupoids, i.e., bicategories where every 1-cell is an equivalence and every 2-cell is an isomorphism
(see Example 2.3 of [9]).
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The first result linking Hopf Galois extensions with normal basis and cleft extensions in a non-associative
setting can be found in [6]. More specifically, in [6] we introduce the notion of weak H-cleft extension, for
a weak Hopf quasigroup H in a strict monoidal category C with tensor product ® which generalizes the
one introduced for Hopf quasigroups in [4] with the name of cleft H-comodule algebra. Also, we introduce
the definition of H-Galois extension with normal basis, and we proved that, under the suitable conditions,
H-cleft extensions are the same that H-Galois extensions with normal basis and such that the inverse of the
canonical morphism is almost lineal. Therefore, in [6], we extend the result proved by Doi and Takeuchi in
[18] to the weak Hopf quasigroup setting and, as a consequence, for Hopf quasigroups. Of course, if H is
a weak Hopf algebra we recover the result proved in [1]] for weak Hopf algebras because, in an associative
context, the conditions assumed in the main theorem of [6] hold trivially.

Aswas proved in [7], following the ideas developed in [I]] for weak entwining structures and working in
a similar setting, it is possible to find the meaning of cleft for Hopf quasigroups in terms of entwinings. To
do this, in [7], we propose the notion of quasi-entwining structure. Quasi-entwining structures are triples
(A, C ¢) where A is a unital magma, C is a comonoid and ¢ : C® A — A ® C is a morphism satisfying three
axioms contained in the classical definition of entwining structure. In a similar way with the previous cases,
we get an example of quasi-entwining structure by considering H a Hopf quasigroup and (4, p4) a right
H-comodule magma. Then many questions arise if we think about weak Hopf quasigroups in a similar way.
For example, is it possible to introduce a “good” notion of entwining structure for weak Hopf quasigroups
linked with the notions of weak entwining structure and quasi-entwining structure? If true, is it possible
to prove for these general entwinings an equivalence between cleft extensions an Galois extensions with
normal basis containing as particular instances the results proved in [1] and [6]? To give an answer to this
questions is the main goal of this paper.

Now, we describe the paper in detail. After this introduction, in the second section we introduce
the notion of weak quasi-entwining structure proving that any H-comodule magma for a weak Hopf
quasigroup H provides an example of these kind of entwining structures. In the third section we propose
the definition of weak cleft extension for a weak quasi-entwining structure and we discuss the relations of
this new notion with the similar ones that we can find for weak entwining and quasi-entwining structures.
Also, in this section we give some examples associated to weak Hopf quasigroups and Hopf quasigroups.
Finally, in the last section we introduce the definitions of weak Galois extension and weak Galois extension
with normal basis for a weak quasi-entwining structure and we prove that, under suitable conditions,
there is no difference between weak Galois extensions with normal basis and cleft extensions for a weak
quasi-entwining structure. As a consequence of this result we recover the main theorem proved in [6].

2. Weak quasi-entwining structures

In what follows C denotes a monoidal category with equalizers and coequalizers. With ® we will
understand the tensor product of C and with K its unit object. Without loss of generality, by the coherence
theorems, we can assume the monoidal structure of C strict. Then, in this paper, we omit explicitly the
associativity and unit constraints. For each object X in C, idx : X — X is the identity morphism of X and,
for simplicity of notation, given objects X, Y and Z in C and a morphism f : X — Y between them, we write
ZQ fforidz ® f and f ® Z for f ® idz. We also assume that for every object X in C the endofunctors X ® —
and — ® X preserve coequalizers.

Note that the existence of equalizers (or coequalizers) implies that every idempotent morphism in C
splits (C is Cauchy complete), i.e., if g : Y — Y is such that g = g o g, there exist an object Z, called the image
of g, and morphismsi: Z — Yandp: Y — Zsuch thatg =iopand p oi = idz. Note that Z, p, called the
projection associated to g, and i, called the injection associated to g, are unique up to isomorphism.

A magmainCisapair A = (A, ua) where Ais an objectinCand pi4 : A® A — A (product) is a morphism
in C. By a unital magma in C we understand a triple A = (A, na, 1a) where (A4, p14) is a magma in C and
Na : K — A (unit), is a morphism in C such that s 0o (A®na) = ids = pa o (na ® A). If ua is associative, that
is, pa o (A® pa) = pa o (ua ® A), the unital magma will be called a monoid in C. Given two unital magmas
(monoids) A = (A, na, ua) and B = (B, np, up), a morphism f : A — B in C is a morphism of unital magmas
(monoids) if yg o (f® f) = fopaand f ona = ns.
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A comagma in C is a pair D = (D, 6p) where D is an object in C and 6p : D — D ® D (coproduct) is a
morphism in C. A counital comagma in C is a triple D = (D, ep, 6p) where (D, 0p) is a comagma in C and
ép : D — K (counit) is a morphism in C such that (ep ® D) o 6p = idp = (D ® €p) o 0p. A comonoid in C is
a counital comagma in C satisfying (6p ® D) o 6p = (D ® 0p) © 0p, i.e., the coproduct 0p is coassociative. If
D and E are counital comagmas (comonoids) in C, a morphism f : D — E in C is a morphism of counital
comagmas (comonoids) such that eg o f = ep and (f ® f) o 6p = O o f hold.

Let A be a magma, let D be comagma and let f : D — A, g : D — A be morphisms in C. The convolution
product of f and g, denoted by f * g, is defined by f+g = s o (f ® g) o 0p.

Let B be a monoid. The pair (X, 1x) is a right B-module if X is an objectin C and ¢x : X® B — Xis a
morphism in C satisfying ¢x o (X ® ng) = idx, Px o (x ® B) = Px o (X ® up). Given two right B-modules
(X, ¢¥x) and (Y, ¢y), f : X — Y is a morphism of right B-modules if ¢y o (f ® B) = f o ¢x. In the following,
we will denote the category of right B-modules by Cg. In a similar way we can define the notions of left
B-modules (we denote the left action by ¢x) and morphism of left B-modules. In this case the category of
left B-modules will be denoted by gC. Finally, note that K is a monoid and in this case we can identify the
categories Cx and xC with C.

If D is a comonoid, the pair (X, px) is a right D-comodule if X is an objectin C and px : X - X® D is a
morphism in C satisfying (X ® ep) o px = idx, (px ® H) o px = (X ® 6p) o px. Given two right H-comodules
(X, px) and (Y, py), f : X — Y is a morphism of right D-comodules if (f ® D) o px = py o f. The category of
right D-comodules will be denoted by CP.

Definition 2.1. A weak quasi-entwining structure in C consists of a triple (A, C, ), where A is a unital magma, C
a comonoid, and P : C® A — A ® C a morphism satisfying the relations:

(a1) o (C®na) = (ity ®C) 0 b,
(a2) Vagc o (ua®C) = (ua ® C) o (A ® Vagc),
(@3) (A®dc)op =K @C)o(CRY) o (6c®A),
(a4) (A®ec)oh = pgo (uy ®A),

where
uy =(A®ec)o o (C®na),
and
Vaec = (Ua®C)o (AR 1Y) o (A®C®14).

Note that if in the previous definition 1y = ¢c ® 74 we obtain that Vgc = idagc. Then condition (a2)
adds nothing relevant and we have the notion of quasi-entwining structure introduced in [7]. If A is a
monoid and we replace the condition (a2) by

Po(Co®up) =ua®Co(A®y)o (P ®A) 1)

we get the notion of weak entwining structure introduced by Caenepeel and De Groot in [14] as a general-
ization of entwining structures defined by Brzeziriski and Majid (see [12], [10]). In this associative setting,
if (1) holds we obtain (a2). Therefore, weak entwining structures are examples of weak quasi-entwining
structures.

Lemma 2.2. Let (A, C, 1) be a weak quasi-entwining structure. Then,
Uy * Uy = Uy. (2)
Proof. The morphism u, is idempotent for the convolution product because

uw*uw
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=(A®ec) oo (C®uy) o Oc (by (a4) of Definition.1)
=((A®ec)oP)®ec) o (CO®Y) o (Oc ® Na) by definition of uy)
= (A®((ec®ec) 0 6c)) 01 o (C® 1)y (a3) of Definition.1)
= 1y (by counit conditions).
[

Lemma 2.3. Let (A, C, ¢) be a weak quasi-entwining structure. The morphism V aec is idempotent and the identities

(A®6c) o Vasc = (Vaec ® C) 0 (A® Oc), 3)
Vagc o (y ® C) 0 6¢c = P o (C®14), 4)
Pagc © (uy ® C) 0 b¢c = pagc © (Na ®C), ®)

hold, where p agc is the projection associated to V agc.
Proof. Note that, by (al) of Definition 2.1 we have
Vasc = (a ® C) 0 (A ® ((uy ® C) 0 6¢)). (6)

Then, using (a2) of Definition the coassociativity of 0c and , we obtain that Vgc is idempotent
because

Vasc © Vaec = Vagc © (tta ® C) 0 (A®@ ((y ® C) 0 6¢)) = (ua ® C) 0 (A ® (((uy * uy) ® C) 0 6¢)) = Vaac-

Asa consequence, there exist an object AOC, called the image of V 4¢¢, and morphismsizgc : AOC — A®C
and PAsC - A ®C — AOC such that VA@C = iA®C O pPAsC and PAsC © iA®C = idADC. The morphisms PAsC and
iagc Will be called the projection and the injection associated to the idempotent morphism V 4gc.

The equality (B) follows by (6) and the coassociativity of oc. As far as (@),

Vagc o (y ® C) 0 b¢)

= ((ua o (uy ®uy)) ® C) o (C®dc) © ¢ vy fe))

= ((uy * uy) ® C) 0 ¢ (by coassociativity of dc)

= (uy ® C) o 6c ©y @)

=1 o (C®na) by @l)of Definition.

Finally, by (6), we have

Vagc o (1a®C) = (uy ® C) 0 bc. 7)

Then, (5) follows composing in @ with page. O

Example 2.4. The main family of examples of weak quasi-entwining structures comes from the notion
of right H-comodule magma for a weak Hopf quasigroup H. Now we recall the notion of weak Hopf
quasigroup in a braided monoidal category C with braiding c (in this case ¢! denotes the inverse of the
braiding) introduced in [5]. A weak Hopf quasigroup H in C is a unital magma (H, ny, un) and a comonoid
(H, en, 6n) such that the following axioms hold:
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(b1) g o g = (ux ® UH) © OHeH-

(b2) egopgo(up®H) = ey o uyo(H® up)
= ((en o pn) ® (em 0 ) o (H® 6 ® H) = ((en © ) ® (e © pr)) © (H @ (¢l © Om) ® H).

(b3) bp®H)odgony = (H® py ®H) o ((6n © 1) ® (61 © 1))
= (H® (un o ¢iy) ® H) o (5 © 1) @ (61 © ).

(b4) There exists Ay : H — H in C (called the antipode of H) such that, if we denote the morphisms idy * Ay
by Ik (target morphism) and Ay * idy by ITY. (source morphism),

(b4-1) I}, = ((ey © up) ® H) o (H ® cy) © (O © ) ® H).

(b4-2) TR = (H® (e11 0 ) © (e ® H) o (H ® (11 0 11)).

(b4-3) AH * HIL-I = Hg * AH = AH.

(b4-4) up o (Ag ® up) o 5y ® H) = py o (11§, ® H).

(b4-5) ppo (HO® up) o (H®Ag®H) o (0 ®H) = g o (HLH®H).

(b4-6) pp o (U ® Ap) o (H® 6p) = pup o (HTIL).

(b4-7) pp o (up®H)o (H® Ay ®H) o (H® 6p) = g o (HRTIIY).

Note that, if in the previous definition the triple (H, g, py) is a monoid, we obtain the notion of weak
Hopf algebra in a braided monoidal category. Then, if C is symmetric, we have the monoidal version of the
original definition of weak Hopf algebra introduced by Bohm, Nill and Szlachdnyi in [9]. On the other hand,
under these conditions, if ¢y and 6y are morphisms of unital magmas (equivalently, 7y, yy are morphisms
of counital comagmas), Hg = Hﬁ =g ®¢ep. As a consequence, conditions (b2), (b3), (b4-1)-(b4-3) trivialize,

and we get the monoidal notion of Hopf quasigroup defined by Klim and Majid in [22] in a category of
vector spaces over a field IF.

For any weak Hopf quasigroup the morphisms Ik, I} are idempotent. Also ﬁIL{ and ﬁﬁ defined by
=L
[y = (H® (e © pm)) o (0 © ) ® H)

and .
ITy = ((eq o ur) ® H) o (H ® (6n © 1)),

are idempotent.
Let H be a weak Hopf quasigroup and let A be a unital magma, which is also a right H-comodule with
coaction ps : A —» A ® H. We will say that (A, pa) is a right H-comodule magma if the equality

HagH © (0A ® pa) = pa o Ua, 8)
holds. If (A, pa) is a right H-comodule magma, the following equivalent conditions hold:
(c1) (pa®H)opaona=(A®(uuo CI}}H) ® H) o ((pa © na) ® (0n © nr))-
(€2) (pa®H)opaona=(A®uy®H) o ((pa©n4) @ (6r © 11)).
(c3) (A®TTy) 0 pa = (ta®H) 0 (A® (ps 0 ).

(c4) (A®II) 0 pa=((Haoc,!) ®H)o(A®(paona)).

—R
(c5) (A®IIy) o paona=paona.
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(c6) (A®TIE) 0 paona = paoia.
Indeed, first we will show that if (4, p4) is a right H-comodule magma the equality (c6) holds.
pa°na
=((A®cr)opaopao(A®na))®H) o pa o1na (by unitand counit properties)
= ((A®¢n) o pagt © (pa ® pa) © (A®14)) ® H) © pa o 14 Gy @)
= (ua® (((eq o ur) ® H) o (H ® cyi) © (0 ® H))) o (A® cya ® H) o ((pa ©114) ® (pa © 1))
(by the right H-comodule condition for A and naturality of ¢)
= (ua ® (un o (H®TIL))) o (A® cra ® H) o ((pa © 1) ® (pa © 114)) (by () of )
=(A®un) o (Lasr ® H) o (pa ® pa ® Ag) o (4 ® (pa © 114)) (by the right H-comodule condition for A and (b4-6))
= (A® up) o ((pa © pa) ® An) o (N4 ® (pa ©14)) (by E)
= (A®TII}) 0 pa © 14 (by the right H-comodule condition for A, unit properties and (b4-6)).
On the other hand, note that
(A® (ur o cify) ® H) o ((pa © na) ® (Om1 © 1))
= (A®((un ®H) o (H®cyp) o (01 © Nu) ® H))) © pa © 114 (by naturality of c)
= (A® (H®TIE) 0 6)) © pa © 14 (by (15) of Bl)
= (pa ®TIE) 0 pa © 14 (by the right H-comodule condition for A).

Then, we obtain that (c1) & (c6). Similarly, by (18) of [5] and the comodule condition for A, we prove
that
—R
(A® up ®H) o ((pa ©14) ® (On © N)) = (pa ®ITy) 0 pa 0 na,
and then (c2) <= (c5). Also, by (c1) and (34) of [5], we obtain

—R
(pa®TIE)) 0 paona = (pa®IIy) 0 paona. )
Thus,
—R
(A®TIL)) 0 paona=(A®TI ) 0paona (10)

and, using the equivalence (c1) < (c6), we prove that (c1) implies (c5). In the same way, by (33) of [5] and
(c2) we obtain (9) and (I0). Therefore, by the equivalence (c2) &= (c5), we get (c6). Trivially, (c3)==(c5)
and (c4)==(c6). Then, (c3)==(c1) and (c4)==(c2). Finally, (c1)==(c3) and (c2)==(c4) because

(ta ® H) 0 (A® (pa 0 na))
= (((A®en)opaopa)®H) o (A® (pa ©14)) (by counit properties)
= (ua®(epoun)®H) o (A®cya® H® H) o (pa ® ((pa ® H) © pa © 114)) by {8
= (pa®(enoum)®@H) o (A®cya ® H® H) o (pa ® (A® (un o cij}y) ® H) 0 ((pa © 14) ® (On © 1)) oy (c1)

= (ua ® (((en o pp) ®TIE) o (H ® 61))) 0 (A® ca ® H) 0 (pa ® (pa © 1]4)) (by naturality of ¢ and (15) of [5])

= (ua® (((en o um) ® (ﬁﬁ oIh)) o (H® 6p))) o (A® cya ® H) o (pa ® (pa © 114)) by (34) of [5])
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—R
= (ua® (((er o un) @Ily) o (H®OH))) o (A®cHA @ H) o (pa ® (pa ©14)) (by the right H-comodule condition for A

and (c6))

= (ua® ([T o s © (T ® H))) 0 (A ® cya ® H) 0 (04 ® (pa © 114)) (by (10) of [B])

=(ua® (ﬁﬁ o up)) o (A®cra ® H) o (pa ® (pa ©14)) Gy 30) of [Bl)

= (A®TTg) 0 paopiao (A8 by

=(A® ﬁﬁ) 0 pA (by unit properties)

and

(a0 czl))®H) o (A® (pa 0 14a))

=(A®em)opaopaccy,)®H)o(A® (pa ©na)) by counit properties)

= ((uao ) @ (enopnocyy) ®H) o (A@cy, @ HOH) 0 (pa ® ((pa ® H) © pa ©114)) (by naturality of c and

= ((ua 0 c;'y) ® (e o ) ®IT) © (H ® 61) © cifly)) © (A® ¢}y ® H) 0 (pa ® (pa © 114)) by naturality of ¢, (15)
of [B], (c2) and (b2))

= ((uaocy'y) ® (I} o ppy o [Ty ®H)o i) o (A®cyl, ® H) o (pa ® (pa © 1na)) Gy (10) of )

= (ua® (T} o up)) o (A®cya®H) o (A® ﬁﬁ) ©pA ©14)® pa) (by naturality of )
= (ua ® (I, 0 pp)) 0 (A® ca ® H) © ((pa 0 14) ® pa) oy ()

= (A®TIy) opaouac(a®A) byl

= (A®TIL) © pa (by unit properties).

Taking into account the level of generality of weak Hopf quasigroups, as a consequence of the above
identities, if H is a Hopf quasigroup (Hopf algebra) and (A, pa) is a right H-comodule magma (monoid) the
identity pa ona = 14 ®1n is a consequence of (§). Also, if H is a weak Hopf quasigroup (weak Hopf algebra)
and (A, pa) is a right H-comodule magma (monoid), the equality ppona = (A® Hb) o paona follows by .

Let (A, pa) be a right H-comodule magma. Then, the triple

(A,H,p = (A® up) o (cpa ® H) o (H® pa)) (11)
is a weak quasi-entwining structure. Indeed, the condition (al) of Deﬁnitionholds because:
(uy ® H) o 6y
=(A®(enopn)®H) o (cna ®cpn) o (H®cHa®A) o (0n ® (pa © 14)) by naturality of ¢)
= (A®(((en o un) ® H) o (H® cpypr) © (01 ® H))) 0 (cra ® H) o (H ® (pa © 114)) (by naturality of c)
= (A® ) o (ca® H) o (HO (A®TIL) 0 pa 0 114)) by 1) o B
= (A® pn) o (cha ® H) o (H® (pa ©14)) by (c6)).

On the other hand, by (c3) and the naturality of c we have

Vasn = (A® (i o ) © (A®TTg) 0 pa) ® H). (12)
Then,
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Vagn o (s ® H)
= (pa ® (en o pr o (i ® H)) ® (i © cfyp)) © (A® ca ® H) o (pa ® pa)) ® (01 © 1) ® H)
(by (8) and (18) of [5])

= (A ® (en o o (H® ) ® (pr © cly)) 0 (A®@ ca ® H) 0 (pa ® pa)) ® (5 © i) ® H) oy (b2)
—R
= (a ® (en © ) ® (i 0 cjy)) © (A® crya ® (H ® TTyy) 0 ) ® H) 0 (pa ® pa ® H) (by (18) of [5)

—R
=(A®eg®(uno CI_{}H o (Il ® H))) o ((tasH © (pa ® pa)) ® H® H) 0 (A ® pa ® H) (by the condition of right
H-comodule for A)
=((A®epn) o paopa)®H) o (A®Va) by )
= (}lA ® H) o (A ® VA) (by the properties of the counit).

Therefore, (a2) of Definition [2.1/ holds. Also, by the naturality of c, the comodule condition for A and
(b1) we obtain (a3) of Definition Finally, (a4) follows by

pa o (uy ® A)
=((egoung)®A)o (H® Cg,lH o(H® ((1a o c;ﬁA) ® H) o (A® (pa ©114))) (by naturality of c)
= ((en o um) ® A) o (H® ¢, o (H® (A®TI}) © pa)) Gy (c4)
=(A® (¢n o un)) o (cHa ®A) o (H® (A®TIL) 0 pa)) (by naturality of )
= (A®ep) o P by ) of ).

Definition 2.5. Let (A, C, ) be a weak quasi-entwining structure in C. We denote by MS (1) the category whose
objects are triples
Moy M®A - M,py: M- MeC),

where idy = om0 (M ® n1a), (M, pum) is a right C-comodule and the equality
py o Py = (Pu®C) o (M®Y) o (om ® A) (13)

holds. The morphisms f : M — N in MS () are morphisms of C-comodules, i.e., (f ® C) o py = pn o f.
The objects of MS () will be called weak entwined quasi-modules. Then, (A, pa = pa,pa: A > A®C)isan
object in MS () if and only if

paopa=ua®C)o(A®Y)o(pa®A). (14)
Note that for this particular case we obtain that
Vaec © pa = pa. (15)
Indeed,
Vagc © pa
= (ua®C) 0 (A® ((11y ® C) 0 60)) © pa (v
= ((uao(A®uy) o pa)®C) o pa (by the right C-comodule condition for A)

= (ua®ec) o (A®Y) o (pa®14a)) ® C) © pa (by the definition of uy)
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= ((A®c) 0 pa® a0 (A®14))®C) 0 pa v i)
= PA (by unit and counit properties).
Therefore, we have that
(A®éc)o Vagc o pa =ida. (16)

Example 2.6. If H is a weak Hopf quasigroup, the triple (H, ¢y = pp, py = 0n) is an object in ME () for
Y =(H®uy)o(cup®H)o (H®06y). This case is a particular instance associated to the weak quasi-entwining
structure introduced in Example2.4because (H, pyy = 0y) is a right H-comodule magma. If (A, p4) is a right
H-comodule magma, the triple (A, ¢4 = pa, pa) is an object in Mf(y) because holds.

3. Weak cleft extensions for weak quasi-entwining structures

Let (A, C, ¢) be a weak quasi-entwining structure in C such that there exists a coaction pg : A - A®C
satisfying that (A, ua, pa) is in M§(1). We denote by A“C the equalizer object, called the subobject of
coinvariants of the morphisms p4 and Cs = (ua ® C) o (A ® (pa © na)). Then we have an equalizer diagram

pA
A . A®C
Ca (17)

ia

AcoC

where i, is the equalizer morphism.
By the unit properties C40n4 = paona. Asa consequence, there exists a unique morphism 1 ec : K — A®C
such that

1A = i4 © Ngec. (18)
On the other hand, if the equalities
pac(A®(uac(ia®A))) = pao((uac(A®ia) ®A) (19)
and
paopao(ia®A) = (ua®C)o(ia®pa) (20)
hold, we have
pa©pao (ia®ia)
= (a®C)o(A®ua®C) o (ia®is®(pa © 14a)) (by {20) and properties of ix )
=Caopao(ia®ia) by (19).
Therefore, there exists a unique morphism e : A€ ® ACC — A®C satisfying
pa o (ia ®ia) =ia © pgac. (21)

By and we obtain that (A®C, 1)4ac, ligec) is a unital magma. Also, by , it is possible to prove
that (A“%, ncc, tacc) is @ monoid (the monoid of coinvariants).

Remark 3.1. Let H be a weak Hopf quasigroup, (4, pa) a right H-comodule magma and 1 the morphism
introduced in . In this case (A, H, 1) is a weak quasi-entwining structure and (A, ua, pa) is in Mf;f W).
Under these conditions the identity holds. The proof in the braided case is the same that the one known
in the symmetric setting (see Lemma 3.4 of [6]). Also the equality (20) holds for H-comodule magmas
associated to Hopf quasigroups because in this case (4 = A ® .
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Definition 3.2. Let (A, C, ¢) be a weak quasi-entwining structure in C such that there exists a coaction ps : A —
A ® C satisfying that (A, ua, pa) is in MS(). We will say that A°C < A is a weak cleft extension if there exist a
morphism of right C-comodules, h : C — A and a morphism h™ : C — A such that:

(d1) wy+h™' = b7,

(d2) pao(ua®A)o (AR (' ®@h)odc)) = pao(A®uy),

(d3) pao(ua®A)o (AR ((h@h™)odc) = pao (A (h+h™)),
(d4) paoga =Caoqa,

where qa = pia o (A®h™) o pa. The morphism h will be called a cleaving morphism of A < A and h™ the inverse
of h. Note that (d2) implies that ™' « h = uy,.

Example 3.3. Following [7], a quasi-entwining structure in C consists of a triple (A4, C, {’), where A is a unital
magma, C a comonoid, and 1) : C® A — A ® C a morphism satisfying the identities (a3) of Definition
and

(el) po(C®na) =1na®C,
(€2) (A®ec)oyp =ec®A.

As was pointed in the beginning of the previous section, any quasi-entwining structure is an example
of weak quasi-entwining structure where Uy = ec®Na and, as a consequence, Vagc = idagc. If H is a Hopf
quasigroup and (A, pa) is a right H-comodule magma, the triple is an example of quasi-entwining
structure. In this setting (see [7]) we can define the category of entwined quasi-modules as in Definition
By Proposition 1.4 of [7] we know that if A is a unital magma, C is a comonoid, and ) : C® A - A®Cisa
morphism such that there exists a morphism e : K — C satisfying the identities 5c oe = e®e and ec oe = id,
the triple (A, C, ¢) is a quasi-entwining structure and, if we define the coaction ps = o (e ® A), we can
prove that (A, i, pa) belongs to MS (). Also, under these conditions, pa © 174 = 14 ® e. Moreover, if for
all (M, ¢, pm) € MG (), we denote by M“C the equalizer of py and (y = M ® e and by iy the injection of
M®C in M, it is easy to show that A“¢ is a unital magma where 1«c and p4«c are the unique morphisms
such that iy 0 faec =14, ia © figec = lia © (ia ®ia). Then, by Definition 1.7 of [7], we will say that A«C < A
is a cleft extension if there exist a morphism of right C-comodules, i : C = A and a morphism ™! : C - A
such that:

(f1) hoe =14,
(2) 140 (ua®A) o (A® (@) 050)) = pa o (a®A) o (A® (™ ®h) 0 60)) = A® e,
(f3) Yo (C®hHodc=h"®e,

hold.

For example, if H is a Hopf quasigroup and (4, p,) is aright H-comodule magma, note that ps = 1o(e®A)
for 1p the morphism defined in and e = ny. Moreover, (A, ua, pa) is a entwining quasi-module and the
equality

pa © I’l_l = (h_l ® /\H) ©CHH © 6H (22)

holds for all morphisms /,h™ : H — A such that & is a morphism of right H-comodules and satisfying (f2).
Also, if h is a morphism of right H-comodules, (f3) is a consequence of (f2). Therefore, in this particular
case, the definition of cleft extension is the one introduced in [4] with the name of cleft comodule algebra.
This last notion is the “quasi-Hopf” version of the notion of cleft extension for Hopf algebras. In [4] the
reader can find interesting examples of these kind of extensions.

If A%C < A is a cleft extension for a quasi-entwining structure (A, C, ¢), A“C < A is a weak cleft
extension. Indeed, trivially uy * h~! = h7! because in this setting uy = ¢c ® 4. Also, by (f2) we have that
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h*h™ =h™'+h = ec ® 4 and then (d2) and (d3) of Definitionhold. Finally, by (£3), pa 0174 = 14 ®¢, and
by the comodule condition for A, we obtain

pacfda=qga®e="Ca0pa
and, therefore, (d4) of Definition [3.2] holds.

Example 3.4. In the associative setting there exists a theory of weak cleft extensions associated to weak
entwining structures and they are examples of weak cleft extensions as the ones introduced in Definition
A weak entwining structure in C consists of a triple (4, C, 1), where A is a monoid, C a comonoid,
and ¢ : C® A —» A ® C is a morphism satisfying the identities (al), (a3), (a4) of Definition 2.1 and (T). If
we define A“C by the equalizer diagram , we obtain that A“C is a monoid. Moreover, if there exists a
coaction ps : A — A® C such that (A, ua, pa) is in MG () (in this case the objects of MS () are also right
A-modules and the morphisms are also A-linear), we say that A“C < A is a weak cleft extension, or a weak
C-cleft extension (see Definition 2.3 of [])), if there exist a morphism of right C-comodules, h : C — A and a
morphism /™! : C — A such that

(g1) hlsh=uy,,
(82) Yo (C®M ™) odc=Ca0 (uy+h™).

Note that under these assumptions  * iy, = h. Moreover, if we put g = hand g~ = uy *h™! we have that
grrg=uy«htsh=uy*uy =uyand uy+ g =uy*uy*xh™ =uy+h™ = g'. Then we can assume that
uy+h™' =h7!, ie, h™! satisfies (d1) of Definition and we can change (g2) by

(83) Yo (CON ) odc=Caoh™.

In this associative setting, if for A“C < A there exist a morphism of right C-comodules, & : C - A and a
morphism i~! : C — A satisfiying (d1)-(d4) of Definition we have that (g1), (g2) and (g3) hold. Indeed,
by (d2) of Definition 3.2 we get (g1). Also, the equality

¥ =(ua®C)o (A® (pa o pa)) o (K7 ®h) 0 6c) ® A) (23)
holds because
(141 ®C) 0 (A® (ps 0 pa)) o (™ @) 0 5¢) ® A)
= (1a®C)o (A® (1A ®C) o (A®Y) 0 (pa® A) o (™ ® h) 0 6¢) ® A) oy {1
= (ua®C)o ((h™ +h)® 1) o (5¢c ® A) (by the coassociativity of 5 and the condition of comodule morphism for h)
= (ua ®C) o (uy @) 0 (6c ® A) by (81)
=¥ ®ec)o(C®Y) o (0c ®A) by (a4) of Definition
= 1 (by (a3) of Definition]2.1jand counit properties).
Therefore, we obtain (g2) and (g3):
Po(CoN)odc
= (a®C) 0 (A® (14 ®C) 0 (A® (pa 0 ) o (™ ®H) 0 5) ® A) 0 (C BN 0 6 by )
= (ua®C)o (h ® (pa o (h*h1))) o S (by the coassociativity of 6c)
= (ua®C)o (W1 ®(pa 0 ga 0 h)) oS¢ (by the condition of comodule morphism for i)

= (ua®C) o (h™1 ® (Ca 0 qa o h)) 0 Sc (by (d4) of Definition3.2)
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=Cpo0 (ulp * I’lil) (by (d2) of Deﬁnition the coassociativity of 6c and the associativity of j14)
=(p0 h! (by (d1) of DefinitiorIA

Conversely, let AC < A be an extension and assume that there exist a morphism of right C-comodules,
h:C — Aand a morphism h™! : C — A satisfiying (g1), (g2) ((g3)). Then (d1) of Definitionfollows b
the properties of ™!, (d3) of Definition 3.2 holds trivially by the associativity of ua, (d2) of Definition
follows by (g1) and the associativity of 114, and by (g2) we obtain (d4) of Definition 3.2]because

pacqa
= ([JA ®C)o(A® (ll} o(C® hil) 0d¢)) o PA (by the comodule condition for A)
=(ua®C)o(A®(Caoh™)) o pa by 3

= CA O (A (by the associativity of pia).

Therefore, in an associative context Definition 3.2]is the definition of weak C-cleft extension introduced
in [1].

Example 3.5. Let H be a weak Hopf quasigroup and let (A, p4) be a right H-comodule magma. Following
Definition 2.7 of [8], we will say that /1 : H — A is an anchor morphism if it is a multiplicative total integral
(i.e., a right H-comodule morphism and a morphism of unital magmas) and the following equalities hold:

pao((pao(A®M)®(hoAm) o (A®om) = pa o (A® (o TTp)), (24)

pao (pao(A®(hoAp)®h)o (A® ) = pia o (A® (hoIl}Y)). (25)

If there exists an anchor morphism h : H — A, the extension A®C < A associated to the weak quasi-
entwining structure defined in is a weak cleft extension with cleaving morphism h and h™! = h o Ay.
Indeed, first note that, using that / is a comodule morphism and % o n4 = ny, we have that

ull} = h o HIIEI (26)

Then, as a consequence of @, the multiplicative condition for & and (b4-3) of the definition of weak
Hopf quasigroup, we have

uy* ™t = (hoIIR)*(hoAy) =ho (IIN * Ay) =h™".

Therefore, (d1) of Definition [3.2/ holds. The equality (d2) holds by and (25). Similarly, we obtain
(d3) by and by h oIk, = h=h™" (this last equality follows by the multiplicative condition for /). Finally,
by Proposition 2.6 of [8] we know that

—R
paoga=(A®Ily)opaoga, (27)

and then, using (c3) of the definition of right H-comodule magma, we obtain (d4). As a particular instance
of this case, we have that H;, < H is a weak cleft extension associated to the weak quasi-entwining structure
(H,H,¢ = (H® up) o (cyy ® H) o (H® dp7)) where h = idy (anchor morphism), ™! = Ay, gy =TIk and H is
the image of Ik,

For example, if H is a cocommutative weak Hopf quasigroup and C is symmetric, (H?, pp» = (H®
An) o 6y) is an example of right H-comodule magma. In this case, it is easy to show that Ay is an anchor
morphism for (H?”, pper). Of course, the same result holds for cocommutative Hopf quasigroups (in this
case IR =T1E = ey @ n).
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On the other hand, let H and A be Hopf quasigrous in C. Letg : A — H, h : H — A be morphisms
of Hopf quasigroups such that g o h = idy. Consider the right H-comodule structure on A defined by
pa = (A®g)o0a. Then, his an anchor morphism and, as a consequence, the examples of strong projections
that we can find in [2] give examples of anchor morphisms.

Finally, let H be a Hopf quasigroup and let D be a unital magma in C. If there exists a morphism
¢p : H® D — D such that

¢p o (nz® D) =idp, (28)

ppo(H®np) =eu®@np, (29)
hold, the smash product D§H = (D ® H, npgy, tipgr) defined by

Mogr =10 ® 1, Hpge = (Up ® pn) o (D @ Y @ H),

where wg = (pp®H) o (H®cup) © (0u ® D), is a right H-comodule magma with comodule structure given
by opgy = D ® 6p. For this H-comodule magma, h = np ® H is an anchor morphism.

Example 3.6. Let H be a weak Hopf quasigroup and let (A, pa) be a right H-comodule magma. Following
Definition 4.1 of [6], we will say that the extension A®C < A, associated to the weak quasi-entwining
structure defined in (1), is a weak H-cleft extension if there exists a right H-comodule morphism h : H — A
(called the cleaving morphism) and a morphism ™! : H — A such that

(h1) k'« h = (A® (en o un)) © (cya ® H) o (H® (pa © 1))

(h2) (A® usr) o (crp ® H) o (H® (pa 0 h ™)) 0 5y = (A®TIy) 0 pa o 7L,
(h3) pa o (a®A) o (AR ®h) o (AB ) = pia o (A® (i ).

(hd) pa o (s ®A) o (A®®H™) 0 (A®6k) = s 0 (A® (1% h71)).

Then, A“C < A is a weak cleft extension, in the sense of Definition for the weak quasi-entwining
structure introduced in (1), with cleaving morphism k. Indeed, first note that, by (c3) of Example[2.4} (h2)
is equivalent to say that

Yo(H®h ) ody=Csoh™h. (30)
Then, if (h2) holds, so hold (d1) and (d4) of Definition[3.2] Indeed,
uy +h™t
= (A®éep) oo (H®N™) 0 by (by (ad) of Definition.1)
= (A®en) o Caoh™ by o)
= h1 (by the right H-comodule condition for A and the unit properties),

and then (d1) of Definition [3.2]holds. On the other hand,
pacqa
= (ua®H) o (A®Y) 0 (pa ® ) 0 pa by (i)
=(ua®H) o (A® (Y o (Hoh™)oby)) o pa by the right H-comodule condition for A)
= (uAa®H) 0 (A® (Caoh™)) 0 pa oy o)
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—R
= (MA ® HH) o (A ® (CA o hil)) 0 pA (by (c5) of Example.

Therefore, ps 0 ga = (A® ﬁf,) o pa o qa and, applying (c3) of Example we get (d4) of Deﬁnition
Moreover, (h1) is just the same that i1« h = uy, and then (h3) is equal to (d2) of Deﬁnition and (h4) is
the same that (d3).

Lemma 3.7. Let (A, C, 1) be a weak quasi-entwining structure satisfying and let AC < A be a weak cleft
extension with cleaving morphism h. Then, the following equalities hold:

pao(A®(pao(@a®A))) =pac((ac(A®Ga)®A), (31)
pao(pa®A) o (A®((qa®h) o pa)) = pa, (32)
140 (qa®h) o pa = idy, (33)
pao (a®h™) o (A®pa) = pia © (A®qa). (34)

Proof. If A“C — A is a weak cleft extension with cleaving morphism &, by (d4) of Definition 3.2 we have
that pa 0ga = Ca 0ga. Then, there exists a unique morphismp, : A — A%C such that ga =igopa. Therefore,
if (19) holds we prove (BI) composing in (I9) with A ® ps ® A. On the other hand,

pao (pa®A) o (A®((qa®h) o pa))
= a0 (A®(uao(qa®h)opa)) by b))
=uao(A® (uao(ua®A) o (A® (P ®h) 0 5¢c)) © pa)) (by the comodule condition for A)
= pia © (A® (a0 (A®uy) © pa)) by (d2) ofDefinition
=pao(A®((ua®ec) o (A® 1) o (pa ®1]4))) (by the definition of i)
=pao(A®((A®ec) o pao piao(A®1a))) by (14
= U4 (by unit and counit properties).

Therefore, we obtain (82). Composing in this identity with 74 ® A we prove (33). Finally, follows
from

pao(ua®h™)o(A®pa)
= pao((ao(pa®A) o (A®((qa®h) o pa)) @) o (A® pa) by b
= s o (ua®A)o ((uao(A®qa)) ® (h®h™) 0 5¢)) o (A® pa) (by the comodule condition for A)
= a0 ((uao (A®qa) ® (h+h™1)) o (A® pa) (by (d3) of Definition.2)
= pao(A® (uao(@@a® (k™) o pa)) myfih
= a0 (A® (a0 (Ha®A) o (qa® (h®h) 0 5¢c)) 0 pa)) by (d3) of Definition.2)
= a0 (A® (uao ((ao(qa®h) o pa) ®h™1) 0 pa)) (by the comodule condition for A)
= pia o (A®qa) by 3.
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4. Galois extensions for weak quasi-entwining structures

A classical result in Hopf algebra theory proved by Doi and Takeuchi in [18] gives a characterization of
Galois extensions with normal basis in terms of cleft extensions. A generalization of this theorem to weak
entwining structures, and therefore to weak Hopf algebras, can be found in [1]. The aim of this section
is to prove a similar theorem for weak quasi-entwining structures containing, as a particular instance, the
characterization obtained in [6] for Galois extensions with normal basis for weak Hopf quasigroups.

In this section we will assume that (A, C, 1)) is a weak quasi-entwining structure in C such that there
exists a coaction ps : A = A ® C satisfying that (A, ua, pa) is in MS (). Also, unless otherwise stated we
assume that the identities (I9) and (20) holds.

Then, if A“C is the equalizer object and iy : A°C — A the equalizer morphism of the morphisms pa
and (s = (ua ® C) o (A® (pa © 1)), we have that (A“C, nuc, fgec) is @ monoid, where e : K — A“C,
Lacc : APCR®A®CC — A®C are the factorizations of the morphisms 174 and pi4 0 (ia ®ia) through is, respectively.
That is, 14ec is the unique morphism satisfying (18), and i 4.c the unique morphism such that holds.

Under these assumptions, let AOC be the image of the idempotent morphism Vgc, and letiggc : AOC —
A®C and pagc : A ® C — AOC be the associated injection and projection respectively, i.e., isgc and pasc
are the unique morphisms such that Vgc = isec © paec and pagc © irec = idanc. If we define the morphism
th : A®A — AOC by

ta =pasc o (a ® C) o (A® pa), 35)
using and (20), we have the following:
tao((Hao(A®ia))®A) = pasc o (ua®C) o (A® ((ua ®C) o (ia ® pa))) = ta © (A® (ua o (ia ® A))).
Then, if the object A ® 4 A is defined by the following coequalizer diagram

(Hao(A®ix)®A

AQAC®A . A®A A®puc A,

A®(uac(ia®A) (36)

A
1y

there exists a unique morphism y4 : A ®oc A — AOC, called the canonical morphism, such that
onnﬁ ZtA. (37)

Definition 4.1. Let (A, C, ) be a weak quasi-entwining structure in C. We will say that A°C — A is a weak Galois
extension if y 4 is an isomorphism.

By the properties of the coequalizer and (20), we have
(13 ®C) o (a0 (A®1ia)) ® pa) = (3, ® C) 0 (A® (pa © (14 © (ia ® A)))).

As a consequence, there exists a unique coaction psg, A : A ®goc A = (A ®4c A) ® C satisfying

' AcoC
PAs a0 1y = (15,8 C) 0 (A® pa). (38)

Using the comodule structure of A, it is easy to show that (A ®4«c A, pag,.c4) is a right C-comodule.
On the other hand, (AOC, panc = (Pasc ®C) 0 (A®O¢) 0 isec) is a right C-comodule because, by the counit
properties,
(AOC ® ec) © paoc = pasc © iasc = idaac,

and, by (3) and the coassociativity of 6c,
(pAoc ® C) © panc = ((Pasc ® C) 0 (A® 6¢) © Vaec) ® C) 0 (A® 6c) 0 iagc = (AOC ® O¢) © panc-

Moreover, we have that
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(74 ®C) 0 pag,ca © 1)

= ((pasc o (ua ® A) 0 (A® pa)) ® C) 0 (A® pa) Gy s, {7

= (Pagsc ® C) o (1a ® O¢) © (A ® pa) by coassociativity of &¢)

= (Pasc ® C) 0 (A®6c) © Vagc © (1ta ® C) 0 (A® pa) by B

= pAOC © YA © 1} (by definition).
Thus, the canonical morphism is a morphism of right C-comodules, i.e.,

(74 ®C) © pag,uca = PAcC © VA (39)
As a consequence, by (3),

PA® coc A © Y2 o pasc = (73! © paec) ® C) 0 (A® b¢), (40)

ie., y;ll o pasc : A®C — A ®4uc A is a morphism of right C-comodules.
If the endofunctor — ® A preserves coequalizers (for example if C is closed) and the equality

pao (Ha®ia) = a0 (A® (ua o (A®ia))) (41)

holds, we have
15 0 ((ua o (A® (a0 (A®ia)))) ® A) = 1y o (a ® (a © (ia ® A))).
Thus, there exists a unique morphism @ag 4 : A ® (A ®ac A) = A ®guc A satisfying the identitity

Pasch © (A®TY) =15 0 (g ® A). (42)

Definition 4.2. Let (A, C, ¢) be a weak quasi-entwining structure in C. Assume that A°C < A is a weak Galois
extension and that holds. We will say that y,! is almost linear if it satisfies the following equality:

V' ©Pasc = Pag,uca © (A® (V4! © pasc) © (N4 ® C)). (43)

Definition 4.3. Let (A, C, ) be a weak quasi-entwining structure in C satisfying the assumptions of this section.
We will say that A”C < A is a weak Galois extension with normal basis if:

(i1) A®C < A is a weak Galois extension.

(i2) There exists an idempotent morphism Quecge : A€ ® C — A“C @ C of left A“C-modules, where the action
and the coaction are @ gocge = piaec ® C, and ppucee = AC ® ¢.

(i3) If we denote by A“C x C the image of Quucgc, there is a left A°C-module and right C-comodule isomorphism
ba: A — A®C x C where the actions and the coactions are

(pA = ‘UA ] (lA ®A), (PA/:UCXC = Y pcoCgC © (HACUC ® C) [¢] (ACOC ® SACUC®C),

pA, PA“’C@)C = (TA"“CQZ)C ® C) o (ACOC ® (SC) O S pcCgC,

and rpecge 1 APC®C — ACXC, spucge : ACXC — ACC®C are the morphisms such that s yecge 0T pocge =
QACUC@C {Ilnd rA(aC®c o SACoC@C = idAchXC.

Remark 4.4. Let H be a weak Hopf quasigroup and let (A, p4) be a right H-comodule magma. Let A“H < A
be the extension associated to the weak quasi-entwining structure defined in (I1). Then, in this particular
case, the notions of weak Galois extension and weak Galois extension with normal basis introduced in
Definitions and are the notions of weak H-Galois extension and weak H-Galois extension with
normal basis defined in [6] for weak Hopf quasigrous in a symmetric setting (see Definitions 3.10 and 3.11,
respectively).
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Lemma 4.5. Let (A, C, ¢) be a weak quasi-entwining structure in C. If A°C — A is a weak Galois extension with
normal basis, there exists a unique morphism ma : A ® 4oc A — A such that

My onﬁ = Ua o (A®((ia ® €H) © Sancgc © ba)). (44)
Also, my satisfies the following identity:
ma oy, 0 pagc 0 pa = (ia ® ex) 0 Spwcec © ba. (45)
Moreover, if holds and A ® — preserves coequalizers, the equality
M4 © PAg,.cA = [ia © (A ®MA) (46)
holds.
Proof. We have that
pa © (A®((ia ® en) 0 Spncec © ba)) © (A ® (ua o (ia ® A))
= pia 0 (A® ((ia ® e1) © Qucge © (awe ® C) 0 (AC & (Spwcae © ba))) (by the condition of left A“C-module morphism
for ba)

=uao (A®(ia®epn)o (‘UACDC ®C)o (ACOC ® (Saccec © ba))) (by the condition of left A“C-module morphism for Q ¢, and

Spc0Cgc © (2AEUC®C = SACUC®C)

= 4 © (A® (ia © (ia ®ia ® £¢) © (AC ® (spucgc © ba)))) Gy @1

= s o ((a o (A®ia)) ® ((ia ® en) 0 Spacgc © ba)) Gy (19).

Then, by the properties of the coequalizer (36) we can assure that there exists a unique morphism
Mma : A®poc A — A satisfying (@4). The equality (45) holds because

ma oyl o pasc © pa
=ma 0 y,! ota o (1a ® A) by unit properties)
=my o nj o (14 ® A) by (7)
= (ia ® €11) © Specgc © Da (by (44) and the unit properties).
Finally, we get (46):
M4 © Pag cn © (A®MNY)
= 114 0 (114 ® ((i4 ® £C) 0 S ucqc © b)) oy @) and i)
= a0 (A® (ta o (A® ((ia ® ec) © S ancec © ba)))) oy 1))

= a0 (A®ma) o (A®nY) by (44)).
|

Lemma 4.6. Let (A, C, ) be a weak quasi-entwining structure in C satisfying the assumptions of this section. If
A®C — A is a weak Galois extension with normal basis and [i , is the factorization of pa through the coequalizer
morphism n%, the equality

Py =pao(ma®h)opag,,ca (47)
holds for h = b;xl 0 ¥ gacgc © (Naec ® C). Moreover, U, satisfies that

Uy =(A®ec)oisgc 0 ya. (48)
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Proof. First note that by (19) we can assure that 114 factorizes through the coequalizer morphism 4. Then,
there exists a unique morphism i, such that

Hyo nﬁ = Ua. (49)
On the other hand, the equality
(ma®C) 0 pag,,caony = ((ua o (A®ia)) ®C) o (A® (spucgc © ba)) (50)
holds because
(ma ® C) 0 Pag,ca © 1
= ((maon})®C) o pa by )
= (1a ®C) 0 (A® ((ia ® £c) 0 Spwcec © ba) ® C) 0 (A ® pa) by fiah)
= (ua®C) o (AR ((ia ® ec) © Qpucgc) ® C) 0 (A ® ((A®C ® 5¢) 0 Sawcgc © ba)) (by the condition of left A“C-module
morphism for bs).
= ((uao(ia®A))®C) o (A® (Sawcgc ©ba)) (by the condition of left AC-module morphism for Qcc, and the counit properties).
As a consequence,
pa o (ma®h) o pag, a0y
= 114 © (14 0 (A®1)) ® (b © Fpucge © (e ® C))) 0 (A ® (spucqc 0 ba)) oy o))
=uao(A®(Hao(ia® (b;‘1 0 T'pacgc © (Nawc ® C))) © Spcgc © ba)) by )
= a0 (A® (b, o1 pucgc © (Hpac ® C) 0 (A°C ® (Qyecge © (Nawe ® C))) © Spcec © ba)) (by the condition of left
A*C-module morphism for b;!)
= UA (by the condition of left AC-module morphism for © scoCec: T acoCec © LucoCac © SpcoCec = i ey and unit properties)

and then (#7) holds.
Finally,

(A®ec) 0iage 0 yaony

=(A®ec)o Vagco (ua®C) o (A®pa) by 7
= a0 (A® ((A®ec) © Vagc © pa)) by (a2) of Definition[2.1)
= U (y (T8,

and, applying (#9), we obtain (§). O

Theorem 4.7. Let (A, C, {) be a weak quasi-entwining structure in C. If (41) holds and A ® — preserves coequalizers,
the following assertions are equivalent:

(i) A®C — A is a weak Galois extension with normal basis and y," is almost lineal.

(i) A“C < A is a weak cleft extension.
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Proof. First we will prove that (ii)==(i). If AC < A is a weak cleft extension with cleaving morphism 7,
define y’, : ADC — A ®uc A by

Ya=m4o(a®A)o (A (' ®h)odc)) o iaec
Then,
YA© Yy
= pasc o (a®C) o (a0 (A®K ™)) ® (pa © h))(A®Oc) 0 inac by B7)
= Pasc o (a0 (ua®A) o (AR ((h™1®h) 05¢)))®C) 0 (A®S¢) 0 iaec (by the condition of morphism of right C-comodules
for h and the coassociativity of 6¢)
= pasc © (a0 (A®uy)) ®C) o (A®dc) 0 iagc (by (d2) of Deﬁnition
= paec © Vaec © iasc by @)
= id Anc (by properties of Vasc),

and

’ A
Yaoryaon,

=n4o(ua®A) o (A®((h™' ®h)o6¢)) o Vagc o (ua®C) o (A® pa) (by@)
=nfo(ua®A)o (AR (W' ®h)obc)) o (ua®C)o(A® (Vasc 0 pa)) by @2)of Deﬁnition
= o (ua®A) o (AR (1™ ®h) 0 5¢)) © (114 ® C) 0 (A® pa) oy is))
=nfo((uac(ua®h™)o(A®pa)) ®h) o (A® pa) (by the right C-comodule condition for A)

= o (ua®A)o (A®((qa ®h) 0 pa)) (by P4

=1/ o (A® (a0 (qa ® 1) © pa)) oy f3))

= 1 oy )

Therefore, )/, 0 ya = idag,.c4 and, as a consequence, the canonical morphism is an isomorphism with

inverse y,' = /,. The next step is to prove that y,! is almost lineal. This property holds because, in one
hand

PAg,ch © (A® (y3! 0 pasc) © (14 ® C))
=1 o (ua®A) o (A® (((uy * ™) ® ) © 5¢)) (by (7 and the coassociativity of bc)
=nfo(ua®A)o(A®((h ®h) o ¢)) by (d1)of Definition,
and, on the other hand,
7/,_41 O PasC
=no(ua®A)o((uao(ABuy) @ @h) o (A®6c®C) o (A® ) by fiand B
=nfo(ua®A)o (uao(ua®A)o (AR (W ®h)0bc) @I ®h)o(A®6c®C) o (A®dc)

(by (d2) of Definition[3.2)
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=4 o((uao(a®h™)o(A®pa)®A)o((uac (AN )®h®h) o (A®Sc®C)o (A®dc)

(by the condition of morphism of right C-comodules for  and coassociativity of 6¢)
=14 o((uao(A®qa) @A) o (pac (A ) ®h®h) o (A®5c®C)o (A®dc) (by)
=nyo((pac(A®h )@ (uao((@ach)®h)) o (A®6c®C)o(A®dc) (by>
=nfo((uac(A®h™)® (a0 (ga®h) o paoh))o(A®Sc) (by the condition of morphism of right C-comodules for

Jrand coassociativity of dc)
=0 (ua®A) o (A® (™' ®h) 0 60)) by ).

Finally we will prove that A”C < A satisfies the normal basis condition. Let wa = pa o (ia ® h) :
A“C®C — Aand @)y =(pa®C)opa:A— A®C ® C where, by (d4) of Deﬁnition pa: A — A®C is the
unique morphism such that

iAo pa=qa- (51)

Then, by , we have that wa o ), = ids, and Qguecge = @/, © w4 is an idempotent morphism. For

Q ucgc We have that the following identities

Quecge = ((pa o pa o (ia ®h) ® C) o (A @ 6¢), (52)

Quecoc = ((fiaee © (A“C ® (pa o h))) ® C) o (A“C ® 6¢), (53)

hold. Indeed, the first one follows by (20) and the condition of morphism of right C-comodules for 1. To
prove (53), firstly we will show that

in 0 lpwc 0 (AC @ pa) = ga o s o (ia ® A) (54)

holds. The proof is the following:
ia © Upwc © (A“C @ pa)

= o (ia ® qa) Gy f1)and 1)

= pao(a®h™) o (ia ® pa) by e

=qa o s o (ia ® A) oy o).

Thus, using that i4 is a monomorphism, we have
piaec 0 (AC®pa) = paoao(ia®A), (55)

and then holds.

Therefore, by (52), we obtain that Q4wcgc is @ morphism of right C-comodules for the coaction pccgc =
A®C ® §¢ and, by , Qjacgc is a morphism of left AC-modules for the action @ gecge = tiawc ® C.

Let 7 pacepc : APCQC — APC X C, S pacge : AP X C — A®C®C be the morphisms such that s gwcge 0 74ucge =
Qpacge and 7 gacge © Spacge = id gacxc, where A“C x C is the image of Q gwcgc. Define

ba = rpucgc oWy A — A®C % C

and
b, = @4 0 Spucge : AC X C — A.
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Then,
b)) oba = wa 05pucge O Tpucge © Wy = WA © W)y 0 Wa O W)y = idy
and
bA e} b% = Y pcoCgC © SpcCgC © VAcCgC © SpcCgC = idAC"CXC'

Therefore, by is an isomorphism with inverse b/, and a morphism of right C-comodules because, by the

/7

equality Qjucgc © @), = @/, and the condition of right C-comodule morphism for w’, (consequence of the
right C-comodule structure of A), we have

Pascxc ©ba = (rpucge ® C) 0 (A ® 6¢) © Qpucge 0 @y = (b4 ® C) 0 pa.
Moreover, b, is a morphism of left A“C_modules. Indeed:

b;ll O P pgecxC
= ua0((ia0 tipwc)®h) 0 (ACC®S gacg) (by the condition of morphism of left A“C-modules for e aNd Q495 seoCac = SpeeCoc)
= 4 0 (4 © (ia ®i4)) ® h) 0 (AVC ® s pucec) by 1))
= pa o (ia®b3") Gy fish

= @ 0 (A“C @ b3, (by definition of ).

Now we get (i)==(ii): Assume that A“C < A is a weak Galois extension with normal basis and that
y;! is almost lineal. Let Quucyc be the associated idempotent morphism of right C-comodules and left
A“C-modules. Denote by 7gucec : A% ® C — A“C X C and s ucge : ACC X C — A“C ® C the morphisms
such that SpcCgC O T pcwCgc = QACO‘:@C and ¥ pcoCgC © SpcCgC = idA””CXCr where ACDC X C is the image of QACG(:@C' Let
ba: A > A“C x A be the isomorphism of right C-comodules and left A““-modules. Then, define

Wy = b;ll 0 T pecge : AC®C — A

and
@'y = Spwcgc 0 b A— AC®C.

= id4. Moreover, w4 and w’, are morphisms of right C-comodules

and left A®“-modules because Q4ucgc and by are morphisms of right C-comodules and left A““-modules.
Consider

Trivially, @/, owa = Qpwcgc and waow

h=wso(Nawc®C), h'=mypoy,' opraco(a®C),

where m, is the morphism introduced in Lemma Using that w4 is a morphism of right C-comodules,
we obtain that 1 is a morphism of right C-comodules. The proof for (d1) of Definition 3.2]is the following:

uy *h™
= 14 © Pag,ca © (g ® (73! © pasc © (14 ® C))) © ¢ by fie
=mp 0y, o pasc o (uy ® C) 0 d¢ Gy (43))
=h! @y )-
By
pao(pa®A)o (A ((h' ®h) o dc))
= 14 © (M4 © Pag,ca © (A® (13! © pasc © (14 ® C)))) ® h) © b by fie
= pia o ((maoy,' opasc) ®h) o (A®dc) by )
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= a0 (ma®h)o pag,,ca° 7/;‘1 0 paec (by )
=T, 0¥, © Pasc by @)

= (A®ec) oiapc © Va0V, © Pasc by {is))

= (A ® &c) 0 Vg (by the factorization of Vagc)

= a0 (A®uy) by f),
we obtain (d2) of Deﬁnition To prove (d3), we will obtain previously that

qa = (ia ® &c) o W)y (56)
and (34) hold. Indeed, first note that (56) follows by
qa

=14 © Pagcn © (A® (y5 0 Pasc © (14 ® C))) © pa by fie
=m0 Y,! o pasc 0 pa by )
= (ia ® &) 0 W)y ©y fi5).
Thus, we get (34) because
pao(ua®h™) o (A®pa)
=140 Pag, e © (A ® (74! © Pasc © (114 ® 0))) © (A® pa) Gy e
=m0y, o pasc o (ua ® C) o (A® pa) Gy o)
= my o nh oy {7
= a0 (A® ((ia ® ec) o w)y)) by i)
=miiy o (A®qa) by ).
Then
pao(ua®A)o(A® ((h@h™)odc)
= a0 (ua®h™') o (A® (pa o h)) by the condition of morphism of right C-comodules for h)
= ta o (A®(ga oh)) vy 4
= s o (A® (h*h™')) (by the condition of morphism of right C-comodules for /),

i.e., (d3) of Definition [3.2] holds.
Finally, (d4) of Definition [3.2)follows by and (17).
|

As a consequence we have the following corollary:

Corollary 4.8. Let H be a weak Hopf quasigroup in a strict symmetric monoidal category C. Let (A, pa) be a
right H-comodule magma. Let A" < A be the extension associated to the weak quasi-entwining structure
(A H, ¢ = (A® up) o (cua ® H) o (H® pa)) defined in (T1). If A ® — preserves coequalizers and and hold,
the following assertions are equivalent:

(i) A" — A is a weak Galois extension with normal basis and y," is almost lineal.
(ii) A“H < A is a weak cleft extension.
(iii) A®H — A is a weak H-cleft extension.

Proof. The proof follows by Theorem [4.7jand Theorem 5.1 of [6] because, as was pointed in Remark
under the conditions of this corollary, the equality (20) holds.
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