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Abstract. In this paper we introduce the notion of weak quasi-entwining structure as a generalization of
quasi-entwining structures and weak entwining structures. Also, we formulate the notions of weak cleft
extension, weak Galois extension, and weak Galois extension with normal basis associated to a weak quasi-
entwining structure. Moreover, we prove that, under some suitable conditions, there exists an equivalence
between weak Galois extensions with normal basis and weak cleft extensions. As particular instances, we
recover some results previously proved for Hopf quasigroups, weak Hopf quasigroups and weak Hopf
algebras.

1. Introduction

In recent years, there has been a growing interest about the notion of entwining structure and its
generalizations. This kind of structures were introduced by Brzeziński and Majid in [12] to understand
some symmetry properties of classical principal bundles in non-commutative geometry. In this setting, as
was pointed in [13], an entwining structure can be viewed as a symmetry of a non-commutative manifold.
From a formal viewpoint, an entwining structure in a category of modules over a commutative ring R,
is a triple (A,C, ψ) where A is an algebra, C is a coalgebra and ψ : C ⊗ A → A ⊗ C (⊗ denotes the tensor
product over R) is a map, called the entwining map, satisfying four conditions. Entwining structures are in
one-to-one correspondence with A-coring structures on A ⊗R C and one of the main examples comes from
the Hopf algebra setting because any comodule algebra over a Hopf algebra induces an entwining structure.
Moreover, entwining structures are a powerful tool to unify, using its categories of entwining modules,
various categories of Hopf modules introduced by several authors in the last decades as, for example,
Sweedler Hopf modules [27], [16], Doi and Takeuchi relative Hopf modules [17], [18], [19], Doi-Koppinen
modules [20], [21], Yetter-Drinfeld modules [29], etc.

On the other hand, the notion of Galois extension associated to a Hopf algebra H was introduced in
1981 by Kreimer and Takeuchi in the following way: let A be a right H-comodule algebra with coaction
ρA(a) = a(0) ⊗ a(1). An extension AcoH ↪→ A, where AcoH = {a ∈ A ; ρA(a) = a ⊗ 1H} is the subalgebra
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of coinvariant elements, is H-Galois if the canonical morphism γA : A ⊗AcoH A → A ⊗ H, defined by
γA(a ⊗ b) = ab(0) ⊗ b(1), is an isomorphism. This definition has its origin in the approach to Galois theory
of groups acting on commutative rings developed by Chase, Harrison and Rosenberg and in the extension
of this theory to coactions of a Hopf algebra H acting on a commutative algebra A, developed in 1969 by
Chase and Sweedler [16]. An interesting class of H-Galois extensions has been provided by those for which
there exists a convolution invertible right H-comodule morphism h : H→ A called the cleaving morphism.
These extensions were called cleft and it is well known that, using the notion of normal basis introduced
by Kreimer and Takeuchi in [24], Doi and Takeuchi proved in [18] that AcoH ↪→ A is a cleft extension if and
only if is H-Galois with normal basis, i.e., the extension AcoH ↪→ A is H-Galois and A is isomorphic to the
tensor product of AcoH with H as left AcoH-modules and right H-comodules.

The result obtained by Doi and Takeuchi admits a generalization to the entwining structure setting. In
[10] Brzeziński proved that if (A,C, ψ) is an entwining structure such that A is an entwined module, the
existence of a convolution invertible C-comodule morphism h : C → A is equivalent to say that A is a
Galois extension by the coalgebra C (see [11] for the definition) and A is isomorphic, as left AcoH-module
and right C-comodule, to the tensor product of the coinvariant subalgebra AcoC with C, i.e., the ”normal
basis condition” holds.

The generalization of entwining structures to the weak setting was proposed, with the name of weak
entwining structures, by Caenepeel and De Groot in [14] to treat algebra extensions by weak Hopf algebras
[9]. Similarly with the entwining case, there exists a bijective correspondence between weak entwining
structures and canonical weak coring structures, in the sense of Wisbauer, on A⊗R C. Also, weak entwining
structures unify the more relevant categories of Hopf modules associated to weak Hopf algebras and, as in
the Hopf algebra case, the main family of examples comes from the theory of comodule algebras over weak
Hopf algebras. As a consequence, we can apply its properties to obtain results about Hopf-Galois extensions
in this context. For example, in [1] the notion of weak cleft extension was defined in a monoidal setting, and
Theorem 2.11 of [1] stated that for a weak entwining structure (A,C, ψ) such that A is an entwined module, if
the functor A⊗− preserves coequalizers, A is a weak C-cleft extension of the coinvariants subalgebra if and
only if is a weak C-Galois extension and the normal basis property, defined in [1], holds. Then we get the
weak entwining version of the result proved by Doi and Takeuchi and, since Galois extensions associated
to weak Hopf algebras are examples of weak Galois extensions for weak entwining structures, we obtain
that this characterization of weak cleft extensions in terms of weak Galois extensions satisfying the normal
basis condition can be applied to them.

A different generalization of the notion of (weak) entwining structure was proposed by Caenepeel and
Janssen in [15] with the name of partial entwining structures. In this case the motivation was to introduce
a theory of partial actions and coactions of Hopf algebras and then to obtain a Hopf-Galois theory in
this context. To this end, these authors introduced the more general notion of lax entwining structure
that includes partial and weak entwining structures as special cases. Taking inspiration from the weak
entwining case, in [3] we introduced the notions of lax Galois extension with normal basis and lax cleft
extension, and we proved, under the same conditions we used in the weak entwining setting, that these
notions are equivalent. Using that every partial entwining structure is a lax entwining structure we also
obtained in [3] the corresponding result for partial entwining structures.

In the previous cases we always work with associative algebras (Hopf algebras and weak Hopf algebras)
but, recently, many Hopf non-associative algebraic structures were introduced generalizing the notions of
Hopf algebra and weak Hopf algebra. For example, Hopf quasigroups and weak Hopf quasigroups belong
to this family of non-associative Hopf algebra objects. The first ones were introduced by Klim and Majid
in [22] to understand the structure and relevant properties of the algebraic 7-sphere and they are particular
instances of the notion of unital coassociative H-bialgebra introduced in [26]. As examples, they include the
enveloping algebra of a Malcev algebra (see [22] and [25]) and the quasigroup algebra of an I.P. loop. On the
other hand, by weakening the unitality and associativity conditions on the Hopf algebra definition, recently
we proposed in [5] a new notion called weak Hopf quasigroup, that encompass weak Hopf algebras and
Hopf quasigroups. A family of non trivial examples of these algebraic objects can be obtained by working
with bigroupoids, i.e., bicategories where every 1-cell is an equivalence and every 2-cell is an isomorphism
(see Example 2.3 of [5]).
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The first result linking Hopf Galois extensions with normal basis and cleft extensions in a non-associative
setting can be found in [6]. More specifically, in [6] we introduce the notion of weak H-cleft extension, for
a weak Hopf quasigroup H in a strict monoidal category C with tensor product ⊗, which generalizes the
one introduced for Hopf quasigroups in [4] with the name of cleft H-comodule algebra. Also, we introduce
the definition of H-Galois extension with normal basis, and we proved that, under the suitable conditions,
H-cleft extensions are the same that H-Galois extensions with normal basis and such that the inverse of the
canonical morphism is almost lineal. Therefore, in [6], we extend the result proved by Doi and Takeuchi in
[18] to the weak Hopf quasigroup setting and, as a consequence, for Hopf quasigroups. Of course, if H is
a weak Hopf algebra we recover the result proved in [1] for weak Hopf algebras because, in an associative
context, the conditions assumed in the main theorem of [6] hold trivially.

As was proved in [7], following the ideas developed in [1] for weak entwining structures and working in
a similar setting, it is possible to find the meaning of cleft for Hopf quasigroups in terms of entwinings. To
do this, in [7], we propose the notion of quasi-entwining structure. Quasi-entwining structures are triples
(A,C, ψ) where A is a unital magma, C is a comonoid and ψ : C⊗A→ A⊗C is a morphism satisfying three
axioms contained in the classical definition of entwining structure. In a similar way with the previous cases,
we get an example of quasi-entwining structure by considering H a Hopf quasigroup and (A, ρA) a right
H-comodule magma. Then many questions arise if we think about weak Hopf quasigroups in a similar way.
For example, is it possible to introduce a ”good” notion of entwining structure for weak Hopf quasigroups
linked with the notions of weak entwining structure and quasi-entwining structure? If true, is it possible
to prove for these general entwinings an equivalence between cleft extensions an Galois extensions with
normal basis containing as particular instances the results proved in [1] and [6]? To give an answer to this
questions is the main goal of this paper.

Now, we describe the paper in detail. After this introduction, in the second section we introduce
the notion of weak quasi-entwining structure proving that any H-comodule magma for a weak Hopf
quasigroup H provides an example of these kind of entwining structures. In the third section we propose
the definition of weak cleft extension for a weak quasi-entwining structure and we discuss the relations of
this new notion with the similar ones that we can find for weak entwining and quasi-entwining structures.
Also, in this section we give some examples associated to weak Hopf quasigroups and Hopf quasigroups.
Finally, in the last section we introduce the definitions of weak Galois extension and weak Galois extension
with normal basis for a weak quasi-entwining structure and we prove that, under suitable conditions,
there is no difference between weak Galois extensions with normal basis and cleft extensions for a weak
quasi-entwining structure. As a consequence of this result we recover the main theorem proved in [6].

2. Weak quasi-entwining structures

In what follows C denotes a monoidal category with equalizers and coequalizers. With ⊗ we will
understand the tensor product of C and with K its unit object. Without loss of generality, by the coherence
theorems, we can assume the monoidal structure of C strict. Then, in this paper, we omit explicitly the
associativity and unit constraints. For each object X in C, idX : X → X is the identity morphism of X and,
for simplicity of notation, given objects X, Y and Z in C and a morphism f : X→ Y between them, we write
Z ⊗ f for idZ ⊗ f and f ⊗ Z for f ⊗ idZ. We also assume that for every object X in C the endofunctors X ⊗ −
and − ⊗ X preserve coequalizers.

Note that the existence of equalizers (or coequalizers) implies that every idempotent morphism in C
splits (C is Cauchy complete), i.e., if 1 : Y→ Y is such that 1 = 1 ◦ 1, there exist an object Z, called the image
of 1, and morphisms i : Z → Y and p : Y → Z such that 1 = i ◦ p and p ◦ i = idZ. Note that Z, p, called the
projection associated to 1, and i, called the injection associated to 1, are unique up to isomorphism.

A magma inC is a pair A = (A, µA) where A is an object inC and µA : A⊗A→ A (product) is a morphism
in C. By a unital magma in C we understand a triple A = (A, ηA, µA) where (A, µA) is a magma in C and
ηA : K→ A (unit), is a morphism in C such that µA ◦ (A⊗ ηA) = idA = µA ◦ (ηA ⊗A). If µA is associative, that
is, µA ◦ (A ⊗ µA) = µA ◦ (µA ⊗A), the unital magma will be called a monoid in C. Given two unital magmas
(monoids) A = (A, ηA, µA) and B = (B, ηB, µB), a morphism f : A→ B in C is a morphism of unital magmas
(monoids) if µB ◦ ( f ⊗ f ) = f ◦ µA and f ◦ ηA = ηB.
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A comagma in C is a pair D = (D, δD) where D is an object in C and δD : D → D ⊗ D (coproduct) is a
morphism in C. A counital comagma in C is a triple D = (D, εD, δD) where (D, δD) is a comagma in C and
εD : D → K (counit) is a morphism in C such that (εD ⊗ D) ◦ δD = idD = (D ⊗ εD) ◦ δD. A comonoid in C is
a counital comagma in C satisfying (δD ⊗D) ◦ δD = (D ⊗ δD) ◦ δD, i.e., the coproduct δD is coassociative. If
D and E are counital comagmas (comonoids) in C, a morphism f : D → E in C is a morphism of counital
comagmas (comonoids) such that εE ◦ f = εD and ( f ⊗ f ) ◦ δD = δE ◦ f hold.

Let A be a magma, let D be comagma and let f : D→ A, 1 : D→ A be morphisms in C. The convolution
product of f and 1, denoted by f ∗ 1, is defined by f ∗ 1 = µA ◦ ( f ⊗ 1) ◦ δD.

Let B be a monoid. The pair (X, ψX) is a right B-module if X is an object in C and ψX : X ⊗ B → X is a
morphism in C satisfying ψX ◦ (X ⊗ ηB) = idX, ψX ◦ (ψX ⊗ B) = ψX ◦ (X ⊗ µB). Given two right B-modules
(X, ψX) and (Y, ψY), f : X → Y is a morphism of right B-modules if ψY ◦ ( f ⊗ B) = f ◦ ψX. In the following,
we will denote the category of right B-modules by CB. In a similar way we can define the notions of left
B-modules (we denote the left action by ϕX) and morphism of left B-modules. In this case the category of
left B-modules will be denoted by BC. Finally, note that K is a monoid and in this case we can identify the
categories CK and KCwith C.

If D is a comonoid, the pair (X, ρX) is a right D-comodule if X is an object in C and ρX : X → X ⊗D is a
morphism in C satisfying (X ⊗ εD) ◦ ρX = idX, (ρX ⊗H) ◦ ρX = (X ⊗ δD) ◦ ρX. Given two right H-comodules
(X, ρX) and (Y, ρY), f : X→ Y is a morphism of right D-comodules if ( f ⊗D) ◦ ρX = ρY ◦ f . The category of
right D-comodules will be denoted by CD.

Definition 2.1. A weak quasi-entwining structure in C consists of a triple (A,C, ψ), where A is a unital magma, C
a comonoid, and ψ : C ⊗ A→ A ⊗ C a morphism satisfying the relations:

(a1) ψ ◦ (C ⊗ ηA) = (uψ ⊗ C) ◦ δC,

(a2) ∇A⊗C ◦ (µA ⊗ C) = (µA ⊗ C) ◦ (A ⊗ ∇A⊗C),

(a3) (A ⊗ δC) ◦ ψ = (ψ ⊗ C) ◦ (C ⊗ ψ) ◦ (δC ⊗ A),

(a4) (A ⊗ εC) ◦ ψ = µA ◦ (uψ ⊗ A),

where
uψ = (A ⊗ εC) ◦ ψ ◦ (C ⊗ ηA),

and
∇A⊗C = (µA ⊗ C) ◦ (A ⊗ ψ) ◦ (A ⊗ C ⊗ ηA).

Note that if in the previous definition uψ = εC ⊗ ηA we obtain that ∇A⊗C = idA⊗C. Then condition (a2)
adds nothing relevant and we have the notion of quasi-entwining structure introduced in [7]. If A is a
monoid and we replace the condition (a2) by

ψ ◦ (C ⊗ µA) = (µA ⊗ C) ◦ (A ⊗ ψ) ◦ (ψ ⊗ A) (1)

we get the notion of weak entwining structure introduced by Caenepeel and De Groot in [14] as a general-
ization of entwining structures defined by Brzeziński and Majid (see [12], [10]). In this associative setting,
if (1) holds we obtain (a2). Therefore, weak entwining structures are examples of weak quasi-entwining
structures.

Lemma 2.2. Let (A,C, ψ) be a weak quasi-entwining structure. Then,

uψ ∗ uψ = uψ. (2)

Proof. The morphism uψ is idempotent for the convolution product because

uψ ∗ uψ
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= (A ⊗ εC) ◦ ψ ◦ (C ⊗ uψ) ◦ δC (by (a4) of Definition 2.1)

= (((A ⊗ εC) ◦ ψ) ⊗ εC) ◦ (C ⊗ ψ) ◦ (δC ⊗ ηA) (by definition of uψ)

= (A ⊗ ((εC ⊗ εC) ◦ δC)) ◦ ψ ◦ (C ⊗ ηA)(by (a3) of Definition 2.1)

= uψ (by counit conditions).

Lemma 2.3. Let (A,C, ψ) be a weak quasi-entwining structure. The morphism ∇A⊗C is idempotent and the identities

(A ⊗ δC) ◦ ∇A⊗C = (∇A⊗C ⊗ C) ◦ (A ⊗ δC), (3)

∇A⊗C ◦ (uψ ⊗ C) ◦ δC = ψ ◦ (C ⊗ ηA), (4)

pA⊗C ◦ (uψ ⊗ C) ◦ δC = pA⊗C ◦ (ηA ⊗ C), (5)

hold, where pA⊗C is the projection associated to ∇A⊗C.

Proof. Note that, by (a1) of Definition 2.1 we have

∇A⊗C = (µA ⊗ C) ◦ (A ⊗ ((uψ ⊗ C) ◦ δC)). (6)

Then, using (a2) of Definition 2.1, the coassociativity of δC and (2), we obtain that ∇A⊗C is idempotent
because

∇A⊗C ◦ ∇A⊗C = ∇A⊗C ◦ (µA ⊗ C) ◦ (A ⊗ ((uψ ⊗ C) ◦ δC)) = (µA ⊗ C) ◦ (A ⊗ (((uψ ∗ uψ) ⊗ C) ◦ δC)) = ∇A⊗C.

As a consequence, there exist an object A�C, called the image of∇A⊗C, and morphisms iA⊗C : A�C→ A⊗C
and pA⊗C : A ⊗ C → A�C such that ∇A⊗C = iA⊗C ◦ pA⊗C and pA⊗C ◦ iA⊗C = idA�C. The morphisms pA⊗C and
iA⊗C will be called the projection and the injection associated to the idempotent morphism ∇A⊗C.

The equality (3) follows by (6) and the coassociativity of δC. As far as (4),

∇A⊗C ◦ (uψ ⊗ C) ◦ δC)

= ((µA ◦ (uψ ⊗ uψ)) ⊗ C) ◦ (C ⊗ δC) ◦ δC (by (6))

= ((uψ ∗ uψ) ⊗ C) ◦ δC (by coassociativity of δC)

= (uψ ⊗ C) ◦ δC (by (2))

= ψ ◦ (C ⊗ ηA) (by (a1) of Definition 2.1).

Finally, by (6), we have

∇A⊗C ◦ (ηA ⊗ C) = (uψ ⊗ C) ◦ δC. (7)

Then, (5) follows composing in (7) with pA⊗C.

Example 2.4. The main family of examples of weak quasi-entwining structures comes from the notion
of right H-comodule magma for a weak Hopf quasigroup H. Now we recall the notion of weak Hopf
quasigroup in a braided monoidal category C with braiding c (in this case c−1 denotes the inverse of the
braiding) introduced in [5]. A weak Hopf quasigroup H in C is a unital magma (H, ηH, µH) and a comonoid
(H, εH, δH) such that the following axioms hold:
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(b1) δH ◦ µH = (µH ⊗ µH) ◦ δH⊗H.

(b2) εH ◦ µH ◦ (µH ⊗H) = εH ◦ µH ◦ (H ⊗ µH)

= ((εH ◦ µH) ⊗ (εH ◦ µH)) ◦ (H ⊗ δH ⊗H) = ((εH ◦ µH) ⊗ (εH ◦ µH)) ◦ (H ⊗ (c−1
H,H ◦ δH) ⊗H).

(b3) (δH ⊗H) ◦ δH ◦ ηH = (H ⊗ µH ⊗H) ◦ ((δH ◦ ηH) ⊗ (δH ◦ ηH))

= (H ⊗ (µH ◦ c−1
H,H) ⊗H) ◦ ((δH ◦ ηH) ⊗ (δH ◦ ηH)).

(b4) There exists λH : H→ H in C (called the antipode of H) such that, if we denote the morphisms idH ∗λH
by ΠL

H (target morphism) and λH ∗ idH by ΠR
H (source morphism),

(b4-1) ΠL
H = ((εH ◦ µH) ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H).

(b4-2) ΠR
H = (H ⊗ (εH ◦ µH)) ◦ (cH,H ⊗H) ◦ (H ⊗ (δH ◦ ηH)).

(b4-3) λH ∗Π
L
H = ΠR

H ∗ λH = λH.

(b4-4) µH ◦ (λH ⊗ µH) ◦ (δH ⊗H) = µH ◦ (ΠR
H ⊗H).

(b4-5) µH ◦ (H ⊗ µH) ◦ (H ⊗ λH ⊗H) ◦ (δH ⊗H) = µH ◦ (ΠL
H ⊗H).

(b4-6) µH ◦ (µH ⊗ λH) ◦ (H ⊗ δH) = µH ◦ (H ⊗ΠL
H).

(b4-7) µH ◦ (µH ⊗H) ◦ (H ⊗ λH ⊗H) ◦ (H ⊗ δH) = µH ◦ (H ⊗ΠR
H).

Note that, if in the previous definition the triple (H, ηH, µH) is a monoid, we obtain the notion of weak
Hopf algebra in a braided monoidal category. Then, if C is symmetric, we have the monoidal version of the
original definition of weak Hopf algebra introduced by Böhm, Nill and Szlachányi in [9]. On the other hand,
under these conditions, if εH and δH are morphisms of unital magmas (equivalently, ηH, µH are morphisms
of counital comagmas), ΠL

H = ΠR
H = ηH ⊗εH. As a consequence, conditions (b2), (b3), (b4-1)-(b4-3) trivialize,

and we get the monoidal notion of Hopf quasigroup defined by Klim and Majid in [22] in a category of
vector spaces over a field F.

For any weak Hopf quasigroup the morphisms ΠL
H, ΠR

H are idempotent. Also Π
L
H and Π

R
H defined by

Π
L
H = (H ⊗ (εH ◦ µH)) ◦ ((δH ◦ ηH) ⊗H)

and
Π

R
H = ((εH ◦ µH) ⊗H) ◦ (H ⊗ (δH ◦ ηH)),

are idempotent.
Let H be a weak Hopf quasigroup and let A be a unital magma, which is also a right H-comodule with

coaction ρA : A→ A ⊗H. We will say that (A, ρA) is a right H-comodule magma if the equality

µA⊗H ◦ (ρA ⊗ ρA) = ρA ◦ µA, (8)

holds. If (A, ρA) is a right H-comodule magma, the following equivalent conditions hold:

(c1) (ρA ⊗H) ◦ ρA ◦ ηA = (A ⊗ (µH ◦ c−1
H,H) ⊗H) ◦ ((ρA ◦ ηA) ⊗ (δH ◦ ηH)).

(c2) (ρA ⊗H) ◦ ρA ◦ ηA = (A ⊗ µH ⊗H) ◦ ((ρA ◦ ηA) ⊗ (δH ◦ ηH)).

(c3) (A ⊗Π
R
H) ◦ ρA = (µA ⊗H) ◦ (A ⊗ (ρA ◦ ηA)).

(c4) (A ⊗ΠL
H) ◦ ρA = ((µA ◦ c−1

A,A) ⊗H) ◦ (A ⊗ (ρA ◦ ηA)).

(c5) (A ⊗Π
R
H) ◦ ρA ◦ ηA = ρA ◦ ηA.
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(c6) (A ⊗ΠL
H) ◦ ρA ◦ ηA = ρA ◦ ηA.

Indeed, first we will show that if (A, ρA) is a right H-comodule magma the equality (c6) holds.

ρA ◦ ηA

= (((A ⊗ εH) ◦ ρA ◦ µA ◦ (A ⊗ ηA)) ⊗H) ◦ ρA ◦ ηA (by unit and counit properties)

= (((A ⊗ εH) ◦ µA⊗H ◦ (ρA ⊗ ρA) ◦ (A ⊗ ηA)) ⊗H) ◦ ρA ◦ ηA (by (8))

= (µA ⊗ (((εH ◦ µH) ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))) ◦ (A ⊗ cH,A ⊗H) ◦ ((ρA ◦ ηA) ⊗ (ρA ◦ ηA))

(by the right H-comodule condition for A and naturality of c)

= (µA ⊗ (µH ◦ (H ⊗ΠL
H))) ◦ (A ⊗ cH,A ⊗H) ◦ ((ρA ◦ ηA) ⊗ (ρA ◦ ηA)) (by (7) of [5])

= (A ⊗ µH) ◦ (µA⊗H ⊗H) ◦ (ρA ⊗ ρA ⊗ λH) ◦ (ηA ⊗ (ρA ◦ ηA)) (by the right H-comodule condition for A and (b4-6))

= (A ⊗ µH) ◦ ((ρA ◦ µA) ⊗ λH) ◦ (ηA ⊗ (ρA ◦ ηA)) ( by (8))

= (A ⊗ΠL
H) ◦ ρA ◦ ηA (by the right H-comodule condition for A, unit properties and (b4-6)).

On the other hand, note that

(A ⊗ (µH ◦ c−1
H,H) ⊗H) ◦ ((ρA ◦ ηA) ⊗ (δH ◦ ηH))

= (A ⊗ ((µH ⊗H) ◦ (H ⊗ cH,H) ◦ ((δH ◦ ηH) ⊗H))) ◦ ρA ◦ ηA (by naturality of c)

= (A ⊗ ((H ⊗ΠL
H) ◦ δH)) ◦ ρA ◦ ηA (by (15) of [5])

= (ρA ⊗ΠL
H) ◦ ρA ◦ ηA (by the right H-comodule condition for A).

Then, we obtain that (c1)⇐⇒ (c6). Similarly, by (18) of [5] and the comodule condition for A, we prove
that

(A ⊗ µH ⊗H) ◦ ((ρA ◦ ηA) ⊗ (δH ◦ ηH)) = (ρA ⊗Π
R
H) ◦ ρA ◦ ηA,

and then (c2)⇐⇒ (c5). Also, by (c1) and (34) of [5], we obtain

(ρA ⊗ΠL
H)) ◦ ρA ◦ ηA = (ρA ⊗Π

R
H) ◦ ρA ◦ ηA. (9)

Thus,

(A ⊗ΠL
H)) ◦ ρA ◦ ηA = (A ⊗Π

R
H) ◦ ρA ◦ ηA (10)

and, using the equivalence (c1)⇐⇒ (c6), we prove that (c1) implies (c5). In the same way, by (33) of [5] and
(c2) we obtain (9) and (10). Therefore, by the equivalence (c2) ⇐⇒ (c5), we get (c6). Trivially, (c3)=⇒(c5)
and (c4)=⇒(c6). Then, (c3)=⇒(c1) and (c4)=⇒(c2). Finally, (c1)=⇒(c3) and (c2)=⇒(c4) because

(µA ⊗H) ◦ (A ⊗ (ρA ◦ ηA))

= (((A ⊗ εH) ◦ ρA ◦ µA) ⊗H) ◦ (A ⊗ (ρA ◦ ηA)) (by counit properties)

= (µA ⊗ (εH ◦ µH) ⊗H) ◦ (A ⊗ cH,A ⊗H ⊗H) ◦ (ρA ⊗ ((ρA ⊗H) ◦ ρA ◦ ηA)) (by (8))

= (µA ⊗ (εH ◦ µH)⊗H) ◦ (A⊗ cH,A ⊗H ⊗H) ◦ (ρA ⊗ ((A⊗ (µH ◦ c−1
H,H)⊗H) ◦ ((ρA ◦ ηA)⊗ (δH ◦ ηH)))) (by (c1))

= (µA ⊗ (((εH ◦ µH) ⊗ΠL
H) ◦ (H ⊗ δH))) ◦ (A ⊗ cH,A ⊗H) ◦ (ρA ⊗ (ρA ◦ ηA)) (by naturality of c and (15) of [5])

= (µA ⊗ (((εH ◦ µH) ⊗ (Π
R
H ◦ΠL

H)) ◦ (H ⊗ δH))) ◦ (A ⊗ cH,A ⊗H) ◦ (ρA ⊗ (ρA ◦ ηA)) (by (34) of [5])
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= (µA ⊗ (((εH ◦ µH) ⊗Π
R
H) ◦ (H ⊗ δH))) ◦ (A ⊗ cH,A ⊗H) ◦ (ρA ⊗ (ρA ◦ ηA)) (by the right H-comodule condition for A

and (c6))

= (µA ⊗ (Π
R
H ◦ µH ◦ (ΠR

H ⊗H))) ◦ (A ⊗ cH,A ⊗H) ◦ (ρA ⊗ (ρA ◦ ηA)) (by (10) of [5])

= (µA ⊗ (Π
R
H ◦ µH)) ◦ (A ⊗ cH,A ⊗H) ◦ (ρA ⊗ (ρA ◦ ηA)) (by (30) of [5])

= (A ⊗Π
R
H) ◦ ρA ◦ µA ◦ (A ⊗ ηA) (by (8))

= (A ⊗Π
R
H) ◦ ρA (by unit properties)

and

((µA ◦ c−1
A,A)) ⊗H) ◦ (A ⊗ (ρA ◦ ηA))

= (((A ⊗ εH) ◦ ρA ◦ µA ◦ c−1
A,A) ⊗H) ◦ (A ⊗ (ρA ◦ ηA)) (by counit properties)

= ((µA ◦ c−1
A,A)⊗ (εH ◦ µH ◦ c−1

H,H)⊗H) ◦ (A⊗ c−1
H,A ⊗H ⊗H) ◦ (ρA ⊗ ((ρA ⊗H) ◦ ρA ◦ ηA)) (by naturality of c and (8)

= ((µA ◦ c−1
A,A) ⊗ (((εH ◦ µH) ⊗ΠL

H) ◦ (H ⊗ δH) ◦ c−1
H,H)) ◦ (A ⊗ c−1

H,A ⊗H) ◦ (ρA ⊗ (ρA ◦ ηA)) (by naturality of c, (15)

of [5], (c2) and (b2))

= ((µA ◦ c−1
A,A) ⊗ (ΠL

H ◦ µH ◦ (Π
R
H ⊗H) ◦ c−1

H,H)) ◦ (A ⊗ c−1
H,A ⊗H) ◦ (ρA ⊗ (ρA ◦ ηA)) (by (10) of [5])

= (µA ⊗ (ΠL
H ◦ µH)) ◦ (A ⊗ cH,A ⊗H) ◦ (((A ⊗Π

R
H) ◦ ρA ◦ ηA) ⊗ ρA) (by naturality of c)

= (µA ⊗ (ΠL
H ◦ µH)) ◦ (A ⊗ cH,A ⊗H) ◦ ((ρA ◦ ηA) ⊗ ρA) (by (c5))

= (A ⊗ΠL
H) ◦ ρA ◦ µA ◦ (ηA ⊗ A) (by (8))

= (A ⊗ΠL
H) ◦ ρA (by unit properties).

Taking into account the level of generality of weak Hopf quasigroups, as a consequence of the above
identities, if H is a Hopf quasigroup (Hopf algebra) and (A, ρA) is a right H-comodule magma (monoid) the
identity ρA ◦ηA = ηA⊗ηH is a consequence of (8). Also, if H is a weak Hopf quasigroup (weak Hopf algebra)
and (A, ρA) is a right H-comodule magma (monoid), the equality ρA ◦ηA = (A⊗ΠL

H)◦ρA ◦ηA follows by (8).
Let (A, ρA) be a right H-comodule magma. Then, the triple

(A,H, ψ = (A ⊗ µH) ◦ (cH,A ⊗H) ◦ (H ⊗ ρA)) (11)

is a weak quasi-entwining structure. Indeed, the condition (a1) of Definition 2.1 holds because:

(uψ ⊗H) ◦ δH

= (A ⊗ (εH ◦ µH) ⊗H) ◦ (cH,A ⊗ cH,H) ◦ (H ⊗ cH,A ⊗ A) ◦ (δH ⊗ (ρA ◦ ηA)) (by naturality of c)

= (A ⊗ (((εH ◦ µH) ⊗H) ◦ (H ⊗ cH,H) ◦ (δH ⊗H))) ◦ (cH,A ⊗H) ◦ (H ⊗ (ρA ◦ ηA)) (by naturality of c)

= (A ⊗ µH) ◦ (cH,A ⊗H) ◦ (H ⊗ ((A ⊗ΠL
H) ◦ ρA ◦ ηA)) (by (7) of [5])

= (A ⊗ µH) ◦ (cH,A ⊗H) ◦ (H ⊗ (ρA ◦ ηA)) (by (c6)).

On the other hand, by (c3) and the naturality of c we have

∇A⊗H = (A ⊗ (µH ◦ c−1
H,H)) ◦ (((A ⊗Π

R
H) ◦ ρA) ⊗H). (12)

Then,



J. N. Alonso Álvarez et al. / Filomat 32:18 (2018), 6229–6252 6237

∇A⊗H ◦ (µA ⊗H)

= (µA ⊗ (εH ◦ µH ◦ (µH ⊗H)) ⊗ (µH ◦ c−1
H,H)) ◦ (((A ⊗ cH,A ⊗H) ◦ (ρA ⊗ ρA)) ⊗ (δH ◦ ηH) ⊗H)

(by (8) and (18) of [5])

= (µA ⊗ (εH ◦ µH ◦ (H ⊗ µH)) ⊗ (µH ◦ c−1
H,H)) ◦ (((A ⊗ cH,A ⊗H) ◦ (ρA ⊗ ρA)) ⊗ (δH ◦ ηH) ⊗H) (by (b2))

= (µA ⊗ (εH ◦ µH) ⊗ (µH ◦ c−1
H,H)) ◦ (A ⊗ cH,A ⊗ ((H ⊗Π

R
H) ◦ δH) ⊗H) ◦ (ρA ⊗ ρA ⊗H) (by (18) of [5])

= (A ⊗ εH ⊗ (µH ◦ c−1
H,H ◦ (Π

R
H ⊗H))) ◦ ((µA⊗H ◦ (ρA ⊗ ρA)) ⊗H ⊗H) ◦ (A ⊗ ρA ⊗H) (by the condition of right

H-comodule for A)

= (((A ⊗ εH) ◦ ρA ◦ µA) ⊗H) ◦ (A ⊗ ∇A) (by (8))

= (µA ⊗H) ◦ (A ⊗ ∇A) (by the properties of the counit).

Therefore, (a2) of Definition 2.1 holds. Also, by the naturality of c, the comodule condition for A and
(b1) we obtain (a3) of Definition 2.1. Finally, (a4) follows by

µA ◦ (uψ ⊗ A)

= ((εH ◦ µH) ⊗ A) ◦ (H ⊗ c−1
A,H) ◦ (H ⊗ ((µA ◦ c−1

A,A) ⊗H) ◦ (A ⊗ (ρA ◦ ηA))) (by naturality of c)

= ((εH ◦ µH) ⊗ A) ◦ (H ⊗ c−1
A,H) ◦ (H ⊗ ((A ⊗ΠL

H) ◦ ρA)) (by (c4))

= (A ⊗ (εH ◦ µH)) ◦ (cH,A ⊗ A) ◦ (H ⊗ ((A ⊗ΠL
H) ◦ ρA)) (by naturality of c)

= (A ⊗ εH) ◦ ψ (by (7) of [5]).

Definition 2.5. Let (A,C, ψ) be a weak quasi-entwining structure in C. We denote byMC
A(ψ) the category whose

objects are triples
(M, φM : M ⊗ A→M, ρM : M→M ⊗ C),

where idM = φM ◦ (M ⊗ ηA), (M, ρM) is a right C-comodule and the equality

ρM ◦ φM = (φM ⊗ C) ◦ (M ⊗ ψ) ◦ (ρM ⊗ A) (13)

holds. The morphisms f : M→ N inMC
A(ψ) are morphisms of C-comodules, i.e., ( f ⊗ C) ◦ ρM = ρN ◦ f .

The objects ofMC
A(ψ) will be called weak entwined quasi-modules. Then, (A, φA = µA, ρA : A → A ⊗ C) is an

object inMC
A(ψ) if and only if

ρA ◦ µA = (µA ⊗ C) ◦ (A ⊗ ψ) ◦ (ρA ⊗ A). (14)

Note that for this particular case we obtain that

∇A⊗C ◦ ρA = ρA. (15)

Indeed,

∇A⊗C ◦ ρA

= (µA ⊗ C) ◦ (A ⊗ ((uψ ⊗ C) ◦ δC)) ◦ ρA (by (6))

= ((µA ◦ (A ⊗ uψ) ◦ ρA) ⊗ C) ◦ ρA (by the right C-comodule condition for A)

= (((µA ⊗ εC) ◦ (A ⊗ ψ) ◦ (ρA ⊗ ηA)) ⊗ C) ◦ ρA (by the definition of uψ)
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= (((A ⊗ εC) ◦ ρA ⊗ µA ◦ (A ⊗ ηA)) ⊗ C) ◦ ρA (by (14))

= ρA (by unit and counit properties).

Therefore, we have that

(A ⊗ εC) ◦ ∇A⊗C ◦ ρA = idA. (16)

Example 2.6. If H is a weak Hopf quasigroup, the triple (H, φH = µH, ρH = δH) is an object inMH
H(ψ) for

ψ = (H⊗µH)◦ (cH,H⊗H)◦ (H⊗δH). This case is a particular instance associated to the weak quasi-entwining
structure introduced in Example 2.4 because (H, ρH = δH) is a right H-comodule magma. If (A, ρA) is a right
H-comodule magma, the triple (A, φA = µA, ρA) is an object inMH

A (ψ) because (14) holds.

3. Weak cleft extensions for weak quasi-entwining structures

Let (A,C, ψ) be a weak quasi-entwining structure in C such that there exists a coaction ρA : A → A ⊗ C
satisfying that (A, µA, ρA) is in MC

A(ψ). We denote by AcoC the equalizer object, called the subobject of
coinvariants of the morphisms ρA and ζA = (µA ⊗ C) ◦ (A ⊗ (ρA ◦ ηA)). Then we have an equalizer diagram

- -
-AcoC A A ⊗ C

iA
ρA

ζA (17)

where iA is the equalizer morphism.
By the unit properties ζA◦ηA = ρA◦ηA.As a consequence, there exists a unique morphism ηAcoC : K→ AcoC

such that

ηA = iA ◦ ηAcoC . (18)

On the other hand, if the equalities

µA ◦ (A ⊗ (µA ◦ (iA ⊗ A))) = µA ◦ ((µA ◦ (A ⊗ iA)) ⊗ A) (19)

and

ρA ◦ µA ◦ (iA ⊗ A) = (µA ⊗ C) ◦ (iA ⊗ ρA) (20)

hold, we have

ρA ◦ µA ◦ (iA ⊗ iA)

= (µA ⊗ C) ◦ (A ⊗ µA ⊗ C) ◦ (iA ⊗ iA ⊗ (ρA ◦ ηA)) (by (20) and properties of iA )

= ζA ◦ µA ◦ (iA ⊗ iA) (by (19)).

Therefore, there exists a unique morphism µAcoC : AcoC
⊗ AcoC

→ AcoC satisfying

µA ◦ (iA ⊗ iA) = iA ◦ µAcoC . (21)

By (18) and (21) we obtain that (AcoC, ηAcoC , µAcoC ) is a unital magma. Also, by (19), it is possible to prove
that (AcoC, ηAcoC , µAcoC ) is a monoid (the monoid of coinvariants).

Remark 3.1. Let H be a weak Hopf quasigroup, (A, ρA) a right H-comodule magma and ψ the morphism
introduced in (11). In this case (A,H, ψ) is a weak quasi-entwining structure and (A, µA, ρA) is inMH

A (ψ).
Under these conditions the identity (20) holds. The proof in the braided case is the same that the one known
in the symmetric setting (see Lemma 3.4 of [6]). Also the equality (20) holds for H-comodule magmas
associated to Hopf quasigroups because in this case ζA = A ⊗ ηH.
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Definition 3.2. Let (A,C, ψ) be a weak quasi-entwining structure in C such that there exists a coaction ρA : A →
A ⊗ C satisfying that (A, µA, ρA) is inMC

A(ψ). We will say that AcoC ↪→ A is a weak cleft extension if there exist a
morphism of right C-comodules, h : C→ A and a morphism h−1 : C→ A such that:

(d1) uψ ∗ h−1 = h−1,

(d2) µA ◦ (µA ⊗ A) ◦ (A ⊗ ((h−1
⊗ h) ◦ δC)) = µA ◦ (A ⊗ uψ),

(d3) µA ◦ (µA ⊗ A) ◦ (A ⊗ ((h ⊗ h−1) ◦ δC)) = µA ◦ (A ⊗ (h ∗ h−1)),

(d4) ρA ◦ qA = ζA ◦ qA,

where qA = µA ◦ (A⊗ h−1)◦ρA. The morphism h will be called a cleaving morphism of AcoC ↪→ A and h−1 the inverse
of h. Note that (d2) implies that h−1

∗ h = uψ.

Example 3.3. Following [7], a quasi-entwining structure inC consists of a triple (A,C, ψ), where A is a unital
magma, C a comonoid, and ψ : C ⊗ A → A ⊗ C a morphism satisfying the identities (a3) of Definition 2.1
and

(e1) ψ ◦ (C ⊗ ηA) = ηA ⊗ C,

(e2) (A ⊗ εC) ◦ ψ = εC ⊗ A.

As was pointed in the beginning of the previous section, any quasi-entwining structure is an example
of weak quasi-entwining structure where uψ = εC ⊗ ηA and, as a consequence, ∇A⊗C = idA⊗C. If H is a Hopf
quasigroup and (A, ρA) is a right H-comodule magma, the triple (11) is an example of quasi-entwining
structure. In this setting (see [7]) we can define the category of entwined quasi-modules as in Definition 2.5.
By Proposition 1.4 of [7] we know that if A is a unital magma, C is a comonoid, and ψ : C ⊗ A→ A ⊗ C is a
morphism such that there exists a morphism e : K→ C satisfying the identities δC ◦ e = e⊗ e and εC ◦ e = idK,
the triple (A,C, ψ) is a quasi-entwining structure and, if we define the coaction ρA = ψ ◦ (e ⊗ A), we can
prove that (A, µA, ρA) belongs toMC

A(ψ). Also, under these conditions, ρA ◦ ηA = ηA ⊗ e. Moreover, if for
all (M, φM, ρM) ∈ MC

A(ψ), we denote by McoC the equalizer of ρM and ζM = M ⊗ e and by iM the injection of
McoC in M, it is easy to show that AcoC is a unital magma where ηAcoC and µAcoC are the unique morphisms
such that iA ◦ ηAcoC = ηA, iA ◦ µAcoC = µA ◦ (iA ⊗ iA). Then, by Definition 1.7 of [7], we will say that AcoC ↪→ A
is a cleft extension if there exist a morphism of right C-comodules, h : C→ A and a morphism h−1 : C→ A
such that:

(f1) h ◦ e = ηA,

(f2) µA ◦ (µA ⊗ A) ◦ (A ⊗ ((h ⊗ h−1) ◦ δC)) = µA ◦ (µA ⊗ A) ◦ (A ⊗ ((h−1
⊗ h) ◦ δC)) = A ⊗ εC,

(f3) ψ ◦ (C ⊗ h−1) ◦ δC = h−1
⊗ e,

hold.
For example, if H is a Hopf quasigroup and (A, ρA) is a right H-comodule magma, note thatρA = ψ◦(e⊗A)

for ψ the morphism defined in (11) and e = ηH. Moreover, (A, µA, ρA) is a entwining quasi-module and the
equality

ρA ◦ h−1 = (h−1
⊗ λH) ◦ cH,H ◦ δH (22)

holds for all morphisms h, h−1 : H→ A such that h is a morphism of right H-comodules and satisfying (f2).
Also, if h is a morphism of right H-comodules, (f3) is a consequence of (f2). Therefore, in this particular
case, the definition of cleft extension is the one introduced in [4] with the name of cleft comodule algebra.
This last notion is the ”quasi-Hopf” version of the notion of cleft extension for Hopf algebras. In [4] the
reader can find interesting examples of these kind of extensions.

If AcoC ↪→ A is a cleft extension for a quasi-entwining structure (A,C, ψ), AcoC ↪→ A is a weak cleft
extension. Indeed, trivially uψ ∗ h−1 = h−1 because in this setting uψ = εC ⊗ ηA. Also, by (f2) we have that
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h ∗ h−1 = h−1
∗ h = εC ⊗ ηA and then (d2) and (d3) of Definition 3.2 hold. Finally, by (f3), ρA ◦ ηA = ηA ⊗ e, and

by the comodule condition for A, we obtain

ρA ◦ qA = qA ⊗ e = ζA ◦ ρA

and, therefore, (d4) of Definition 3.2 holds.

Example 3.4. In the associative setting there exists a theory of weak cleft extensions associated to weak
entwining structures and they are examples of weak cleft extensions as the ones introduced in Definition
3.2. A weak entwining structure in C consists of a triple (A,C, ψ), where A is a monoid, C a comonoid,
and ψ : C ⊗ A → A ⊗ C is a morphism satisfying the identities (a1), (a3), (a4) of Definition 2.1 and (1). If
we define AcoC by the equalizer diagram (17), we obtain that AcoC is a monoid. Moreover, if there exists a
coaction ρA : A → A ⊗ C such that (A, µA, ρA) is inMC

A(ψ) (in this case the objects ofMC
A(ψ) are also right

A-modules and the morphisms are also A-linear), we say that AcoC ↪→ A is a weak cleft extension, or a weak
C-cleft extension (see Definition 2.3 of [1]), if there exist a morphism of right C-comodules, h : C→ A and a
morphism h−1 : C→ A such that

(g1) h−1
∗ h = uψ,

(g2) ψ ◦ (C ⊗ h−1) ◦ δC = ζA ◦ (uψ ∗ h−1).

Note that under these assumptions h ∗ uψ = h. Moreover, if we put 1 = h and 1−1 = uψ ∗ h−1 we have that
1−1
∗ 1 = uψ ∗ h−1

∗ h = uψ ∗ uψ = uψ and uψ ∗ 1−1 = uψ ∗ uψ ∗ h−1 = uψ ∗ h−1 = 1−1. Then we can assume that
uψ ∗ h−1 = h−1, i.e., h−1 satisfies (d1) of Definition 3.2, and we can change (g2) by

(g3) ψ ◦ (C ⊗ h−1) ◦ δC = ζA ◦ h−1.

In this associative setting, if for AcoC ↪→ A there exist a morphism of right C-comodules, h : C→ A and a
morphism h−1 : C→ A satisfiying (d1)-(d4) of Definition 3.2, we have that (g1), (g2) and (g3) hold. Indeed,
by (d2) of Definition 3.2 we get (g1). Also, the equality

ψ = (µA ⊗ C) ◦ (A ⊗ (ρA ◦ µA)) ◦ (((h−1
⊗ h) ◦ δC) ⊗ A) (23)

holds because

(µA ⊗ C) ◦ (A ⊗ (ρA ◦ µA)) ◦ (((h−1
⊗ h) ◦ δC) ⊗ A)

= (µA ⊗ C) ◦ (A ⊗ ((µA ⊗ C) ◦ (A ⊗ ψ) ◦ (ρA ⊗ A))) ◦ (((h−1
⊗ h) ◦ δC) ⊗ A) (by (14))

= (µA ⊗ C) ◦ ((h−1
∗ h) ⊗ ψ) ◦ (δC ⊗ A) (by the coassociativity of δC and the condition of comodule morphism for h)

= (µA ⊗ C) ◦ (uψ ⊗ ψ) ◦ (δC ⊗ A) (by (g1))

= (ψ ⊗ εC) ◦ (C ⊗ ψ) ◦ (δC ⊗ A) (by (a4) of Definition 2.1)

= ψ (by (a3) of Definition 2.1 and counit properties).

Therefore, we obtain (g2) and (g3):

ψ ◦ (C ⊗ h−1) ◦ δC

= (µA ⊗ C) ◦ (A ⊗ ((µA ⊗ C) ◦ (A ⊗ (ρA ◦ µA)) ◦ (((h−1
⊗ h) ◦ δC) ⊗ A) ◦ (C ⊗ h−1) ◦ δC (by (23))

= (µA ⊗ C) ◦ (h−1
⊗ (ρA ◦ (h ∗ h−1))) ◦ δC (by the coassociativity of δC)

= (µA ⊗ C) ◦ (h−1
⊗ (ρA ◦ qA ◦ h)) ◦ δC (by the condition of comodule morphism for h)

= (µA ⊗ C) ◦ (h−1
⊗ (ζA ◦ qA ◦ h)) ◦ δC (by (d4) of Definition 3.2)



J. N. Alonso Álvarez et al. / Filomat 32:18 (2018), 6229–6252 6241

= ζA ◦ (uψ ∗ h−1) (by (d2) of Definition 3.2, the coassociativity of δC and the associativity of µA)

= ζA ◦ h−1 (by (d1) of Definition 3.2).

Conversely, let AcoC ↪→ A be an extension and assume that there exist a morphism of right C-comodules,
h : C → A and a morphism h−1 : C → A satisfiying (g1), (g2) ((g3)). Then (d1) of Definition 3.2 follows by
the properties of h−1, (d3) of Definition 3.2 holds trivially by the associativity of µA, (d2) of Definition 3.2
follows by (g1) and the associativity of µA, and by (g2) we obtain (d4) of Definition 3.2 because

ρA ◦ qA

= (µA ⊗ C) ◦ (A ⊗ (ψ ◦ (C ⊗ h−1) ◦ δC)) ◦ ρA (by the comodule condition for A)

= (µA ⊗ C) ◦ (A ⊗ (ζA ◦ h−1)) ◦ ρA (by (g3))

= ζA ◦ qA (by the associativity of µA).

Therefore, in an associative context Definition 3.2 is the definition of weak C-cleft extension introduced
in [1].

Example 3.5. Let H be a weak Hopf quasigroup and let (A, ρA) be a right H-comodule magma. Following
Definition 2.7 of [8], we will say that h : H→ A is an anchor morphism if it is a multiplicative total integral
(i.e., a right H-comodule morphism and a morphism of unital magmas) and the following equalities hold:

µA ◦ ((µA ◦ (A ⊗ h)) ⊗ (h ◦ λH)) ◦ (A ⊗ δH) = µA ◦ (A ⊗ (h ◦ΠL
H)), (24)

µA ◦ ((µA ◦ (A ⊗ (h ◦ λH))) ⊗ h) ◦ (A ⊗ δH) = µA ◦ (A ⊗ (h ◦ΠR
H)). (25)

If there exists an anchor morphism h : H → A, the extension AcoC ↪→ A associated to the weak quasi-
entwining structure defined in (11) is a weak cleft extension with cleaving morphism h and h−1 = h ◦ λH.
Indeed, first note that, using that h is a comodule morphism and h ◦ ηA = ηH, we have that

uψ = h ◦ΠR
H. (26)

Then, as a consequence of (26), the multiplicative condition for h and (b4-3) of the definition of weak
Hopf quasigroup, we have

uψ ∗ h−1 = (h ◦ΠR
H) ∗ (h ◦ λH) = h ◦ (ΠR

H ∗ λH) = h−1.

Therefore, (d1) of Definition 3.2 holds. The equality (d2) holds by (26) and (25). Similarly, we obtain
(d3) by (24) and by h ◦ΠL

H = h ∗ h−1 (this last equality follows by the multiplicative condition for h). Finally,
by Proposition 2.6 of [8] we know that

ρA ◦ qA = (A ⊗Π
R
H) ◦ ρA ◦ qA, (27)

and then, using (c3) of the definition of right H-comodule magma, we obtain (d4). As a particular instance
of this case, we have that HL ↪→ H is a weak cleft extension associated to the weak quasi-entwining structure
(H,H, ψ = (H ⊗ µH) ◦ (cH,H ⊗H) ◦ (H ⊗ δH)) where h = idH (anchor morphism), h−1 = λH, qH = ΠL

H and HL is
the image of ΠL

H.
For example, if H is a cocommutative weak Hopf quasigroup and C is symmetric, (Hop, ρHop = (H ⊗

λH) ◦ δH) is an example of right H-comodule magma. In this case, it is easy to show that λH is an anchor
morphism for (Hop, ρHop ). Of course, the same result holds for cocommutative Hopf quasigroups (in this
case ΠR

H = ΠL
H = εH ⊗ ηH).
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On the other hand, let H and A be Hopf quasigrous in C. Let 1 : A → H, h : H → A be morphisms
of Hopf quasigroups such that 1 ◦ h = idH. Consider the right H-comodule structure on A defined by
ρA = (A⊗ 1) ◦ δA. Then, h is an anchor morphism and, as a consequence, the examples of strong projections
that we can find in [2] give examples of anchor morphisms.

Finally, let H be a Hopf quasigroup and let D be a unital magma in C. If there exists a morphism
ϕD : H ⊗D→ D such that

ϕD ◦ (ηH ⊗D) = idD, (28)

ϕD ◦ (H ⊗ ηD) = εH ⊗ ηD, (29)

hold, the smash product D]H = (D ⊗H, ηD]H, µD]H) defined by

ηD]H = ηD ⊗ ηH, µD]H = (µD ⊗ µH) ◦ (D ⊗ ψD
H ⊗H),

where ψD
H = (ϕD ⊗H) ◦ (H ⊗ cH,D) ◦ (δH ⊗D), is a right H-comodule magma with comodule structure given

by %D]H = D ⊗ δH. For this H-comodule magma, h = ηD ⊗H is an anchor morphism.

Example 3.6. Let H be a weak Hopf quasigroup and let (A, ρA) be a right H-comodule magma. Following
Definition 4.1 of [6], we will say that the extension AcoC ↪→ A, associated to the weak quasi-entwining
structure defined in (11), is a weak H-cleft extension if there exists a right H-comodule morphism h : H→ A
(called the cleaving morphism) and a morphism h−1 : H→ A such that

(h1) h−1
∗ h = (A ⊗ (εH ◦ µH)) ◦ (cH,A ⊗H) ◦ (H ⊗ (ρA ◦ ηA)).

(h2) (A ⊗ µH) ◦ (cH,A ⊗H) ◦ (H ⊗ (ρA ◦ h−1)) ◦ δH = (A ⊗Π
R
H) ◦ ρA ◦ h−1.

(h3) µA ◦ (µA ⊗ A) ◦ (A ⊗ h−1
⊗ h) ◦ (A ⊗ δH) = µA ◦ (A ⊗ (h−1

∗ h)).

(h4) µA ◦ (µA ⊗ A) ◦ (A ⊗ h ⊗ h−1) ◦ (A ⊗ δH) = µA ◦ (A ⊗ (h ∗ h−1)).

Then, AcoC ↪→ A is a weak cleft extension, in the sense of Definition 3.2, for the weak quasi-entwining
structure introduced in (11), with cleaving morphism h. Indeed, first note that, by (c3) of Example 2.4, (h2)
is equivalent to say that

ψ ◦ (H ⊗ h−1) ◦ δH = ζA ◦ h−1. (30)

Then, if (h2) holds, so hold (d1) and (d4) of Definition 3.2. Indeed,

uψ ∗ h−1

= (A ⊗ εH) ◦ ψ ◦ (H ⊗ h−1) ◦ δH (by (a4) of Definition 2.1)

= (A ⊗ εH) ◦ ζA ◦ h−1 (by (30))

= h−1 (by the right H-comodule condition for A and the unit properties),

and then (d1) of Definition 3.2 holds. On the other hand,

ρA ◦ qA

= (µA ⊗H) ◦ (A ⊗ ψ) ◦ (ρA ⊗ h−1) ◦ ρA (by (14))

= (µA ⊗H) ◦ (A ⊗ (ψ ◦ (H ◦ h−1) ◦ δH)) ◦ ρA (by the right H-comodule condition for A)

= (µA ⊗H) ◦ (A ⊗ (ζA ◦ h−1)) ◦ ρA (by (30))
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= (µA ⊗Π
R
H) ◦ (A ⊗ (ζA ◦ h−1)) ◦ ρA (by (c5) of Example 2.4).

Therefore, ρA ◦ qA = (A ⊗Π
R
H) ◦ ρA ◦ qA and, applying (c3) of Example 2.4, we get (d4) of Definition 3.2.

Moreover, (h1) is just the same that h−1
∗ h = uψ, and then (h3) is equal to (d2) of Definition 3.2 and (h4) is

the same that (d3).

Lemma 3.7. Let (A,C, ψ) be a weak quasi-entwining structure satisfying (19) and let AcoC ↪→ A be a weak cleft
extension with cleaving morphism h. Then, the following equalities hold:

µA ◦ (A ⊗ (µA ◦ (qA ⊗ A))) = µA ◦ ((µA ◦ (A ⊗ qA)) ⊗ A), (31)

µA ◦ (µA ⊗ A) ◦ (A ⊗ ((qA ⊗ h) ◦ ρA)) = µA, (32)

µA ◦ (qA ⊗ h) ◦ ρA = idA, (33)

µA ◦ (µA ⊗ h−1) ◦ (A ⊗ ρA) = µA ◦ (A ⊗ qA). (34)

Proof. If AcoC ↪→ A is a weak cleft extension with cleaving morphism h, by (d4) of Definition 3.2 we have
that ρA ◦ qA = ζA ◦ qA. Then, there exists a unique morphism pA : A→ AcoC such that qA = iA ◦ pA. Therefore,
if (19) holds we prove (31) composing in (19) with A ⊗ pA ⊗ A. On the other hand,

µA ◦ (µA ⊗ A) ◦ (A ⊗ ((qA ⊗ h) ◦ ρA))

= µA ◦ (A ⊗ (µA ◦ (qA ⊗ h) ◦ ρA)) (by (31) )

= µA ◦ (A ⊗ (µA ◦ (µA ⊗ A) ◦ (A ⊗ ((h−1
⊗ h) ◦ δC)) ◦ ρA)) (by the comodule condition for A)

= µA ◦ (A ⊗ (µA ◦ (A ⊗ uψ) ◦ ρA)) (by (d2) of Definition 3.2)

= µA ◦ (A ⊗ ((µA ⊗ εC) ◦ (A ⊗ ψ) ◦ (ρA ⊗ ηA))) (by the definition of uψ)

= µA ◦ (A ⊗ ((A ⊗ εC) ◦ ρA ◦ µA ◦ (A ⊗ ηA))) (by (14))

= µA (by unit and counit properties).

Therefore, we obtain (32). Composing in this identity with ηA ⊗ A we prove (33). Finally, (34) follows
from

µA ◦ (µA ⊗ h−1) ◦ (A ⊗ ρA)

= µA ◦ ((µA ◦ (µA ⊗ A) ◦ (A ⊗ ((qA ⊗ h) ◦ ρA))) ⊗ h−1) ◦ (A ⊗ ρA) (by (32))

= µA ◦ (µA ⊗ A) ◦ ((µA ◦ (A ⊗ qA)) ⊗ ((h ⊗ h−1) ◦ δC)) ◦ (A ⊗ ρA) (by the comodule condition for A)

= µA ◦ ((µA ◦ (A ⊗ qA)) ⊗ (h ∗ h−1)) ◦ (A ⊗ ρA) (by (d3) of Definition 3.2)

= µA ◦ (A ⊗ (µA ◦ (qA ⊗ (h ∗ h−1)) ◦ ρA)) (by (31))

= µA ◦ (A ⊗ (µA ◦ (µA ⊗ A) ◦ (qA ⊗ ((h ⊗ h−1) ◦ δC)) ◦ ρA)) (by (d3) of Definition 3.2)

= µA ◦ (A ⊗ (µA ◦ ((µA ◦ (qA ⊗ h) ◦ ρA) ⊗ h−1) ◦ ρA)) (by the comodule condition for A)

= µA ◦ (A ⊗ qA) (by (33)).
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4. Galois extensions for weak quasi-entwining structures

A classical result in Hopf algebra theory proved by Doi and Takeuchi in [18] gives a characterization of
Galois extensions with normal basis in terms of cleft extensions. A generalization of this theorem to weak
entwining structures, and therefore to weak Hopf algebras, can be found in [1]. The aim of this section
is to prove a similar theorem for weak quasi-entwining structures containing, as a particular instance, the
characterization obtained in [6] for Galois extensions with normal basis for weak Hopf quasigroups.

In this section we will assume that (A,C, ψ) is a weak quasi-entwining structure in C such that there
exists a coaction ρA : A → A ⊗ C satisfying that (A, µA, ρA) is inMC

A(ψ). Also, unless otherwise stated we
assume that the identities (19) and (20) holds.

Then, if AcoC is the equalizer object and iA : AcoC
→ A the equalizer morphism of the morphisms ρA

and ζA = (µA ⊗ C) ◦ (A ⊗ (ρA ◦ ηA)), we have that (AcoC, ηAcoC , µAcoC ) is a monoid, where ηAcoC : K → AcoC,
µAcoC : AcoC

⊗AcoC
→ AcoC are the factorizations of the morphisms ηA and µA◦(iA⊗iA) through iA, respectively.

That is, ηAcoC is the unique morphism satisfying (18), and µAcoC the unique morphism such that (21) holds.
Under these assumptions, let A�C be the image of the idempotent morphism∇A⊗C, and let iA⊗C : A�C→

A ⊗ C and pA⊗C : A ⊗ C → A�C be the associated injection and projection respectively, i.e., iA⊗C and pA⊗C
are the unique morphisms such that ∇A⊗C = iA⊗C ◦ pA⊗C and pA⊗C ◦ iA⊗C = idA�C. If we define the morphism
tA : A ⊗ A→ A�C by

tA = pA⊗C ◦ (µA ⊗ C) ◦ (A ⊗ ρA), (35)

using (19) and (20), we have the following:

tA ◦ ((µA ◦ (A ⊗ iA)) ⊗ A) = pA⊗C ◦ (µA ⊗ C) ◦ (A ⊗ ((µA ⊗ C) ◦ (iA ⊗ ρA))) = tA ◦ (A ⊗ (µA ◦ (iA ⊗ A))).

Then, if the object A ⊗AcoC A is defined by the following coequalizer diagram

-
-

-
(µA ◦ (A ⊗ iA)) ⊗ A

A ⊗ (µA ◦ (iA ⊗ A))

nA
A

A ⊗ AcoC
⊗ A A ⊗ A A ⊗AcoC A,

(36)

there exists a unique morphism γA : A ⊗AcoC A→ A�C, called the canonical morphism, such that

γA ◦ nA
A = tA. (37)

Definition 4.1. Let (A,C, ψ) be a weak quasi-entwining structure in C. We will say that AcoC ↪→ A is a weak Galois
extension if γA is an isomorphism.

By the properties of the coequalizer (36) and (20), we have

(nA
A ⊗ C) ◦ ((µA ◦ (A ⊗ iA)) ⊗ ρA) = (nA

A ⊗ C) ◦ (A ⊗ (ρA ◦ (µA ◦ (iA ⊗ A)))).

As a consequence, there exists a unique coaction ρA⊗AcoC A : A ⊗AcoC A→ (A ⊗AcoC A) ⊗ C satisfying

ρA⊗AcoC A ◦ nA
A = (nA

A ⊗ C) ◦ (A ⊗ ρA). (38)

Using the comodule structure of A, it is easy to show that (A ⊗AcoC A, ρA⊗AcoC A) is a right C-comodule.
On the other hand, (A�C, ρA�C = (pA⊗C⊗C)◦ (A⊗δC)◦ iA⊗C) is a right C-comodule because, by the counit

properties,
(A�C ⊗ εC) ◦ ρA�C = pA⊗C ◦ iA⊗C = idA�C,

and, by (3) and the coassociativity of δC,

(ρA�C ⊗ C) ◦ ρA�C = (((pA⊗C ⊗ C) ◦ (A ⊗ δC) ◦ ∇A⊗C) ⊗ C) ◦ (A ⊗ δC) ◦ iA⊗C = (A�C ⊗ δC) ◦ ρA�C.

Moreover, we have that
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(γA ⊗ C) ◦ ρA⊗AcoC A ◦ nA
A

= ((pA⊗C ◦ (µA ⊗ A) ◦ (A ⊗ ρA)) ⊗ C) ◦ (A ⊗ ρA) (by (38), (37))

= (pA⊗C ⊗ C) ◦ (µA ⊗ δC) ◦ (A ⊗ ρA) (by coassociativity of δC)

= (pA⊗C ⊗ C) ◦ (A ⊗ δC) ◦ ∇A⊗C ◦ (µA ⊗ C) ◦ (A ⊗ ρA) (by (3))

= ρA�C ◦ γA ◦ nA
A (by definition).

Thus, the canonical morphism is a morphism of right C-comodules, i.e.,

(γA ⊗ C) ◦ ρA⊗AcoC A = ρA�C ◦ γA. (39)

As a consequence, by (3),

ρA⊗AcoC A ◦ γ
−1
A ◦ pA⊗C = ((γ−1

A ◦ pA⊗C) ⊗ C) ◦ (A ⊗ δC), (40)

i.e., γ−1
A ◦ pA⊗C : A ⊗ C→ A ⊗AcoC A is a morphism of right C-comodules.

If the endofunctor − ⊗ A preserves coequalizers (for example if C is closed) and the equality

µA ◦ (µA ⊗ iA) = µA ◦ (A ⊗ (µA ◦ (A ⊗ iA))) (41)

holds, we have
nA

A ◦ ((µA ◦ (A ⊗ (µA ◦ (A ⊗ iA)))) ⊗ A) = nA
A ◦ (µA ⊗ (µA ◦ (iA ⊗ A))).

Thus, there exists a unique morphism ϕA⊗AcoC A : A ⊗ (A ⊗AcoC A)→ A ⊗AcoC A satisfying the identitity

ϕA⊗AcoC A ◦ (A ⊗ nA
A) = nA

A ◦ (µA ⊗ A). (42)

Definition 4.2. Let (A,C, ψ) be a weak quasi-entwining structure in C. Assume that AcoC ↪→ A is a weak Galois
extension and that (41) holds. We will say that γ−1

A is almost linear if it satisfies the following equality:

γ−1
A ◦ pA⊗C = ϕA⊗AcoC A ◦ (A ⊗ (γ−1

A ◦ pA⊗C) ◦ (ηA ⊗ C)). (43)

Definition 4.3. Let (A,C, ψ) be a weak quasi-entwining structure in C satisfying the assumptions of this section.
We will say that AcoC ↪→ A is a weak Galois extension with normal basis if:

(i1) AcoC ↪→ A is a weak Galois extension.

(i2) There exists an idempotent morphism ΩAcoC⊗C : AcoC
⊗ C → AcoC

⊗ C of left AcoC-modules, where the action
and the coaction are ϕAcoC⊗C = µAcoC ⊗ C, and ρAcoC⊗C = AcoC

⊗ δC.

(i3) If we denote by AcoC
× C the image of ΩAcoC⊗C, there is a left AcoC-module and right C-comodule isomorphism

bA : A→ AcoC
× C where the actions and the coactions are

ϕA = µA ◦ (iA ⊗ A), ϕAcoC×C = rAcoC⊗C ◦ (µAcoC ⊗ C) ◦ (AcoC
⊗ sAcoC⊗C),

ρA, ρAcoC⊗C = (rAcoC⊗C ⊗ C) ◦ (AcoC
⊗ δC) ◦ sAcoC⊗C,

and rAcoC⊗C : AcoC
⊗C→ AcoC

×C, sAcoC⊗C : AcoC
×C→ AcoC

⊗C are the morphisms such that sAcoC⊗C◦rAcoC⊗C =
ΩAcoC⊗C and rAcoC⊗C ◦ sAcoC⊗C = idAcoC×C.

Remark 4.4. Let H be a weak Hopf quasigroup and let (A, ρA) be a right H-comodule magma. Let AcoH ↪→ A
be the extension associated to the weak quasi-entwining structure defined in (11). Then, in this particular
case, the notions of weak Galois extension and weak Galois extension with normal basis introduced in
Definitions 4.1 and 4.3 are the notions of weak H-Galois extension and weak H-Galois extension with
normal basis defined in [6] for weak Hopf quasigrous in a symmetric setting (see Definitions 3.10 and 3.11,
respectively).
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Lemma 4.5. Let (A,C, ψ) be a weak quasi-entwining structure in C. If AcoC ↪→ A is a weak Galois extension with
normal basis, there exists a unique morphism mA : A ⊗AcoC A→ A such that

mA ◦ nA
A = µA ◦ (A ⊗ ((iA ⊗ εH) ◦ sAcoC⊗C ◦ bA)). (44)

Also, mA satisfies the following identity:

mA ◦ γ
−1
A ◦ pA⊗C ◦ ρA = (iA ⊗ εH) ◦ sAcoC⊗C ◦ bA. (45)

Moreover, if (41) holds and A ⊗ − preserves coequalizers, the equality

mA ◦ ϕA⊗AcoC A = µA ◦ (A ⊗mA) (46)

holds.

Proof. We have that

µA ◦ (A ⊗ ((iA ⊗ εH) ◦ sAcoC⊗C ◦ bA)) ◦ (A ⊗ (µA ◦ (iA ⊗ A))

= µA ◦ (A ⊗ ((iA ⊗ εH) ◦ΩAcoC⊗C ◦ (µAcoC ⊗ C) ◦ (AcoC
⊗ (sAcoC⊗C ◦ bA))) (by the condition of left AcoC-module morphism

for bA)

= µA ◦ (A⊗ ((iA ⊗ εH) ◦ (µAcoC ⊗C) ◦ (AcoC
⊗ (sAcoC⊗C ◦ bA))) (by the condition of left AcoC-module morphism for ΩAcoC⊗C and

sAcoC⊗C ◦ΩAcoC⊗C = sAcoC⊗C)

= µA ◦ (A ⊗ (µA ◦ (iA ⊗ iA ⊗ εC) ◦ (AcoC
⊗ (sAcoC⊗C ◦ bA)))) (by (21))

= µA ◦ ((µA ◦ (A ⊗ iA)) ⊗ ((iA ⊗ εH) ◦ sAcoC⊗C ◦ bA)) (by (19)).

Then, by the properties of the coequalizer (36) we can assure that there exists a unique morphism
mA : A ⊗AcoC A→ A satisfying (44). The equality (45) holds because

mA ◦ γ−1
A ◦ pA⊗C ◦ ρA

= mA ◦ γ−1
A ◦ tA ◦ (ηA ⊗ A) (by unit properties)

= mA ◦ nA
A ◦ (ηA ⊗ A) (by (37))

= (iA ⊗ εH) ◦ sAcoC⊗C ◦ bA (by (44) and the unit properties).

Finally, we get (46):

mA ◦ ϕA⊗AcoC A ◦ (A ⊗ nA
A)

= µA ◦ (µA ⊗ ((iA ⊗ εC) ◦ sAcoC⊗C ◦ bA)) (by (42) and (44))

= µA ◦ (A ⊗ (µA ◦ (A ⊗ ((iA ⊗ εC) ◦ sAcoC⊗C ◦ bA)))) (by (41))

= µA ◦ (A ⊗mA) ◦ (A ⊗ nA
A) (by (44)).

Lemma 4.6. Let (A,C, ψ) be a weak quasi-entwining structure in C satisfying the assumptions of this section. If
AcoC ↪→ A is a weak Galois extension with normal basis and µA is the factorization of µA through the coequalizer
morphism nA

A, the equality

µA = µA ◦ (mA ⊗ h) ◦ ρA⊗AcoC A (47)

holds for h = b−1
A ◦ rAcoC⊗C ◦ (ηAcoC ⊗ C). Moreover, µA satisfies that

µA = (A ⊗ εC) ◦ iA⊗C ◦ γA. (48)
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Proof. First note that by (19) we can assure that µA factorizes through the coequalizer morphism nA
A. Then,

there exists a unique morphism µA such that

µA ◦ nA
A = µA. (49)

On the other hand, the equality

(mA ⊗ C) ◦ ρA⊗AcoC A ◦ nA
A = ((µA ◦ (A ⊗ iA)) ⊗ C) ◦ (A ⊗ (sAcoC⊗C ◦ bA)) (50)

holds because

(mA ⊗ C) ◦ ρA⊗AcoC A ◦ nA
A

= ((mA ◦ nA
A) ⊗ C) ◦ ρA (by (38))

= (µA ⊗ C) ◦ (A ⊗ ((iA ⊗ εC) ◦ sAcoC⊗C ◦ bA) ⊗ C) ◦ (A ⊗ ρA) (by (44))

= (µA ⊗ C) ◦ (A ⊗ ((iA ⊗ εC) ◦ΩAcoC⊗C) ⊗ C) ◦ (A ⊗ ((AcoC
⊗ δC) ◦ sAcoC⊗C ◦ bA)) (by the condition of left AcoC-module

morphism for bA).

= ((µA ◦ (iA ⊗A))⊗C)◦ (A⊗ (sAcoC⊗C ◦ bA)) (by the condition of left AcoC-module morphism for ΩAcoC⊗C and the counit properties).

As a consequence,

µA ◦ (mA ⊗ h) ◦ ρA⊗AcoC A ◦ nA
A

= µA ◦ ((µA ◦ (A ⊗ iA)) ⊗ (b−1
A ◦ rAcoC⊗C ◦ (ηAcoC ⊗ C))) ◦ (A ⊗ (sAcoC⊗C ◦ bA)) (by (50))

= µA ◦ (A ⊗ (µA ◦ (iA ⊗ (b−1
A ◦ rAcoC⊗C ◦ (ηAcoC ⊗ C))) ◦ sAcoC⊗C ◦ bA)) (by (19))

= µA ◦ (A ⊗ (b−1
A ◦ rAcoC⊗C ◦ (µAcoC ⊗ C) ◦ (AcoC

⊗ (ΩAcoC⊗C ◦ (ηAcoC ⊗ C))) ◦ sAcoC⊗C ◦ bA)) (by the condition of left

AcoC-module morphism for b−1
A )

= µA (by the condition of left AcoC-module morphism for ΩAcoC⊗C, rAcoC⊗C ◦ΩAcoC⊗C ◦ sAcoC⊗C = idAcoC×C and unit properties)

= µA ◦ nA
A ( by (49)),

and then (47) holds.
Finally,

(A ⊗ εC) ◦ iA⊗C ◦ γA ◦ nA
A

= (A ⊗ εC) ◦ ∇A⊗C ◦ (µA ⊗ C) ◦ (A ⊗ ρA) (by (37))

= µA ◦ (A ⊗ ((A ⊗ εC) ◦ ∇A⊗C ◦ ρA)) (by (a2) of Definition 2.1)

= µA (by (16)),

and, applying (49), we obtain (48).

Theorem 4.7. Let (A,C, ψ) be a weak quasi-entwining structure in C. If (41) holds and A⊗− preserves coequalizers,
the following assertions are equivalent:

(i) AcoC ↪→ A is a weak Galois extension with normal basis and γ−1
A is almost lineal.

(ii) AcoC ↪→ A is a weak cleft extension.
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Proof. First we will prove that (ii)=⇒(i). If AcoC ↪→ A is a weak cleft extension with cleaving morphism h,
define γ′A : A�C→ A ⊗AcoC A by

γ′A = nA
A ◦ (µA ⊗ A) ◦ (A ⊗ ((h−1

⊗ h) ◦ δC)) ◦ iA⊗C.

Then,

γA ◦ γ′A

= pA⊗C ◦ (µA ⊗ C) ◦ ((µA ◦ (A ⊗ h−1)) ⊗ (ρA ◦ h))(A ⊗ δC) ◦ iA⊗C (by (37))

= pA⊗C ◦ ((µA ◦ (µA⊗A)◦ (A⊗ ((h−1
⊗h)◦δC)))⊗C)◦ (A⊗δC)◦ iA⊗C (by the condition of morphism of right C-comodules

for h and the coassociativity of δC)

= pA⊗C ◦ ((µA ◦ (A ⊗ uψ)) ⊗ C) ◦ (A ⊗ δC) ◦ iA⊗C (by (d2) of Definition 3.2)

= pA⊗C ◦ ∇A⊗C ◦ iA⊗C (by (6))

= idA�C (by properties of ∇A⊗C),

and

γ′A ◦ γA ◦ nA
A

= nA
A ◦ (µA ⊗ A) ◦ (A ⊗ ((h−1

⊗ h) ◦ δC)) ◦ ∇A⊗C ◦ (µA ⊗ C) ◦ (A ⊗ ρA) (by (37))

= nA
A ◦ (µA ⊗ A) ◦ (A ⊗ ((h−1

⊗ h) ◦ δC)) ◦ (µA ⊗ C) ◦ (A ⊗ (∇A⊗C ◦ ρA)) (by (a2) of Definition 2.1)

= nA
A ◦ (µA ⊗ A) ◦ (A ⊗ ((h−1

⊗ h) ◦ δC)) ◦ (µA ⊗ C) ◦ (A ⊗ ρA) (by (15))

= nA
A ◦ ((µA ◦ (µA ⊗ h−1) ◦ (A ⊗ ρA)) ⊗ h) ◦ (A ⊗ ρA) (by the right C-comodule condition for A)

= nA
A ◦ (µA ⊗ A) ◦ (A ⊗ ((qA ⊗ h) ◦ ρA)) ( by (34))

= nA
A ◦ (A ⊗ (µA ◦ (qA ⊗ h) ◦ ρA)) (by (33))

= nA
A (by (33)).

Therefore, γ′A ◦ γA = idA⊗AcoC A and, as a consequence, the canonical morphism is an isomorphism with
inverse γ−1

A = γ′A. The next step is to prove that γ−1
A is almost lineal. This property holds because, in one

hand

ϕA⊗AcoC A ◦ (A ⊗ (γ−1
A ◦ pA⊗C) ◦ (ηA ⊗ C))

= nA
A ◦ (µA ⊗ A) ◦ (A ⊗ (((uψ ∗ h−1) ⊗ h) ◦ δC)) (by (7) and the coassociativity of δC)

= nA
A ◦ (µA ⊗ A) ◦ (A ⊗ ((h−1

⊗ h) ◦ δC)) (by (d1) of Definition 3.2),

and, on the other hand,

γ−1
A ◦ pA⊗C

= nA
A ◦ (µA ⊗ A) ◦ ((µA ◦ (A ⊗ uψ)) ⊗ h−1

⊗ h) ◦ (A ⊗ δC ⊗ C) ◦ (A ⊗ δC) (by (6) and (3))

= nA
A ◦ (µA ⊗ A) ◦ ((µA ◦ (µA ⊗ A) ◦ (A ⊗ ((h−1

⊗ h) ◦ δC))) ⊗ h−1
⊗ h) ◦ (A ⊗ δC ⊗ C) ◦ (A ⊗ δC)

(by (d2) of Definition 3.2)
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= nA
A ◦ ((µA ◦ (µA ⊗ h−1) ◦ (A ⊗ ρA)) ⊗ A) ◦ ((µA ◦ (A ⊗ h−1)) ⊗ h ⊗ h) ◦ (A ⊗ δC ⊗ C) ◦ (A ⊗ δC)

(by the condition of morphism of right C-comodules for h and coassociativity of δC)

= nA
A ◦ ((µA ◦ (A ⊗ qA)) ⊗ A) ◦ ((µA ◦ (A ⊗ h−1)) ⊗ h ⊗ h) ◦ (A ⊗ δC ⊗ C) ◦ (A ⊗ δC) (by (34))

= nA
A ◦ ((µA ◦ (A ⊗ h−1)) ⊗ (µA ◦ ((qA ◦ h) ⊗ h))) ◦ (A ⊗ δC ⊗ C) ◦ (A ⊗ δC) (by (31))

= nA
A ◦ ((µA ◦ (A ⊗ h−1)) ⊗ (µA ◦ (qA ⊗ h) ◦ ρA ◦ h)) ◦ (A ⊗ δC) (by the condition of morphism of right C-comodules for

h and coassociativity of δC)

= nA
A ◦ (µA ⊗ A) ◦ (A ⊗ ((h−1

⊗ h) ◦ δC)) (by (33)).

Finally we will prove that AcoC ↪→ A satisfies the normal basis condition. Let ωA = µA ◦ (iA ⊗ h) :
AcoC

⊗ C → A and ω′A = (pA ⊗ C) ◦ ρA : A → AcoC
⊗ C where, by (d4) of Definition 3.2, pA : A → AcoC is the

unique morphism such that

iA ◦ pA = qA. (51)

Then, by (33), we have that ωA ◦ ω′A = idA, and ΩAcoC⊗C = ω′A ◦ ωA is an idempotent morphism. For
ΩAcoC⊗C we have that the following identities

ΩAcoC⊗C = ((pA ◦ µA ◦ (iA ⊗ h)) ⊗ C) ◦ (AcoC
⊗ δC), (52)

ΩAcoC⊗C = ((µAcoC ◦ (AcoC
⊗ (pA ◦ h))) ⊗ C) ◦ (AcoC

⊗ δC), (53)

hold. Indeed, the first one follows by (20) and the condition of morphism of right C-comodules for h. To
prove (53), firstly we will show that

iA ◦ µAcoC ◦ (AcoC
⊗ pA) = qA ◦ µA ◦ (iA ⊗ A) (54)

holds. The proof is the following:

iA ◦ µAcoC ◦ (AcoC
⊗ pA)

= µA ◦ (iA ⊗ qA) (by (21) and (51))

= µA ◦ (µA ⊗ h−1) ◦ (iA ⊗ ρA) (by (34))

= qA ◦ µA ◦ (iA ⊗ A) (by (20)).

Thus, using that iA is a monomorphism, we have

µAcoC ◦ (AcoC
⊗ pA) = pA ◦ µA ◦ (iA ⊗ A), (55)

and then (53) holds.
Therefore, by (52), we obtain that ΩAcoC⊗C is a morphism of right C-comodules for the coaction ρAcoC⊗C =

AcoC
⊗ δC and, by (53), ΩAcoC⊗C is a morphism of left AcoC-modules for the action ϕAcoC⊗C = µAcoC ⊗ C.

Let rAcoC⊗C : AcoC
⊗C→ AcoC

×C, sAcoC⊗C : AcoC
×C→ AcoC

⊗C be the morphisms such that sAcoC⊗C ◦rAcoC⊗C =
ΩAcoC⊗C and rAcoC⊗C ◦ sAcoC⊗C = idAcoC×C, where AcoC

× C is the image of ΩAcoC⊗C. Define

bA = rAcoC⊗C ◦ ω
′

A : A→ AcoC
× C

and
b′A = ωA ◦ sAcoC⊗C : AcoC

× C→ A.
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Then,
b′A ◦ bA = ωA ◦ sAcoC⊗C ◦ rAcoC⊗C ◦ ω

′

A = ωA ◦ ω
′

A ◦ ωA ◦ ω
′

A = idA

and
bA ◦ b′A = rAcoC⊗C ◦ sAcoC⊗C ◦ rAcoC⊗C ◦ sAcoC⊗C = idAcoC×C.

Therefore, bA is an isomorphism with inverse b′A and a morphism of right C-comodules because, by the
equality ΩAcoC⊗C ◦ ω

′

A = ω′A and the condition of right C-comodule morphism for ω′A (consequence of the
right C-comodule structure of A), we have

ρAcoC×C ◦ bA = (rAcoC⊗C ⊗ C) ◦ (AcoC
⊗ δC) ◦ΩAcoC⊗C ◦ ω

′

A = (bA ⊗ C) ◦ ρA.

Moreover, bA is a morphism of left AcoC-modules. Indeed:

b−1
A ◦ ϕAcoC×C

= µA◦((iA◦µAcoC )⊗h)◦(AcoC
⊗sAcoC⊗C) (by the condition of morphism of left AcoC-modules for ΩAcoC⊗C and ΩAcoC⊗C◦sAcoC⊗C = sAcoC⊗C)

= µA ◦ ((µA ◦ (iA ⊗ iA)) ⊗ h) ◦ (AcoC
⊗ sAcoC⊗C) (by (21))

= µA ◦ (iA ⊗ b−1
A ) (by (19))

= ϕA ◦ (AcoC
⊗ b−1

A ) (by definition of ϕA).

Now we get (i)=⇒(ii): Assume that AcoC ↪→ A is a weak Galois extension with normal basis and that
γ−1

A is almost lineal. Let ΩAcoC⊗C be the associated idempotent morphism of right C-comodules and left
AcoC-modules. Denote by rAcoC⊗C : AcoC

⊗ C → AcoC
× C and sAcoC⊗C : AcoC

× C → AcoC
⊗ C the morphisms

such that sAcoC⊗C ◦ rAcoC⊗C = ΩAcoC⊗C and rAcoC⊗C ◦ sAcoC⊗C = idAcoC×C, where AcoC
× C is the image of ΩAcoC⊗C. Let

bA : A→ AcoC
× A be the isomorphism of right C-comodules and left AcoC-modules. Then, define

ωA = b−1
A ◦ rAcoC⊗C : AcoC

⊗ C→ A

and
ω′A = sAcoC⊗C ◦ bA : A→ AcoC

⊗ C.

Trivially,ω′A◦ωA = ΩAcoC⊗C andωA◦ω′A = idA. Moreover,ωA andω′A are morphisms of right C-comodules
and left AcoC-modules because ΩAcoC⊗C and bA are morphisms of right C-comodules and left AcoC-modules.

Consider
h = ωA ◦ (ηAcoC ⊗ C), h−1 = mA ◦ γ

−1
A ◦ pA⊗C ◦ (ηA ⊗ C),

where mA is the morphism introduced in Lemma 4.5. Using that ωA is a morphism of right C-comodules,
we obtain that h is a morphism of right C-comodules. The proof for (d1) of Definition 3.2 is the following:

uψ ∗ h−1

= mA ◦ ϕA⊗AcoC A ◦ (uψ ⊗ (γ−1
A ◦ pA⊗C ◦ (ηA ⊗ C))) ◦ δC (by (46))

= mA ◦ γ−1
A ◦ pA⊗C ◦ (uψ ⊗ C) ◦ δC (by (43))

= h−1 (by (5)).

By

µA ◦ (µA ⊗ A) ◦ (A ⊗ ((h−1
⊗ h) ◦ δC))

= µA ◦ ((mA ◦ ϕA⊗AcoC A ◦ (A ⊗ (γ−1
A ◦ pA⊗C ◦ (ηA ⊗ C)))) ⊗ h) ◦ δC (by (46))

= µA ◦ ((mA ◦ γ−1
A ◦ pA⊗C) ⊗ h) ◦ (A ⊗ δC) (by (43))
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= µA ◦ (mA ⊗ h) ◦ ρA⊗AcoC A ◦ γ−1
A ◦ pA⊗C (by (40))

= µA ◦ γ
−1
A ◦ pA⊗C (by (47))

= (A ⊗ εC) ◦ iA⊗C ◦ γA ◦ γ−1
A ◦ pA⊗C (by (48))

= (A ⊗ εC) ◦ ∇A⊗C (by the factorization of ∇A⊗C)

= µA ◦ (A ⊗ uψ) (by (6)),

we obtain (d2) of Definition 3.2. To prove (d3), we will obtain previously that

qA = (iA ⊗ εC) ◦ ω′A (56)

and (34) hold. Indeed, first note that (56) follows by

qA

= mA ◦ ϕA⊗AcoC A ◦ (A ⊗ (γ−1
A ◦ pA⊗C ◦ (ηA ⊗ C))) ◦ ρA (by (46))

= mA ◦ γ−1
A ◦ pA⊗C ◦ ρA (by (43))

= (iA ⊗ εC) ◦ ω′A (by (45)).

Thus, we get (34) because

µA ◦ (µA ⊗ h−1) ◦ (A ⊗ ρA)

= mA ◦ ϕA⊗AcoC A ◦ (µA ⊗ (γ−1
A ◦ pA⊗C ◦ (ηA ⊗ C))) ◦ (A ⊗ ρA) (by (46))

= mA ◦ γ−1
A ◦ pA⊗C ◦ (µA ⊗ C) ◦ (A ⊗ ρA) (by (43))

= mA ◦ nA
A (by (37))

= µA ◦ (A ⊗ ((iA ⊗ εC) ◦ ω′A)) (by (44))

= muA ◦ (A ⊗ qA) (by (56)).

Then

µA ◦ (µA ⊗ A) ◦ (A ⊗ ((h ⊗ h−1) ◦ δC))

= µA ◦ (µA ⊗ h−1) ◦ (A ⊗ (ρA ◦ h)) (by the condition of morphism of right C-comodules for h)

= µA ◦ (A ⊗ (qA ◦ h)) (by (34))

= µA ◦ (A ⊗ (h ∗ h−1)) (by the condition of morphism of right C-comodules for h),

i.e., (d3) of Definition 3.2 holds.
Finally, (d4) of Definition 3.2 follows by (56) and (17).

As a consequence we have the following corollary:

Corollary 4.8. Let H be a weak Hopf quasigroup in a strict symmetric monoidal category C. Let (A, ρA) be a
right H-comodule magma. Let AcoH ↪→ A be the extension associated to the weak quasi-entwining structure
(A,H, ψ = (A⊗ µH) ◦ (cH,A ⊗H) ◦ (H ⊗ ρA)) defined in (11). If A⊗− preserves coequalizers and (19) and (41) hold,
the following assertions are equivalent:

(i) AcoH ↪→ A is a weak Galois extension with normal basis and γ−1
A is almost lineal.

(ii) AcoH ↪→ A is a weak cleft extension.

(iii) AcoH ↪→ A is a weak H-cleft extension.

Proof. The proof follows by Theorem 4.7 and Theorem 5.1 of [6] because, as was pointed in Remark 3.1,
under the conditions of this corollary, the equality (20) holds.
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