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Abstract. Recently we have introduced a productive form of gamma and beta functions and applied them
for generalized hypergeometric series [Filomat, 31 (2017), 207-215]. In this paper, we define an additive
form of gamma and beta functions and study some of their general properties in order to obtain a new
extension of the Pochhammer symbol. We then apply the new symbol for introducing two different types
of generalized hypergeometric functions. In other words, based on the defined additive beta function, we
first introduce an extension of Gauss and confluent hypergeometric series and then, based on two additive
types of the Pochhammer symbol, we introduce two extensions of generalized hypergeometric functions
of any arbitrary order. The convergence of each series is studied separately and some illustrative examples
are given in the sequel.

1. Introduction

The generalized hypergeometric functions ,Fy(ay, ..., ap; b1, ..., by; z) appear in a wide variety of math-
ematical and engineering sciences [1, 3, 9, 16]. For instance, there is a large set of hypergeometic-type
polynomials whose variable is located in one or more of the parameters of the corresponding functions ,F,
[7, 8]. These polynomials are of great importance in mathematics as well as in many areas of physics [5, 13,
14,17]. It is well-known that the base of constituting ,F, is the gamma function and for two important cases
2F1 and 1F; may also be the beta function. Hence, a natural way to extend ,F, is to extend these two basic
functions, or even their incomplete versions, i.e., incomplete gamma and incomplete beta functions [4].

Let R and C respectively denote the sets of real and complex numbers and z be an arbitrary complex
variable. The well known (Euler’s) gamma function is defined, for Re(z) > 0, as

I'(z) = f ¥ le ™ dx, 1)
0
and for z € C\Z,; where Z; = {0,-1,-2,...} as
() = M (neN).
1o z+k)
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The limit definition of the gamma function

, n!n?
0= IR T, e ?

is valid for all complex numbers except the non-positive integers. A remarkable property for the gamma
function, which is provable via the limit definition (2), is

== o PHq . .
Iz)=I'(z) = TE+iplp-ig) e R. 3)
Recently in [11], we have applied this property to introduce a productive form of the gamma function as

T ig)'(p — i
H(p,)z Tp +ipl'p —iq) (p>0, g€R),

L'(p)

which leads to an extension of the Pochhammer symbol (r); = I'(r + k)/I'(r) as [11]:

[Is+k¢q) _ (s +1iq),(s —ig),
16, 9) () '

Now, the point is that property (3) has an additive analogue form so that we have

T@) =T B I(p+ig+T(p-ig)eR. @

This result (4) may also be extended to n complex variables. If z; = pr +igx (k = 1,2,...,n) are n distinct
complex numbers, then

2122 "Zpn —Z1Z2 """ Zp
2i ’

_ Z1Zp "+ Zy *+ 2120+ Zy

Aj >

and Bj =

are always two real values, because

— = — n 1 n n
A = 2 Co R —'2— E2 A % v +q7)° [exp [i Z arctan %] +exp [—i Z arctan %]]
k=1 k=0 Pk k=0 Pk 5)
= (pi + qi)% cos {Z arctan %] €R,
k=1 k=0 Px
and
2120 Zn — 2122 Z 17 : N - q
B, =22 nZi 192" "% % H(pi +a;)? (exp [iZarctan @] —exp [—iZarctan —k]]
k=1 k=0 Pr k=0 Pk ©)
= (pi + qi)% sin (Z arctan %] eR.
k=1 k=0 Px

In this paper, we exploit the property (4) to introduce an extension of the Pochhammer symbol in order to
define the additive type of gamma, incomplete gamma, beta and incomplete beta functions and apply them
for introducing two different extensions of generalized hypergeometric functions. In this sense, we first
introduce an extension of Gauss and confluent hypergeometric series, which are based on the additive type
beta function, and then introduce two extensions of generalized hypergeometric functions of any arbitrary
order, which are based on two different generalizations of the Pochhammer symbol. The convergence of
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each series is studied separately and some illustrative examples are given in this sense. For this purpose,
we first define an additive form of the gamma function, by referring to the property (4), as follows

Te(p,g) = % (T(p+ig) +T(p—ig) (>0, q€R). )

For analogous extensions of the family of gamma functions see e.g. [2, 6, 12]. The limit definition of (7) can
be derived from (2), so that we have

{ n! nP+iq n!nP=iq }
m N
now (p+ig)(p+1+ig)---(p+n+ wl) am p-ipp+1-ig)---(p+n-iq)

Ie(p,g) =

exp[ (q logn — Z arctan —)] + exp[ (q logn — Z arctan p+k)]

= lim n!'n?
n—o0o

2 H ((p+KP+ )" (®)

ntn? cos(q logn — Z, arctan p+k)

= lim
n—oo

I+ 0+
k=0
Since |cos(q logn — Z arctan +k)| <1, for any p > 0, relation (8) implies that

=0.

T(p +iq) + T(p i
i C(p,q) = lim (P+1q)J2r (p —iq)
q—)DO

Moreover, relations (8) and (2) show that

IC:p, 9| <T() (>0, geR). 9)

In order to obtain an integral representation for I'.(p, g), it is enough to consider the identity

% (xiq + x‘iq) = cos(qlog x),
and substitute it in (7) to finally obtain

Le(p,q) = fo e cos(qlogx)dx  (p>0, g€R). (10)
Remark 1.1. Since

IT'p+ig) = (j:o x"~1e™ cos(qlog x) dx) + i(f;m x"~le ¥ sin(qlog x) dx) ,

is valid for p > 0 and g € IR, there is another real function which can be defined as

I['(p +ig) —T(p —ig)
2i )

Is(p,q) = f x"le sin(qlog x) dx =
0
The limit definition of this function, similar to (8), is as

nln? sm(q logn — Z arctan p+k)
Ls(p,q) = lim - : (11)
T+ + )"
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It is clear that

L, )| <T() (>0, q€R),

and
lim [(p, q) = lim xP~te™ sin(qlog x) dx = 0.
g—o0 0

q*)OO

Remark 1.2. Some definite integrals can be computed in terms of the two real functions I'.(a, b) and I's(a, b).
For example, if p,r > 0 and g € IR, then we have

f x"le™ cos(qlog x) dx = —F (E ﬂ) ,
0

rr

f xPle™ sin(glog x) dx = —F (;: q),
0

r
fow xP e cos(qlog x) dx = L (cos(q log ) I'e(p, q) + sin(qlogr) Ts(p, )),
and
f; ) xP e sin(glog x) dx = rll’(_ sin(qlogr)I'.(p, q) + cos(qlog 1) Ts(p, q)) .

Remark 1.3. To compute I'.(11, q) and I's(m, q) when m € IN, one needs to evaluate two particular integrals

(e8]

I'.(1,9)= f e “cos(glogx)dx and  T(1,9) = f e *sin(glog x) dx,
0 0
with upper bounds
IC:1,9)|<1 and [[(1,9)| <1 (7€R).

In other words, by recalling the fundamental recurrence relation I'(z + 1) = zI'(z), we have

Im+ig) = (m-1+ig)(m—-2+1ig)---(1 +ig)I'(1 +ig)
m—1 m—1
= (m =k +¢?)* exp[Zarctanm ](1" (1,9)+iTs(1,9))
k=1 k=1
and
[(m—iq) = (m-1-ig)m-2-ig)---(1-ig)T(1 -ig)

-1

m=1
= H((m k? +g%)? exp[ i arctanmq_

1

3

k] (Tu(1,q) =111, ),

P
Il

which respectively yield

T'e(m,q) ]; x"te™ cos(qlog x) dx = % (T(m +1ig) + T'(m — ig))

m—1 m—1 m—1 1
= {Fc(l, q) cos [Z arctan m‘i_ k] -TI(1,q)sin [Z arctan mq— k]} ((m —k)* + P’

k=1 k=1 k=1
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and

T's(m,q) f; X" e ™ sin(glog x) dx = % (T(m +1ig) —T'(m —ig))

1

m=1 m—1 m— .
{Fs(l, q) cos (Z arctan mq_ k] -T¢(1,9)sin [Z arctan mq— k]} H (m - k)2 + qz)i.

k=1 k=1 k=1

The so-called incomplete gamma functions y(z; x) and I'(z; x) defined by

Y(z;x) = fo xtz_le_t dt (Re(z) >0, x > 0), (12)
and

I'(z;x) = fw #letdt (x>0; Re(z) >0 when x = 0), (13)
are known to satisfy the well-known decomposition formula

Yz x)+T(z;x) =T(z)  (Re(z) > 0).

They play important roles in the study of the analytic solutions of a variety of problems in diverse areas of
physical problems and engineering [6,12]. Now, similar to the previous cases, we can define the additive
form of both functions (12) and (13) respectively as follows

velp,4;%) = fo et cos(qlogt)dt = %(y(r) +ig;x) +y(p—igx)) (p>0,g€R, x>0), (14)
and
T'e(p,q;x) = fxm e cos(qlogt) dt = %(T(p +ig;x) +T(p—ig;x)) (x20,g€R, p>0whenx =0). (15)
It is not difficult to verify from (14) and (15) that

ve(p, ;%) +Te(p,q;x) =Te(p,q9) (p>0,g€R).

Also, if p > 0 and g € R, then for any x > 0 we have

lyew, ;0| <y(p:x)  and  [Te(p,g:%)| < T(p; ).

In a similar way, two further incomplete functions can be defined as follows

X
vs(p, q;x) = f tr~le~! sin(glog t) dt = %(y(p +ig;x) - y(p—ig;x)) (P>0,9€eR, x>0),
0
and
Is(p, g, %) = f #le ' sin(glogt) dt = % Tp+ig;x) -T(p —ig;x)) (x>0, g€R, p>0whenx=0),

where

s, ;%) + Ts(p, ;%) =Ts(p,q) (p>0,9€R).
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When Re(x) > 0 and Re(y) > 0, the beta function [4] has a close relationship with the gamma function as

F)r(y)
I'(x+y) B

1
B(x,y) = fo F11 - by ldt = B(y, x).

We can similarly apply the result (4) to define an additive form of beta function as follows

Be(p,4,1,5) = 5 (Blp +in,g +is) + B(p—ir,q ~is)
16)

_1T(p+q-ir+s)I(p+inl' (g +is) + I(p + q +i(r + 5))I'(p — in)I'(q — is)
T2 TCp+q+i(r+s)(p+q—i(r+s)) '

Since
1/ is —ir —is
3 (t”(l - +t"(1 -1 ) = cos(rlogt +slog(l —1t)),

the integral representation of (16) takes the form

1
Bc(p,q,1,5) = f #7111 - )7 cos (rlog t + slog(1 — t))d dt. (17)
0

Also by noting that

1

5 (t”(l — B -1 - t)*“) = sin(rlogt +slog(l — t)),

a second real function corresponding to the beta function can be defined as

1
Bs(p,q,7,5) f #7131 — )7 L sin (rlogt +slog(l —t)) dt
0

= % (B(p +1ir,q +is) — B(p — ir, q — is))

l IFp+qg—-i(r+s)I'(p+inNl'(g+is) —T(p + g +i(r +s)'(p —ir)[(g —is)

2i IFp+qg+i(r+s)I'(p+q—i(r+5)) (18)

If p,q > 0in (17) and (18), then for any 7,5 € R one can show that
|Bc(p, q.t, s)| < B(p,q) and )Bs(p, q, r,s)| < B(p,g).
The incomplete beta function [4, 16] is defined by
X
B(p,q;x) = f #7111 - )Tl dt (Re(p) >0, Re(g) >0, x<[0,1]).
0

Now, by noting (17), we can define the incomplete case of the additive form of beta function as
B:(p,q,7,5,x) = f #71(1 - )7 cos (rlogt + slog(1 — t)) dt
0

= % (B(p +ir,q +is;x) + B(p — ir, g — is; x)) .
Again, if p,q > 0 and ,s € R, then for any x € [0,1] we have

[B:(p, q,7,5:%)| < B(p, g; %).
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Finally, according to (4), a further type of additive incomplete beta function can be defined as

Bs(p,q,7,5;x) = f #71(1 - )7 L sin (rlogt +slog(l —t)) dt
0

= %(B(p+ir,q+is;x) - B(p —ir,q —is; x)).

2. Two additive types of generalized hypergeometric functions

One of the main reasons for introducing and developing the generalized hypergeometric series is that
many special functions [4, 8, 10] can be represented in terms of them and their initial properties can be
directly found via the initial properties of hypergeometric functions. Also, they appear as solutions of
many important ordinary differential equations [8, 10, 13]. The generalized hypergeometric function

a, a, ... (@1)(a2)y - - - (ap), 2K
”P"( by, by, .. ) Z OBy (By), K (19)

k-1
in which ()¢ = [ (r+j) = T(r + k)/T(r) denotes the Pochhammer symbol [4] and z may be a complex
j=0

variable is indeed a Taylor series expansion for a function, say f, as Y. ¢; zF with ¢; = f®(0)/k! for which
k=0

the ratio of successive terms can be written as

Crq _ (k+ar)(k+az)---(k+ap)
i (k+b)(k+by)---(k+by)k+1)

According to the ratio test [4], the series (19) is convergent for any p < g + 1. In fact, it converges in |z < 1
for p = g+ 1, converges everywhere for p < g + 1 and converges nowhere (z # 0) for p > g + 1. Moreover,
for p = g + 1 it absolutely converges for |z| = 1 if the condition

q q+1
= Re[Zb] —Zﬂ]’] >0
j=1 j=1

holds and is conditionally convergent for |z| = 1 and # 1 if =1 < A* < 0 and is finally divergent for |z| = 1
and z # 1 if A* < —1. There are two important cases of the series (19) arising in many physical problems [3,
7,11, 13]. The first case is the Gauss hypergeometric function convergent in |z| < 1 that is denoted by

, b (@)
y=2F1(aC ‘) Za(c)k 7K

and satisfies the differential equation
zz-1Dy" +((@+b+1)z-c)y +aby =0. (20)

Particular choices of the parameters in the linearly independent solutions of the differential equation (20)
yield 24 special cases. The »F; can be given an integral representation as

a, b I'(c) ' b-1 c—b-1 -a
F = 1- 1-
! ( |- e J, - ta-me
By using a series expansion of (1 — tz)™ in (21), one can also write the ,F; in terms of the beta function as

b+kc-b
2Fl(a’cb ) Z()"B( ZCC ))il 22)

-z)|<mn). (1)




M. Masjed-Jamei , G. V. Milovanovi¢ / Filomat 32:19 (2018), 65056517 6512

The second case, which converges everywhere, is the confluent hypergeometric function
Z (b)y 2*
() K

as a basis solution of the differential equation

Y= 1F1(

zy' +(c-2)y -by =0,

which is a degenerate form of equation (20) where two of the three regular singularities merge into an
irregular singularity. The 1F; has an integral form as

b _ T e b1z
1F1( Z)—mﬁ tb 1(1—t) etdt

c
and can be represented in terms of the beta function as
b v Bl+kc-b)
1F1( Z)‘kza B(b,c—b) ki

c

Due to the form of their differential equations, most of the special functions of mathematical physics may
be obtained from >F; and {F; by special choices of the parameters. There have been some extensions of
these functions in the literature [15]. In three next sections, we introduce an extension of ,F; and 1F; which
are based on the additive form of beta function (17) and in the sequel we introduce two extensions of
generalized hypergeometric series of arbitrary order which are based on two new different definitions of
the Pochhammer symbol by adding an extra parameter. The convergence problem of each introduced series
is separately studied.

(1-2)| <),

2.1. An extension of ,F1 and 1F; based on the integral (17)
By noting the relations (17) and (22), the proposed extension of ,F; can be considered as

_ k
m( @0 [509)- Z(»B(b”"c A @)

B(b,c—b)
which reduces to the same as ,F; when r = s = 0. Since we deal with complex variables, all parameters
defined in (23) are considered real. By recalling this condition, if c > b > 0 and c is not a negative integer or
zero, then the integral representation of (23) will be derived by (17) as follows

1
a, b — f 11 — )" cos (rlog t + slog(1 — £)) dt k
2F1 ( c |7 (r, S)) = Z (a), 2 50D z
= bc—b)f 711 - )" cos (rlogt + slog(1 _t))[z()k(Zt ]
= _F(b)ll:ii) 5 f 11— t)C—b_1(1 —zt) " cos (rlog t + slog(1 —t)) dt. (24)
- 0

Since |cos (rlogt+slog(l—1) ) < 1in (24), according to the well-known Abel theorem, the series (23)
converges in the circle |z| < 1. Similarly, for the extension of 1F; we can define

1F1 (

Z Bo(b+k,c—b,r,5) z_k
Bl,c—b) K’

z; (7, s))

k=0
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which would have an integral representation as

1P1( IZ Z(rS)) B(bc—b)f #11 )Cb1cos(rlogt+slog(1—t))[;(k_]
T
_ b)l“(z)— b)f £71(1 = 1) 1e cos (rlog £ + slog(1 — ) dt,

6513

and is convergent everywhere provided that ¢ > b > 0 and c is not a negative integer or zero.

2.2. An extension of generalized hypergeometric functions based on integral (10)

Since the Pochhammer symbol is defined as (r)y = I'(r + k)/I'(r), one can extend it using the additive

form of gamma function as follows
Te(r+kq)  T(r+k+ig) +T(r+k—ig)
rry 2T(r)

By noting the definition (25), an extension of ,F; can now be considered as

JF, [a; A1q], [b; A2q] z) _ i[a}/\llﬂk[b;/bq]kZ_k

[r;qle = (r>0,q€R).

c e () k!
T v Te@a+k Mg Te(b +k, Azq) a
~ T()I(b) o T'(c+k) k'’

in which a,b,c > 0 and g, A1, A, € R. According to (9), since
ICe(@ +k, M) Te(b + k, A2g) | < T(a+ KT(b + ),

the series (26) would be convergent in |z| < 1 if c is not a negative integer or zero.
(A1, 42) = (1,0), the integral representation of (26) is reduced to

[a;4], [b;0] 3 Te@a+kq)I(b+k) z_k
h ( c ‘ Z) - F(a)r(b) Z Tc+h K

o ok
_ k a+k 1
= F(a) 2_( ( f cos(qlogx)dx)
| s (B) (x2)
= — X 1 E d
. ¥ cos(g ogx)[ T ] x

1 1 b
— a X 1 F .
_F(a) j; x"e™ cos(qlog x)1Fy ( c xz) dx
Similarly, one can extend 1F; as

F [b; 4] ‘ . = [b;q], ZF F(c) Le(b +k,q) z*
o © K T & Te+k K’

whose integral representatlon

[b; 4] 1 v 1 .
1P1( . ’z) %Z‘@(ﬁ xPle cos(qlogx)dx)

1 (x2)
= (91
F(b)f * cos(q ogx)[ @ )dx

= F(b) f * cos(qlog x)oF1 ( c xz) dx,

k

(25)

(26)

For example, for

(27)
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is convergent everywhere when b > 0 and c is not a negative integer or zero. By noting the definition of
the two particular cases (26) and (27), it is a good position now to consider the extension problem for any
general case (p, q). Let g, bk}k 1,{ } e €R and {ak}’Z:1 > 0 and then define

[ar; A1q], [a; Aaql, ... [an;An9] o [a1; Mglilaz; Aagly.lap; Apql, z
JF 1,4, az;A2q pb iz ‘Z):Z k

by by : by, K 28)

=0
Since
|[”1?/\1‘7]k[”2?)\20]]k “[ay; pq]k| (a1)k@2)k -+ - (@),

the series (28) is convergent whenever the corresponding series (19) is convergent and {bk}zz1 arenotnegative
integers or zero. Let us consider some illustrative examples.

Example 2.1. By noting that 1Fy ( f z) = (1 —z)™, the series (28) is simplified as

1Fo( [a,‘_q] ‘z) _ il"(u+iq+k)+1“(a—iq+k)z_k

k=0 2I'(a) k!
= ﬁ (r(ﬂl +ig)(1 - Z)_ﬂ—i‘i +I'(a-ig)(1 - Z)—u+iq)
= -a Tc(a, q) I, q)
= (1 (TP costatogtt -2 - Sl i iog -2).

log(1 - z)
z

Example 2.2. By noting that ,F; ( 1’21 | z) = - , the series (28) is simplified as

[1; A1q], [1; A2g] | | - [A+ihgTA +idag) o [ 1+idig, 1+idaq |
2 = 4 21 2
L ra+ mlq)r(l - 1A2q) ( 1+ 1)\1q, —ilyg Z)
. r(1—m1q)r(1+m2q) ( —1/\1q, 1+idyg Z)
1-ilg)T(1 —iA - 1-i
+ I( 1 1Q) ( 1 2‘1)21:1( 1)\1% iAyg Z) (29)

For instance, if (A1, A2) = (0, 1) in (29), then by noting that
Lal|l)l Q-2
o -4

1-a)z
it is reduced to

e L Ll ‘z _ 1 (T +ig(1 -2 - T(1 ~ig)(1 — )"
2 gz 2i

(a#1),

B I's(1, g) cos(qlog(1 — z)) — I'.(1, q) sin(glog(1 — z))
qz '

In this sense, it is interesting to know that

- T(L,g) cos(glog(l =2)) ~I'(1,) sin(qlog(1-2)) __log(1-2)
m = — .
q—0 qz z
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2.3. Another extension of generalized hypergeometric functions based on relations (5) and (6)
If in relations (5) and (6) we take zx = p + k — 1 + ig where p, g € R, then they respectively change to

(b +1q), ' O _TT(+k-17+ ) cOs[Z arctanp+Z— 1] <R 0

k=1 k=1

[NIE

and

[SIE

e R.

(P+lq)n2—i(iﬂ—lq)n - g((P+k—1)2+q2)

Relation (30) is clearly a real extension of Pochhammer symbol for 4 = 0. Hence, we can here define another
extension of the hypergeometric functions (19) as

n
. q
sm[ E arctan " 1

k=1

{a; Mgl {az; Aogl, ... ap; Apg) ‘ _ o\ e Aghdag; Asgly -y Apghy 2K
rFq by, by, b, 2= kz_; O b2) - (By), o (31)
where
(@ Ad) = (@+iAg) +(@—iAg), 1 (T@@+k+idg) T(a+k—iAg)
ATk 2 ~ 2\ T@+iAg) T@a-irg) )’

is an additive form for the Pochhammer symbol and {bk}zzl, {

that the numerator term of the fraction (31) is simplified as

ay, /\k}Zzl and g are all real parameters. Note

4 op
(ar +1Aiq), +(ak—1/\k ), 1
H ! d zp Z (Al,ﬂ,j)(AZ,n,j) te (Ap,n,]'),

k=1 =1

{611,' /\16]} apr Pq

where (A, j}f: are specific values in terms of {a;, A } ,qandi= V-1. This means that the right hand side

of (31) is indeed a combination of the sum of at most 2” hypergeometric functions of the same order (p, g),
see also [10]. Hence, the convergence radius of (31) would directly depend on the convergence radius of
(19), as the following examples show.

Example 2.3. Let (p,q) = (2,1). Then (31) is reduced to

{a; Mg}, {b; A2g) {@; Mghdb; Aoy 25 a+ilg, b+idyg
421:1 ( c 42 (C)k k' = 21:1 c V4

z)+2F1( a—1/\1q,cb+1/\2q z)+2F1( a—1/\1q,cb—1/\2q 'z)

(32)
a+ilg, b—

+2Fy ( c

As we observe, the right hand side of (32) consists of four hypergeometric functions of the same order . So,
the convergence radius of the left hand side of (32) must be |z| < 1 provided thatc > b > 0,4,9 € Rand cis
not a negative integer or zero. As a very particular case, let (11, A2) = (1,0) in (32). Then it changes to

; /b 1 ',b _',b
2F1( {a; q} Z)ZE(ZH( a+1j z)+2F1( a 1;1 z)),

having the integral representation

wa b)) - _ 1O g e (L) (1= 1)
2F1( c Z) = TOre-b f £ -1 . dt
I'(c

— b— c—b-1
= T(b)r(c—b)f 711 = (1 - tz) ™ cos (qlog(l - tz)) dt.
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Example 2.4. In comparison to Example 2.1, the generalized function (31) takes the form

11:0( 4]

2 k!

z) _ i (a +1q), + (a —iq), é
=0

1 —a—i —a+i
= E((1—z) T+ (1-2)")
= (1-2z)"cos(glog(l-=z)).
Example 2.5. In comparison to Example 2.2, the generalized function (31) takes the form

{1, Mg}, {15 A2g) {1519} d1; Aogly 2% 1+idig, 1+idyg
42F1 ( 9 42 (Z)k k‘ 2F1 2 Z

(33)
—idyg 'z)+2F1( —iMg, 1+idyg z)+2F1( 1-id1g, 1-idyg z).

+2Fy

2 2 2

(1+mm,
For instance, if (A1, A2) = (0, 1) then (33) is simplified as

F ( 1, {Lq) ) —1((1—z>iq—(1—z)‘iq) sin(qlog(1 - 2))
207 2 zZ|= 2 = - 7
qz i qz

so that

m sin(glog(1 — z)) _ log(1 - z)‘

Py qz z
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