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Abstract. Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity for a mean of two

variables with three parameters are investigated, and some mean value inequalities of two variables are
established.

1. Introduction

Throughout the paper we assume that the set of n-dimensional row vector on the real number field by
R".

R} ={x=(x,...,.xy) e R":x;>0,i=1,...,n},

In particular, R! and R! denoted by R and IR, respectively.
In 2009, Kuang [1]defined a mean of two variables with three parameters as follows:

K(w1, w2, p;a,b) =

DI A@, 1) + 0,6, bP)]; (1)

w1 + wr

where A(a,b) = %¢ and G(a,b) = Vab respectively is the arithmetic mean and geometric mean of two
positive numbers a and b, parameters p # 0, w1, w; > 0 with w; + w, # 0.

For simplicity, sometimes we will be K(w1, wy, p; 4, b) for K(w1, wy, p) or K(a, b).

In particular,

w 1)_a+w\/@+b

K(1, =
('2 w+?2

is the generalized Heron mean, which was introduced by Janous [2] in 2001.
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K(l, Q,P) _ @+ w(aby’? + b
2 w+2

is the generalized Heron mean with parameter.

Inrecent years, the study on the properties of the mean with two variables by using theory of majorization
is unusually active (see references [10-35]).

In this paper, Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity of K(w1, w2, p)
are discussed. As consequences, some interesting inequalities are obtained.

Our main results are as follows:

Theorem 1.1. (i) When wiw; # 0, if p > 2 and p(w — %) — w1 = 0, then K(w1, w2, p) is Schur-convex with
(a,b) e R%; if 1 < p < 2 and p(wy — @) — w1 < 0, then K(wy, ws, p) is Schur-concave with (a,b) € R, if
p < 1, then K(wy, was, p) is Schur-concave with (a,b) € R3.
(i1) When w1 = 0, wy # 0, K(w1, w2, p) is Schur-concave with (a,b) € R3.
(iii) When w1 # 0,w2 = 0, if p = 2, then K(w1, wy,p) is the Schur-convex with (a,b) € ]R_%; if p < 2, then
K(w1, wa, p) is the Schur-concave with (a, b) € R2.

Theorem 1.2. Ifp > 0, then K(w1, wy, p) is Schur-geometrically convex with (a, b) € R2. Ifp <0, then K(w1, w2, p)
is Schur-geometrically concave with (a,b) € R2.

Theorem 1.3. If p > —1, then K(wi, wa, p) is Schur-harmonically convex with (a,b) € R3. If =2 < p < =1 and
wi(p + 1)+ a)z(g +1) > 0, then K(wy, wa,p) is Schur-harmonically convex with (a,b) € R2. If p < -2 and
a)l(’—z’ +1) + wy =0, then K(w1, w2, p) is Schur-harmonically concave with (a,b) € R2.

2. Definitions and Lemmas

We need the following definitions and lemmas.
Definition 2.1 ([3, 4]). Let x = (x1,...,x,)andy = (y1,...,Y,) € R".

(i) x is said to be majorized by y (in symbols x < y) if Yoy xq < Yoy yp fork =1,2,...,n = Tand Y x; =
Y.it1 Vi, where xpiy = - = Xp) and ypy = - = Yy are rearrangements of x and 'y in a descending order.
(1) Q c R" is called a convex set if (ax1 + By1, ..., ax, + Byn) € Q for any x and y € Q, where a and f € [0, 1]
witha +p=1.
(iif) let Q c R", p: Q — Ris said to be a Schur-convex function on Q if x <y on Q implies ¢ (x) < (y). @ is
said to be a Schur-concave function on Q) if and only if —¢ is Schur-convex function.

Definition 2.2 ([5, 6]). Let x = (x1,...,x,) andy = (y1,...,yn) € R},

(i) Q c R is called a geometrically convex set if (x{ y/f, ey xf,‘yﬁ) € Qforanyxandy € Q, where a and g € [0,1]
witha+p =1

(ii) let Q C RY, @: Q — R, is said to be a Schur-geometrically convex function on Q if (Inxy,...,Inx,) <
(Inyi,...,Iny,) on Q implies ¢ (x) < @ (y). @ is said to be a Schur-geometrically concave function on C if
and only if —¢ is Schur-geometrically convex function.

Definition 2.3 ([7, 8]). Let Q C R}.

(i) A set Q is said to be a harmonically convex set if s, € Q for every x,y € Q and A € [0,1], where

Sy iand = (1 ... 1
xy =Yl xyiand L =(L,... 1)

(ii) A function ¢ : QO — R, is said to be a Schur harmonically convex function on Q if L < % implies p(x) < @(y).
A function ¢ is said to be a Schur harmonically concave function on Q if and only if —¢ is a Schur harmonically
convex function.
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Lemma 2.4 ([3, 4]). Let Q C R" is convex set, and has a nonempty interior set Q° . Let ¢ : Q — R is continuous
on Q and differentiable in Q°. Then ¢ is the Schur — convex(Schur — concave) function, if and only if it is symmetric
on Q and if

dp do
(xq — x2)(8_x1 - E) >0(<0)

holds for any x = (x1,xp, -+ ,x,) € Q.

Lemma 2.5 ([5, 6]). Let Q C R" be a symmetric geometrically convex set with a nonempty interior Q°. Let
@ : Q — Ry be continuous on Q and differentiable on Q°. Then ¢ is a Schur geometrically convex (Schur
geometrically concave) function if and only if ¢ is symmetric on Q) and

d d
(1 —xz>(xla—$ —xza—Z) >0 (<0) )

holds for any x = (x1,+ -+ ,x,) € Q.

Lemma 2.6 ([7, 8]). Let Q C R” be a symmetric harmonically convex set with a nonempty interior Q°. Let
@ : Q - R, be continuous on Q and differentiable on Q°. Then ¢ is a Schur harmonically convex (Schur
harmonically concave) function if and only if @ is symmetric on Q and

(xl—xz)(za(” xza(p)zo (<0) 3)

Mo " 20x,
holds for any x = (x1,- - ,x,) € Q°.
Lemma 2.7 ([9]). Leta < b,u(t) =tb+ (1 —t)a,v(t) = ta+ (1 — t)b. If% StHh<tH<lor0<H <H < %, then
(u(t2), v(t2)) < (u(tr), v(t1)) < (a,b). (4)
Lemma 2.8. Let

p

F() = anlp + Db + wz(g +Dr -k, xell, o)

where w1, w; > 0,@? + w} # 0.
If2<p<-landwi(p+1)+ a)z(%’ +1) >0, then f(x) 20,ifp < =2 and w1(p + 1) + wp = 0, then f(x) < 0.

Proof. If -2 <p < —-land wi(p+1) + a)z(g +1) >0, then

gx):=wi(p+ 1)xg+1 + wz(g + 1)x
> wi(p+ Dbt + wz(g + )it

=< wip+ 1) + wa(5 4 1)

>0,

and then f(x) = g(x) — w25 > 0.
Ifp<-2and wi(p +1) + w2 =0, then

f,(x) = (Ul(P + 1)(%7 + 1)x% + w2(g + 1)’
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and
f@=wbpend st <o

so f'(x) is decreasing, but
fW =@+ DE+ D+ +1=E+ Do+ )+ wa1 =0,
then f (x) <0, so f(x) is decreasing, furthermore
f) =@+ D+ o+ D - @b =@+ +w: =0,

2
thus f(x) <0. O

3. Proofs of Main results

From the definition of K(w1, w2, p), we have

1
PP PaPNp
e +w2a2b2]”

W1
K(w1,w2,P) = w1 + o

It is clear that K(w1, w», p) is symmetric with (a,b) € R2.
Write

m(a,b) :=

1_
1(@ + BP) + 2,505 |
2((4)1 + a)z)

Proof. [Proof of Theorem 1.1] (i) When wiw; # 0,

oda

JK wla”’l + wzﬂgilbg
— =m(a,b) ,
w1+ W

8_K _ m(a b) wlbp_l + a)2agb%‘1
ob h ! w1 + Wy
and then
JK JK
Al .—(a—b)(g—%)
a-b

— p=1 _ pp-1y _ 1\, b-1,0-1
2(w1+w2)m(a,b)[w1(a W) — wa(a - ba> b2

Without loss of generality, we may assume thata > b, then z := § > 1, and then

a->b

A= —
! 2(0)1 + a)z)

m(a, b)bP ' f(2),

where
f@ =@ =)~z -1z, z2 1.
f@=wp-1F?*- Wz 7! - wz(g - 1)(z - l)z%‘2

=712 [a)l(p - 1)22 - wzgz + a)z(g - 1)] .
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If p>2and p(w1 — 3) — w1 >0, then

wi(p — 1)zg - wzgz = z[a)l(p - 1)zg‘1 - wzg] > z[a)l(p -1)- wzg].

Notice that

wl(p—l)—wzg20@;9((01—%)—(0120,

6647

we have f'(z) > 0, for z € [1, ), but f(1) = 0, so f(z) > 0, further A; > 0. By Lemma 1, it follows that

K(w1, w2, p) is Schur-convex with (a, b) € R2.
If1<p<2andp(w; — %) —w; <0, then

w1 (p — 1)zg - a)zgz =z|wi(p— l)zg‘1 - wzg] < z[wl(p -1)- wzg].

Notice that

o(p—1) -k > 0(:>p(a)1——)—a)1<0

5=

we have f'(z) < 0, for z € [1,00), but f(1) = 0, so f(z) < 0, further A; < 0. By Lemma 2.4, it follows that

K(wy, wy, p) is Schur-concave with (a,b) € R2.
If p <1, then

f@ =@ =) —wnz-1z" <wy(1-1) —wy(z — 1)z7!

and then A; < 0. By Lemma 2.4, it follows that K(w1, w,, p) is Schur-concave with (a,b) € ]R_%.

(i1) When wy = 0, wz # 0, K(w1, wy, p) = Vab, then

JK JK 1(11—17)2
A= b)(a 8b) 2 \Vab

By Lemma 2.4, it follows that K(w1, wy, p) is Schur—concave with (a,b) € R2.

iii) When wq # 0, w, = 0, K(wy, w,, p) = “'J*bﬂ ; , then
(iii) p

JK JK

el b)( da (9b) 5@ _b)(ﬂp+b”)"1(ap—1+bp_1).

If p > 2, thena — b and a’~! — bP~! has the same sign, so A; > 0. By Lemma 2.4, it follows that K(w1, @y, p) is
Schur-convex with (a,b) € R2. If p < 2, thena—b and a?~! — b"~! has the opposite sign, so A; < 0. By Lemma

2.4, it follows that K(w1, wy, p) is Schur-concave with (a, b) € R2.

The proof of Theorem 1.1 is complete. [

Proof. [Proof of Theorem 1.2] It is easy to see that

, pop
_ m(a,b)(wla + woaibz ),

a&_K
oa w1 + w2
8K (4)1bp+602ﬂ§bg
m(a,b)| —————|,
w1+ wr

and then

JK 8K) (a — bym(a, b)w:(a? — bP)

(ﬂ—b)( _ﬂ_b% 2(w1 + wy)
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If p > 0, then a — b and a” — b* has the same sign, so A, > 0. By Lemma 2.5, it follows that K(w1, wy, p) is
Schur-geometrically convex with (a,b) € R2. If p < 0, then a — b and a” — I? has the opposite sign, so A, < 0.
By Lemma 2.5, it follows that K(w1, w2, p) is Schur-geometrically concave with (g, b) € ]Ri.

The proof of Theorem 1.2 is complete. [

Proof. [Proof of Theorem 1.3] It is easy to see that

JK m(a, b) 4 P

208 ma,b) p+l Pyl b
97 2w +wa) (wla + woaz™h ),
JK m(a,b) pop

277 p+1 +1
b —2(a)1 ) (a)lb + woa?b: ),
and then
oK oK m(a,b)

N 208 Go0R)

B3 i=(a=b) (” i ab) o + )] F Y

where
f(a,b) := wr(a—b) @ = ") + wpa’h (a — b)*

If p > -1, then a — b and a?*! — b"*! has the same sign, so f(a,b) > 0, and then Az > 0. By Lemma 2.6, it
follows that K(w1, wy, p) is Schur-harmonically convex with (a,b) € R2.
Without loss of generality, we may assume thata > b, then z := § > 1, and then

fla,b) = bz = 1)g(2),
where

9(z) = w1(ZF* - 1) + w2z (z - 1).

7@ =275,
where
5(2) = wi(p + 1) + wz(g +1)z— mg.

If2<p<-landwi(p+1)+ a)z(g +1) > 0, from Lemma 2.8, it follows s(z) > 0, and then g'(z) > 0,
but g(1) = 0, so g(z) = 0 and f(a,b) > 0. Thus Az > 0, by Lemma 2.6, it follows that K(w1, wy,p) is
Schur-harmonically convex with (4,b) € R2.

Iffp<-2and wl(g +1) + wp = 0, from Lemma 2.8, it follows s(z) < 0, and then ¢'(z) < 0, but g(1) = 0,
so g(z) < 0 and f(a,b) < 0. Thus Az < 0, by Lemma 2.6, it follows that K(w1, w,, p) is Schur-harmonically
concave with (a,b) € R2.

The proof of Theorem 1.3 is complete. [J

4. Applications

Theorem 4.1. Let (a,b) € R%, u(t) = th + (1 — t)a,v(t) = ta + (1 — t)b. Assume also that % <thb <t <lor
0<ti <t < %
If 1wy #0,p = 2 and p(w; — %) — w1 = 0, then we have we have
a+b a+b
Klw1 @, p; ==, == | < K(wn, w2, p; ultz), olt2)
< K(w1, w2, p; u(tr), v(t)) < K(w, w2, p;a,b) < Glws, w2, p;a +b,0). ()

If 1wy #0,1 <p <2and p(w; — “)72) — w1 <0, then inequalities in (5) are all reversed.
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Proof. From Lemma 2.7, we have

a+b a+b
( ) ) < (u(t2), v(t2)) < (u(tr), v(tr)) < (a,b),
and it is clear that (a,b) < (a2 + b — ¢, €), where ¢ is enough small positive number.
If wiwz #0,p 2 2 and p(w; — %) — w1 2 0, by Theorem 1, and let ¢ — 0, it follows that (5) are holds. If

wiwy #0,1<p <2and p(wr - %) — w1 £ 0, then inequalities in (5) are all reversed.

The proof is complete. [

Theorem 4.1 enable us to obtain a large number of refined inequalities by assigning appropriate values
to the parameters wq, wy, p, t; and t,.
For example, putting w1 = w, = 1 in (5), we can get

Corollary 4.2. Let p > 2. Then for (a,b) € R2, we have
A, bP) + G(a?,bP) = 2(A(a, b))’. (6)
Putting p = %,wl =2,wy=1land t; = %,tz = % in (5), we can get

Corollary 4.3. Let (a,b) € R3. Then

% > %[\/a+3b+ V(@ +3b)(3a + b) + \/3a+b]2 > %(\/E+ Vab + \/I;)z. 7)
Theorem 4.4. Let (a,b) € R2. If p > 0(< 0), we have
G(a,b) < (2)K(wn, s, p;a,b). ®)

Proof. Since (log Vab,log Vab) < (loga,logb), if p > 0(< 0), by Theorem 1.2, it follows
G(a,b) = K(wl,wz,p; \/E, \/LE) < (>)K(w1, wa,p;a,b).
The proof is complete. [
For example, putting w; = w, = 1in (8), we can get
Corollary 4.5. Let (a,b) € R3. Ifp > 0(< 0), then
A@, bP) + G(aP, bP) < (=)2(G(a, b))P. 9)
Theorem 4.6. Let (a,b) € R2. Ifp> —lorif 2 <p<-land an(p+1) + a)z(g—’ +1) >0, then

ab ab
th+(1—ta ta+ (1 -1

H(a,b) < K(a)llwz,}?; b < K(w1, wa,p;a,b). (10)

where H(a, b) = # is the harmonic mean.
Ifp < -2and a)l(g + 1) + wp = 0, then inequalities in (10) are all reversed.

Proof. By Lemma 2.7, we have

(a‘l +b1 gl 4+pd

-1 -1 -1 -1 -1 1-1
> )<(ta (A= T+ (- Ha ) < @b
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Ifp>-lorif2<p<—-landwi(p+1)+ wz(g + 1) 2 0, then by Theorem 1.3, it follows

2 2
H(a,b) = K(a)pwz, R b—l)

ab ab
th+ (1 —t)a’ ta+(1-1)b
< K(Cl)l, w2, pl a, b)

< K(a)l,a)z,p;

If p < -2and a)l(g + 1) + wp = 0, then inequalities in (10) are all reversed.

The proof is complete. [

Putting w; = w, = 1in (10), we can get

Corollary 4.7. Let (a,b) € R2. Ifp > =1 or =3 <p < —1, then

A, V) + G(a”, b) > 2(H(a, b)Y (11)

If p = —4, then the inequality in (11) is reversed.
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