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Abstract. Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity for a mean of two
variables with three parameters are investigated, and some mean value inequalities of two variables are
established.

1. Introduction

Throughout the paper we assume that the set of n-dimensional row vector on the real number field by
Rn.

Rn
+ = {x = (x1, . . . , xn) ∈ Rn : xi > 0, i = 1, . . . ,n},

In particular, R1 and R1
+ denoted by R and R+ respectively.

In 2009, Kuang [1]defined a mean of two variables with three parameters as follows:

K(ω1, ω2, p; a, b) =

[
ω1A(ap, bp) + ω2G(ap, bp)

ω1 + ω2

] 1
p

(1)

where A(a, b) = a+b
2 and G(a, b) =

√
ab respectively is the arithmetic mean and geometric mean of two

positive numbers a and b, parameters p , 0, ω1, ω2 ≥ 0 with ω1 + ω2 , 0.
For simplicity, sometimes we will be K(ω1, ω2, p; a, b) for K(ω1, ω2, p) or K(a, b).
In particular,

K
(
1,
ω
2
, 1

)
=

a + ω
√

ab + b
ω + 2

is the generalized Heron mean, which was introduced by Janous [2] in 2001.
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K
(
1,
ω
2
, p

)
=

ap + ω(ab)p/2 + bp

ω + 2
is the generalized Heron mean with parameter.

In recent years, the study on the properties of the mean with two variables by using theory of majorization
is unusually active (see references [10-35]).

In this paper, Schur-convexity, Schur-geometric convexity and Schur-harmonic convexity of K(ω1, ω2, p)
are discussed. As consequences, some interesting inequalities are obtained.

Our main results are as follows:

Theorem 1.1. (i) When ω1ω2 , 0, if p ≥ 2 and p(ω1 −
ω2
2 ) − ω1 ≥ 0, then K(ω1, ω2, p) is Schur-convex with

(a, b) ∈ R2
+; if 1 ≤ p < 2 and p(ω1 −

ω2
2 ) − ω1 ≤ 0, then K(ω1, ω2, p) is Schur-concave with (a, b) ∈ R2

+; if
p < 1, then K(ω1,wω2, p) is Schur-concave with (a, b) ∈ R2

+.
(ii) When ω1 = 0, ω2 , 0, K(ω1, ω2, p) is Schur-concave with (a, b) ∈ R2

+.
(iii) When ω1 , 0, ω2 = 0, if p ≥ 2, then K(ω1, ω2, p) is the Schur-convex with (a, b) ∈ R2

+; if p < 2, then
K(ω1, ω2, p) is the Schur-concave with (a, b) ∈ R2

+.

Theorem 1.2. If p ≥ 0, then K(ω1, ω2, p) is Schur-geometrically convex with (a, b) ∈ R2
+. If p < 0, then K(ω1, ω2, p)

is Schur-geometrically concave with (a, b) ∈ R2
+.

Theorem 1.3. If p ≥ −1, then K(ω1, ω2, p) is Schur-harmonically convex with (a, b) ∈ R2
+. If −2 < p < −1 and

ω1(p + 1) + ω2( p
2 + 1) ≥ 0, then K(ω1, ω2, p) is Schur-harmonically convex with (a, b) ∈ R2

+. If p ≤ −2 and
ω1( p

2 + 1) + ω2 = 0, then K(ω1, ω2, p) is Schur-harmonically concave with (a, b) ∈ R2
+.

2. Definitions and Lemmas

We need the following definitions and lemmas.

Definition 2.1 ([3, 4]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn.

(i) x is said to be majorized by y (in symbols x ≺ y) if
∑k

i=1 x[i] ≤
∑k

i=1 y[i] for k = 1, 2, . . . ,n − 1 and
∑n

i=1 xi =∑n
i=1 yi, where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.

(ii) Ω ⊂ Rn is called a convex set if (αx1 + βy1, . . . , αxn + βyn) ∈ Ω for any x and y ∈ Ω, where α and β ∈ [0, 1]
with α + β = 1.

(iii) let Ω ⊂ Rn, ϕ: Ω→ R is said to be a Schur-convex function on Ω if x ≺ y on Ω implies ϕ (x) ≤ ϕ
(
y
)
. ϕ is

said to be a Schur-concave function on Ω if and only if −ϕ is Schur-convex function.

Definition 2.2 ([5, 6]). Let x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Rn
+.

(i) Ω ⊂ Rn
+ is called a geometrically convex set if (xα1 yβ1, . . . , x

α
n yβn) ∈ Ω for any x and y ∈ Ω, where α and β ∈ [0, 1]

with α + β = 1.
(ii) let Ω ⊂ Rn

+, ϕ: Ω → R+ is said to be a Schur-geometrically convex function on Ω if (ln x1, . . . , ln xn) ≺
(ln y1, . . . , ln yn) on Ω implies ϕ (x) ≤ ϕ

(
y
)
. ϕ is said to be a Schur-geometrically concave function on Ω if

and only if −ϕ is Schur-geometrically convex function.

Definition 2.3 ([7, 8]). Let Ω ⊂ Rn
+.

(i) A set Ω is said to be a harmonically convex set if xy
λx+(1−λ)y ∈ Ω for every x, y ∈ Ω and λ ∈ [0, 1], where

xy =
∑n

i=1 xiyi and 1
x =

(
1
x1
, · · · , 1

xn

)
.

(ii) A function ϕ : Ω→ R+ is said to be a Schur harmonically convex function on Ω if 1
x ≺

1
y implies ϕ(x) ≤ ϕ(y).

A function ϕ is said to be a Schur harmonically concave function on Ω if and only if −ϕ is a Schur harmonically
convex function.
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Lemma 2.4 ([3, 4]). Let Ω ⊂ Rn is convex set, and has a nonempty interior set Ω0 . Let ϕ : Ω→ R is continuous
on Ω and differentiable in Ω0. Then ϕ is the Schur− convex(Schur− concave) f unction, if and only if it is symmetric
on Ω and if

(x1 − x2)
(
∂ϕ

∂x1
−
∂ϕ

∂x2

)
≥ 0(≤ 0)

holds for any x = (x1, x2, · · · , xn) ∈ Ω0.

Lemma 2.5 ([5, 6]). Let Ω ⊂ Rn
+ be a symmetric geometrically convex set with a nonempty interior Ω0. Let

ϕ : Ω → R+ be continuous on Ω and differentiable on Ω0. Then ϕ is a Schur geometrically convex (Schur
geometrically concave) function if and only if ϕ is symmetric on Ω and

(x1 − x2)
(
x1
∂ϕ

∂x1
− x2

∂ϕ

∂x2

)
≥ 0 (≤ 0) (2)

holds for any x = (x1, · · · , xn) ∈ Ω0.

Lemma 2.6 ([7, 8]). Let Ω ⊂ Rn
+ be a symmetric harmonically convex set with a nonempty interior Ω0. Let

ϕ : Ω → R+ be continuous on Ω and differentiable on Ω0. Then ϕ is a Schur harmonically convex (Schur
harmonically concave) function if and only if ϕ is symmetric on Ω and

(x1 − x2)
(
x2

1
∂ϕ

∂x1
− x2

2
∂ϕ

∂x2

)
≥ 0 (≤ 0) (3)

holds for any x = (x1, · · · , xn) ∈ Ω0.

Lemma 2.7 ([9]). Let a ≤ b,u(t) = tb + (1 − t)a, v(t) = ta + (1 − t)b. If 1
2 ≤ t2 ≤ t1 ≤ 1 or 0 ≤ t1 ≤ t2 ≤

1
2 , then

(u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (a, b). (4)

Lemma 2.8. Let

f (x) = ω1(p + 1)x
p
2 +1 + ω2(

p
2

+ 1)x − ω2
p
2
, x ∈ [1,∞)

where ω1, ω2 ≥ 0, ω2
1 + ω2

2 , 0.
If −2 < p < −1 and ω1(p + 1) + ω2( p

2 + 1) ≥ 0, then f (x) ≥ 0, if p ≤ −2 and ω1(p + 1) + ω2 = 0, then f (x) ≤ 0.

Proof. If −2 < p < −1 and ω1(p + 1) + ω2( p
2 + 1) ≥ 0, then

1(x) : = ω1(p + 1)x
p
2 +1 + ω2(

p
2

+ 1)x

≥ ω1(p + 1)x
p
2 +1 + ω2(

p
2

+ 1)x
p
2 +1

= x
p
2 +1[ω1(p + 1) + ω2(

p
2

+ 1)]

≥ 0,

and then f (x) = 1(x) − ω2
p
2 ≥ 0.

If p ≤ −2 and ω1(p + 1) + ω2 = 0, then

f
′

(x) = ω1(p + 1)(
p
2

+ 1)x
p
2 + ω2(

p
2

+ 1),
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and
f
′′

(x) = ω1
p
2

(p + 1)(
p
2

+ 1)x
p
2−1
≤ 0,

so f ′ (x) is decreasing, but

f
′

(1) = ω1(p + 1)(
p
2

+ 1) + ω2(
p
2

+ 1) = (
p
2

+ 1)[ω1(p + 1) + ω2] = 0,

then f ′ (x) ≤ 0, so f (x) is decreasing, furthermore

f (1) = ω1(p + 1) + ω2(
p
2

+ 1) − ω2
p
2

= ω1(p + 1) + ω2 = 0,

thus f (x) ≤ 0.

3. Proofs of Main results

From the definition of K(ω1, ω2, p), we have

K(ω1, ω2, p) =

ω1
ap+bp

2 + ω2a
p
2 b

p
2

ω1 + ω2


1
p

.

It is clear that K(ω1, ω2, p) is symmetric with (a, b) ∈ R2
+.

Write

m(a, b) :=

ω1(ap + bp) + 2ω2a
p
2 b

p
2

2(ω1 + ω2)


1
p−1

.

Proof. [Proof of Theorem 1.1] (i) When ω1ω2 , 0,

∂K
∂a

= m(a, b)
(
ω1ap−1 + ω2a

p
2−1b

p
2

ω1 + ω2

)
,

∂K
∂b

= m(a, b)
(
ω1bp−1 + ω2a

p
2 b

p
2−1

ω1 + ω2

)
,

and then

∆1 : = (a − b)
(
∂K
∂a
−
∂K
∂b

)
=

a − b
2(ω1 + ω2)

m(a, b)
[
ω1(ap−1

− bp−1) − ω2(a − b)a
p
2−1b

p
2−1

]
.

Without loss of generality, we may assume that a ≥ b, then z := a
b ≥ 1, and then

∆1 =
a − b

2(ω1 + ω2)
m(a, b)bp−1 f (z),

where

f (z) = ω1(zp−1
− 1) − ω2(z − 1)z

p
2−1, z ≥ 1.

f
′

(z) = ω1(p − 1)zp−2
− ω2z

p
2−1
− ω2(

p
2
− 1)(z − 1)z

p
2−2

= z
p
2−2

[
ω1(p − 1)z

p
2 − ω2

p
2

z + ω2(
p
2
− 1)

]
.
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If p ≥ 2 and p(ω1 −
ω2
2 ) − ω1 ≥ 0, then

ω1(p − 1)z
p
2 − ω2

p
2

z = z
[
ω1(p − 1)z

p
2−1
− ω2

p
2

]
≥ z

[
ω1(p − 1) − ω2

p
2

]
.

Notice that

ω1(p − 1) − ω2
p
2
≥ 0⇔ p(ω1 −

ω2

2
) − ω1 ≥ 0,

we have f ′ (z) ≥ 0, for z ∈ [1,∞), but f (1) = 0, so f (z) ≥ 0, further ∆1 ≥ 0. By Lemma 1, it follows that
K(ω1, ω2, p) is Schur-convex with (a, b) ∈ R2

+.
If 1 ≤ p < 2 and p(ω1 −

ω2
2 ) − ω1 ≤ 0, then

ω1(p − 1)z
p
2 − ω2

p
2

z = z
[
ω1(p − 1)z

p
2−1
− ω2

p
2

]
≤ z

[
ω1(p − 1) − ω2

p
2

]
.

Notice that

ω1(p − 1) − ω2
p
2
≥ 0⇔ p(ω1 −

ω2

2
) − ω1 ≤ 0,

we have f ′ (z) ≤ 0, for z ∈ [1,∞), but f (1) = 0, so f (z) ≤ 0, further ∆1 ≤ 0. By Lemma 2.4, it follows that
K(w1,w2, p) is Schur-concave with (a, b) ∈ R2

+.
If p < 1, then

f (z) = ω1(zp−1
− 1) − ω2(z − 1)z

p
2−1
≤ ω1(1 − 1) − ω2(z − 1)z

p
2−1
≤ 0,

and then ∆1 ≤ 0. By Lemma 2.4, it follows that K(ω1, ω2, p) is Schur-concave with (a, b) ∈ R2
+.

(ii) When ω1 = 0, ω2 , 0, K(ω1, ω2, p) =
√

ab, then

∆1 := (a − b)
(
∂K
∂a
−
∂K
∂b

)
= −

1
2

(a − b)2

√
ab
≤ 0.

By Lemma 2.4, it follows that K(ω1, ω2, p) is Schur-concave with (a, b) ∈ R2
+.

(iii) When ω1 , 0, ω2 = 0, K(w1,w2, p) =
(

ap+bp

2

) 1
p , then

∆1 := (a − b)
(
∂K
∂a
−
∂K
∂b

)
=

1
2

(a − b)(ap + bp)
1
p−1(ap−1 + bp−1).

If p ≥ 2, then a − b and ap−1
− bp−1 has the same sign, so ∆1 ≥ 0. By Lemma 2.4, it follows that K(ω1, ω2, p) is

Schur-convex with (a, b) ∈ R2
+. If p < 2, then a− b and ap−1

− bp−1 has the opposite sign, so ∆1 ≤ 0. By Lemma
2.4, it follows that K(ω1, ω2, p) is Schur-concave with (a, b) ∈ R2

+.
The proof of Theorem 1.1 is complete.

Proof. [Proof of Theorem 1.2] It is easy to see that

a
∂K
∂a

= m(a, b)
(
ω1ap + ω2a

p
2 b

p
2

ω1 + ω2

)
,

b
∂K
∂b

= m(a, b)
(
ω1bp + ω2a

p
2 b

p
2

ω1 + ω2

)
,

and then

∆2 := (a − b)
(
a
∂K
∂a
− b

∂K
∂b

)
=

(a − b)m(a, b)ω1(ap
− bp)

2(ω1 + ω2)
.
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If p ≥ 0, then a − b and ap
− bp has the same sign, so ∆2 ≥ 0. By Lemma 2.5, it follows that K(ω1, ω2, p) is

Schur-geometrically convex with (a, b) ∈ R2
+. If p < 0, then a− b and ap

− bp has the opposite sign, so ∆2 ≤ 0.
By Lemma 2.5, it follows that K(ω1, ω2, p) is Schur-geometrically concave with (a, b) ∈ R2

+.
The proof of Theorem 1.2 is complete.

Proof. [Proof of Theorem 1.3] It is easy to see that

a2 ∂K
∂a

=
m(a, b)

2(ω1 + ω2)

(
ω1ap+1 + ω2a

p
2 +1b

p
2

)
,

b2 ∂K
∂b

=
m(a, b)

2(ω1 + ω2)

(
ω1bp+1 + ω2a

p
2 b

p
2 +1

)
,

and then

∆3 := (a − b)
(
a2 ∂K
∂a
− b2 ∂K

∂b

)
=

m(a, b)
2(ω1 + ω2)

f (x, y).

where

f (a, b) := ω1(a − b)(ap+1
− bp+1) + ω2a

p
2 b

p
2 (a − b)2.

If p ≥ −1, then a − b and ap+1
− bp+1 has the same sign, so f (a, b) ≥ 0, and then ∆3 ≥ 0. By Lemma 2.6, it

follows that K(ω1, ω2, p) is Schur-harmonically convex with (a, b) ∈ R2
+.

Without loss of generality, we may assume that a ≥ b, then z := a
b ≥ 1, and then

f (a, b) = bp+2(z − 1)1(z),

where

1(z) = ω1(zp+1
− 1) + ω2z

p
2 (z − 1).

1
′

(z) = z
p
2−1s(z),

where

s(z) = ω1(p + 1)(z
p
2 +1 + ω2(

p
2

+ 1)z − ω2
p
2
.

If −2 < p < −1 and ω1(p + 1) + ω2( p
2 + 1) ≥ 0, from Lemma 2.8, it follows s(z) ≥ 0, and then 1

′

(z) ≥ 0,
but 1(1) = 0, so 1(z) ≥ 0 and f (a, b) ≥ 0. Thus ∆3 ≥ 0, by Lemma 2.6, it follows that K(ω1, ω2, p) is
Schur-harmonically convex with (a, b) ∈ R2

+.
If f p ≤ −2 and ω1( p

2 + 1) + ω2 = 0, from Lemma 2.8, it follows s(z) ≤ 0, and then 1
′

(z) ≤ 0, but 1(1) = 0,
so 1(z) ≤ 0 and f (a, b) ≤ 0. Thus ∆3 ≤ 0, by Lemma 2.6, it follows that K(ω1, ω2, p) is Schur-harmonically
concave with (a, b) ∈ R2

+.
The proof of Theorem 1.3 is complete.

4. Applications

Theorem 4.1. Let (a, b) ∈ R2
+, u(t) = tb + (1 − t)a, v(t) = ta + (1 − t)b. Assume also that 1

2 ≤ t2 ≤ t1 ≤ 1 or
0 ≤ t1 ≤ t2 ≤

1
2 .

If ω1ω2 , 0, p ≥ 2 and p(ω1 −
ω2
2 ) − ω1 ≥ 0, then we have we have

K
(
ω1, ω2, p;

a + b
2
,

a + b
2

)
≤ K

(
ω1, ω2, p; u(t2), v(t2)

)
≤ K

(
ω1, ω2, p; u(t1), v(t1)

)
≤ K(ω1, ω2, p; a, b) ≤ G(ω1, ω2, p; a + b, 0). (5)

If ω1ω2 , 0, 1 ≤ p < 2 and p(ω1 −
ω2
2 ) − ω1 ≤ 0, then inequalities in (5) are all reversed.
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Proof. From Lemma 2.7, we have(
a + b

2
,

a + b
2

)
≺ (u(t2), v(t2)) ≺ (u(t1), v(t1)) ≺ (a, b),

and it is clear that (a, b) ≺ (a + b − ε, ε), where ε is enough small positive number.
If ω1ω2 , 0, p ≥ 2 and p(ω1 −

ω2
2 ) − ω1 ≥ 0, by Theorem 1, and let ε→ 0, it follows that (5) are holds. If

ω1ω2 , 0, 1 ≤ p < 2 and p(ω1 −
ω2
2 ) − ω1 ≤ 0, then inequalities in (5) are all reversed.

The proof is complete.

Theorem 4.1 enable us to obtain a large number of refined inequalities by assigning appropriate values
to the parameters ω1, ω2, p, t1 and t2.

For example, putting ω1 = ω2 = 1 in (5), we can get

Corollary 4.2. Let p ≥ 2. Then for (a, b) ∈ R2
+, we have

A(ap, bp) + G(ap, bp) ≥ 2(A(a, b))p. (6)

Putting p = 1
2 , ω1 = 2, ω2 = 1 and t1 = 3

4 , t2 = 1
2 in (5), we can get

Corollary 4.3. Let (a, b) ∈ R2
+. Then

a + b
2
≥

1
36

[√
a + 3b +

4
√

(a + 3b)(3a + b) +
√

3a + b
]2
≥

1
9

(√
a +

4√

ab +
√

b
)2
. (7)

Theorem 4.4. Let (a, b) ∈ R2
+. If p ≥ 0(< 0), we have

G(a, b) ≤ (≥)K(ω1, ω2, p; a, b). (8)

Proof. Since (log
√

ab, log
√

ab) ≺ (log a, log b), if p ≥ 0(< 0), by Theorem 1.2, it follows

G(a, b) = K
(
ω1, ω2, p;

√

ab,
√

ab
)
≤ (≥)K(ω1, ω2, p; a, b).

The proof is complete.

For example, putting ω1 = ω2 = 1 in (8), we can get

Corollary 4.5. Let (a, b) ∈ R2
+. If p ≥ 0(< 0), then

A(ap, bp) + G(ap, bp) ≤ (≥)2(G(a, b))p. (9)

Theorem 4.6. Let (a, b) ∈ R2
+. If p ≥ −1 or if −2 < p < −1 and ω1(p + 1) + ω2( p

2 + 1) ≥ 0, then

H(a, b) ≤ K
(
ω1, ω2, p;

ab
tb + (1 − t)a

,
ab

ta + (1 − t)b

)
≤ K(ω1, ω2, p; a, b). (10)

where H(a, b) = 2
a−1+b−1 is the harmonic mean.

If p ≤ −2 and ω1( p
2 + 1) + ω2 = 0, then inequalities in (10) are all reversed.

Proof. By Lemma 2.7, we have(
a−1 + b−1

2
,

a−1 + b−1

2

)
≺

(
ta−1 + (1 − t)b−1, tb−1 + (1 − t)a−1

)
≺ (a−1, b−1).
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If p ≥ −1 or if −2 < p < −1 and ω1(p + 1) + ω2( p
2 + 1) ≥ 0, then by Theorem 1.3, it follows

H(a, b) = K
(
ω1, ω2, p;

2
a−1 + b−1 ,

2
a−1 + b−1

)
≤ K

(
ω1, ω2, p;

ab
tb + (1 − t)a

,
ab

ta + (1 − t)b

)
≤ K(ω1, ω2, p; a, b).

If p ≤ −2 and ω1( p
2 + 1) + ω2 = 0, then inequalities in (10) are all reversed.

The proof is complete.

Putting ω1 = ω2 = 1 in (10), we can get

Corollary 4.7. Let (a, b) ∈ R2
+. If p ≥ −1 or − 4

3 < p < −1, then

A(ap, bp) + G(ap, bp) ≥ 2(H(a, b))p. (11)

If p = −4, then the inequality in (11) is reversed.
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