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The Extremal Ranks and Inertias of Matrix Expressions with Respect to
Generalized Reflexive and Anti-Reflexive Matrices with Applications

Xifu Liu?

?School of Mathematical Sciences, Chongging Normal University, Chongqing 401331, China

Abstract. The extremal ranks of matrix expressions of A — BXC and D — EYE", and the extremal inertias
of D — EYE" are discussed, where X and Y are reflexive (or anti-reflexive) and Hermitian reflexive (or
anti-reflexive) matrices respectively. For the applications, we derive the extremal ranks of the reflexive
and anti-reflexive solutions to AX = B. In addition, we also establish some conditions for the existence of
common reflexive and anti-reflexive solutions to AX = B and CXD = E, and conditions for the solvability
of some matrix equations and matrix inequalities.

1. Introduction

Let C"™" and C}7" denote the set of all m X n matrices and m X m Hermitian matrices respectively. For
A € C™" its rank, conjugate transpose and Moore-Penrose inverse will be denoted by r(A), A* and A'
respectively. For Hermitian matrix A, its positive and negative index of inertia are symbolled by i, (A) and
i—(A) respectively, and A > 0 (or A < 0) means that A is a nonnegative-definite (or non-positive) matrix. I,
represents the identity matrix of size n. For convenience, we denote E4 =1 — AAtand F4 =1- ATA.

A matrix P € C™" is called a generalized reflection matrix if P* = P and P? = I. Chen [1] defined two
subspaces of matrix:

C™(P,Q) = {A € C™": A=PAQ}, C™"(P,Q)={AeC™": A=—-PAQ},

where P, Q are generalize reflection matrices of size m and n, respectively. In addition, the following symbols
are also needed,

HC™"(P) = {A e CP" : A=PAP}, HC;""(P)={AeCjy™: A=-PAP|,

The matrices A € C/*"(P, Q), B € CI>"(P, Q) are said to be (P, Q) generalized reflexive and (P, Q) generalized
anti-reflexive matrices respectively with respect to the generalized reflection matrix dual (P, Q). The matrices
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C € HC™™(P), D € HC)”™(P) are said to be Hermitian reflexive and Hermitian anti-reflexive matrices
respectively with respect to the generalized reflection matrix P. The (P, Q) generalized reflexive and anti-
reflexive matrices have applications in system and control theory, in engineering, in scientific computations
and various other fields (see [1]).

In this article, we consider the following matrix expressions

A - BXC, (1)
D - EYE?, )

where A € C*!, B e C™, C e C™, D € CIy", E € C™™ are given, and X € C™"(P,Q) (or X € CI"(P,Q))
and Y € HC!"™(P) (or Y € HC,*™(P)) are variable.

The rank and inertia of a matrix are two basic concepts in matrix theory, and have important applications
in matrix theory and its applications. For example, matrix equation BXC = A is consistent if and only if the
minimal rank of A — BXC with respect X equals 0; matrix inequality EYE* > D has a Hermitian solution
if and only if the minimal positive inertia index of D — EYE" with respect Hermitian matrix Y equals 0; in
addition, they are also applied to discuss the properties of solutions for matrix equations. Some previous
systematical researches on ranks and inertias of linear matrix functions with respect to variable matrix or
Hermitian matrix and their applications can be found in [2-16].

In [18, 19], the authors derived some conditions for the existence of reflexive and anti-reflexive solutions
to AXB = C by using matrix decomposition. However, the conditions seem to be complicated. In order
to investigate some new conditions, and considering the applications of the rank and inertia of matrix
expressions in determining the consistency of matrix equations, so, firstly, we will study the extremal ranks
and inertias of matrix expressions (1) and (2).

To the best of our knowledge, there is no article yet discussing the ranks and inertias of a linear matrix
functions with respect to generalized reflexive and anti-reflexive matrices. This paper is organized as
follows. In section 2, we give a group of closed-form formulas for the extremal ranks of A — BXC. In section
3, we give the formulas for the extremal ranks and inertias of D — EYE". For applications, in section 4, some
properties on the extremal ranks of the reflexive and anti-reflexive solutions to AX = B are established, and
conditions for the existence of common reflexive and anti-reflexive solutions to AX = B and CXD = E are
also provided.

Before proceeding to the next sections, we first introduce the following results which will come in handy
in the proofs of our theorems.

Lemma 1.1. ([20]) Let P, Q be generalize reflection matrices of size m and n respectively, and A € C/>"(P,Q),
B € CI""(P, Q). Then

I; 0 . I 0 . A 0 . 0 B .
P=U ur, =V VvV, A=U V5, B=U Ve,
( 0 Ly ) Q ( 0 —I« ) ( 0 A B, 0
where U,V are unitary matrices, and A; € C>*, A, € Ctn=Dxn=b) B, ¢ CX-h B, e Cm-1k,

Lemma 1.2. ([2]) Let A € C"™", By € C"™%1, By € C"™%2, C; € CT" and C; € C?*" be given, X1 € CP*T" and
X, € CP2*%2 pe variable. Then

A
maxr[A - B1X;C1 — BoX>Cy] = min r(A B1 B; ), rl Ci |, r( 4 B ), r( 4 BZ) ,
X1,X2 C,
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A
minr[A - BiXiC1 - ByXoGol = r( A By By )+r| G
X1,X2 Cz
+ max 7’( A Bl ) 7’( A Bl B2 ) r ? Bol
- - 1 7
C, 0 C, 0 0 G 0
r(A Bz)r(A By Bz)ré%z
- - 1
Ci 0 C: 0 0 C 0

Lemma 1.3. ([3]) Let A € C};", B € C"™" and C € CP*™ be given. Then

% . % A B A C*
g@)ﬁl’r[A—BXC—(BXC)] mm{r(A B C ),7’( B 0 ),7’( C 0 )}'

min 7[A — BXC — (BXC)*] Zr( A B C ) + max {r(M;) — 2r(N1), r(Msz)—2r(N3),s+ +t_,s_ +t.},

XECHXp

max i.[A - BXC - (BXC)'] = min{i.(My), (M)},

(= nX|

min i.[A - BXC—(BXC)'] = r(A B C)+max(is(M) - r(N1), (M)~ r(N2)},
eCnxp

where s, = i+(M7) — 1(N1), t+ = iz(My) — r(N2), and
A B A C A B C A B C
Ml:(B* 0)' M2=(c 0 ) Nl:(B* 00 ) sz( C 00 )
Lemma 1.4. ([4,11]) Let A € C};", Be C"™" and C € C"™* be given. Then
. . . A B
X:r}gfayéwr[A—BXB - CYC mm{r( A B C )r( P )}

. . 1 A B A B C A B C
X:r)?gl:wr[A—BXB—CYC] = Zr(A B C)+r( c 0)—r( B 0 0)—1’( o0 0).

Lemma 1.5. ([5]) Let A € C}*", B; € C"™" be given, and X; € CZ"X”", i=1,..---,k be variable, denote
p(X1,-++,Xx) = A= B1XqB] — -+ — ByXyB;. Then

max p(Xy, -, Xe) = (M),

n;xn;

X,‘ECHI
min i.p(Xy,--+,X) = r( A B )-iz(M),
X,EC;‘_IZXHI
A B
whereBZ( B1 -+ By )andM:( B 0 )

Lemma 1.6. ([5]) Let A € C}", B € C™", and denote M = ( ? g ) Then

i+(M) = r(B) + i.(EBAEB).

Lemma 1.7. ([5]) Let A € C"™", B € C"* and C € C*". Then

r( A B ) =1(A) + r(EgB), r( Ié ) =1(A) +r(CF,), r( é ](3) ) =r(B) + r(C) + r(EgAF¢).
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2. The extremal ranks of A — BXC

In this section, our purpose is to derive the formulae for the extremal ranks of A — BXC with respect to
reflexive and anti-reflexive matrices X. Moreover, we present some conditions for the existence of reflexive
and anti-reflexive solutions to matrix equation AXB = C.

Theorem 2.1. Let A € C*!, B e C*™, C € C be given, and X € C™"(P, Q). Then

max r(A-BXC) = min{r(A B), 7,(A)’ r( A B(I,, + P) ,

XeC!™"(P,Q) C (I, - Q) 0
A B(L, — P)
r( (I, +Q)C 0 )} 3)
min r(A—BXC)zr(A B)+r(A)
XeC™" (PQ) C
A B(I,, + P) A B A B(, +D)
tmaa g o o T\ @-oc o) \c 0 )
A B(,, — D) A B A B(,-P)
r( L+QC 0 )"( (I, + Q)C 0)‘r(c 0 )} @

Proof. It follows from Lemma 1.1 that X can be written as

_ X 0 .
X—U( 0 XZ)V.

G

Denote BU = ( B, B, )and V'C = ( c

). Then

A—BXC=A-B1X;Cy — ByX5Cs.
In view of Lemma 1.2, we have

max r(A - BXC)

XEC;”X’Z(P,Q)
A
o A B A B,
= min{r(A B By), r Cl,r(czo),r(clo), ()
(@)
A
min #A-BXC)=r( A By By )+r| G
XeC™"(P,Q) CZ

. A B\_ (A B B\ [2D
maXI’CZO rCZOO r 1 ’

G 0
A B,
A B, ) ( A By B )
r —r -rl Ci O . (6)
( Ci 0 Ci 0 0 G o
It follows from Lemma 1.1 that
I, +UPU 1 1
(B 0 )=BU><T = 5By + P)U, (0 B )= 5B =P)U,
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C 1. 0\ 1.,
( 01 ):EV(IH+Q)C, (cz)‘EV(I”_Q)C'

And simple computations show that

A A
r(A By Bz)=r(A BU):r(A B)'r[gl]:r(c)’
2
A B 0
r(A B1) _(aEy :r(1 A %B(Im+P)U)
C2 0 Czo 0 V(I - Q)C 0
_ B(I,, + P)
= I—Q)C 0 :
A By | _ B(L, — P)
e o =7 I+Q)C o |
4 B A B
r[Q 01] = (A Bl +P) )r[ G oz]zr(zé B(ImO—P))/
CZ 0 C2 0
B,

A B _ A B A Bi B\ _ A B
"N o o) T "Nw-09c o)\ o o) "\w+Qc o)
Substituting the above equalities into (5) and (6) yields (3) and (4). O
Similarly, we have the following results.

Theorem 2.2. Let A € C*, B e C™™, C € C™! be given, and X € C"™"(P, Q). Then

) o A A B(ly + P)
480 = mindr(a 8), (2 ), fgc M)

A B(L, — P)
"w-0c o ’

A
i A -BXC) = A B
i ra-x0=r(a 8 )er( 2]

A B(I,, + P) A B A B(l,+DP)
+maxsr (I, + Q)C 0 -7 I, +Q)C 0 -l ¢ 0 ,

A B(,, — D) A B A B(,-P)
"N@m-0c o N-c o/ lc o '

In [18, 19], the authors derived conditions for the existence of reflexive and anti-reflexive solutions of
the matrix equation AXB = C, here, we present some new conditions on this topic. The following results
are obtained directly by Theorem 2.1 and Theorem 2.2.

Corollary 2.3. Let A € C™", B € €™ and C € C* be given. Then
(i) Consistent matrix equation AXB = C has a solution X € CI*"(P, Q) if and only if

AW + P)] + r{(I, — Q)B] = ’( 0, _CQ)B A(ImO+ K )

r[A(Ly — P)] + r[(I, + Q)B] = 1’( (I, -EQ)B A(Imo_ ? )
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(ii) Consistent matrix equation AXB = C has a solution X € CJ*"(P, Q) if and only if

ALy + P+ (L, + Q)B] = f( Gros o )

ALy — P)] + r[(I, — Q)B] = 7( , _CQ)B A(IW’O_ & )

Proof. It is well known that matrix equation AXB = C is consistent if and only if r( A C ) = r(A) and
B
C
X € C™(P,Q) if and only if

r = r(B). Hence, it follows from Theorem 2.1 that consistent matrix equation AXB = C has a solution

0 = min {1"[(In - Q)B] + 7’[A(Im + P)] _ 7'( (I C A(Im + P) ),

-Q)B 0
(@, + Q)B] + H{A(L, - P)] - r( . fQ)B A(Imo _p) )}
Actually,
HA(Ly + P)] + 1[I, — Q)B] < r( . _CQ)B A(I,n0+ P) )
and

AL = P)] + r[(In + Q)B] < 7’( (@, fQ)B A(ImO_ K )

So, statement (7) is obvious. Similarly, we have statement (i). [

Corollary 2.4. ([17]) Let A; € C™", B; € Crk A, e €™ B, € C™ gnd C € C™* pe given, X1 € C?,
X, € C* ynknown. Then matrix equation A1X1B1 + A X,B, = C is solvable if and only if

A1C_A10 AzC_AzO
"o B )"V o B ) "o B )T\ 0o B )

r(C A A )=r(A A), r[%}zr(gl).

Xi 0
0 X

I, © I,

Proof. Rewrite A1X1B1+A2X;B, = Cas AXB = CwhereA =( A1 A, )andB = ( g; ) and X = (
is a (P, Q) generalized reflexive matrix, with P = ( 0 -I ) and Q = ( 0 _(}

). Then it follows from
q

Corollary 2.3 that this corollary is evident. [

3. The extremal ranks and inertias of D — EYE*

In this section, we derive the formulae for the extremal ranks and inertias of D — EYE* with respect
to Hermitian reflexive and Hermitian anti-reflexive matrices Y, and consider their applications in matrix
equation and matrix inequality.
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Theorem 3.1. Let D € C}}", E € C"™" be given, and Y € HC}""(P). Then

, D  E(I+P)
D-EYE) = D E), . ,
YeHEp) "t ) n {r( ) r( (I-PE 0 )}

D EI+P) D E D E
2r E)”((I—P)E* 0 )"((I+P)E* 0)_r((I—P)E* o)'

D
max i.(D—EYE") ii( 11:2 g ),
YEHC™ ™ (P)

min #(D - EYE")
YEHC!™"(P)

D E
min .(D—-EYEY) = r( D E )—-iz . .
YE]I_IC;nXm (P) - ( ) ( ) ( E O )

Proof. It follows from Lemma 1.1 that Y can be written as
B Y, 0 .
el 0 )

where Y7 and Y, are Hermitian matrices.
Denote EU = ( E, E; ) Then
D —-EYE' =D - EY{E] - E;Y,E.

And,

(o6 n)er(o 6) A5 5]l 0 07

D E E\_ D E D E E\_ D E
"WE o o) \a+pE o) "\ EE 0 o)\ a-PE 0)

[2 Er B . (D E
E} 0 0 |=1i oo/
E5 0 0

Thus, the conclusions of this theorem are obtained by Lemma 1.4 and Lemma 1.5. O

Theorem 3.2. Let D € C}", E € C™" be given, and Y € HC”"(P). Then

. D E(I-P) D E(I+P)
mm{r( D E), r( I-PE 0 ) r( (+PE 0 )}

D E(I-P) D E
Zr( D E )+max{r( (I- P)E* 0 )—Zr( (I-P)E 0 ),

("

max r(D - EYE")
YEHC!™"(P)

min r(D - EYE")

YeHC™"(P)
D  EI+P) D E
’( (I+PE 0 )—Zr( (I+P)E 0 ) et S_+t+}'
, . . D EI-P)\ . D E(I+P)
v =P T EYED) = mm{li( (I-PE 0 ) li( (I+PE 0 /

min i.(D — EYE")
YEHC!™" (P)

. D E(I-P) D E
r( D E )+max{z+( (I - P)E* 0 )—r( (I-P)E* 0 ),

. D  EI+P) D E
=\ q+PE 0 "\ a+PE 0 [

» D  E(I-P) D E
<=kl q-pee 0o )7\ a-pPE o)

_ D  EI+P) D E
= 1+ PE 0 “"\a+pE 0 )

where
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Proof. It follows from Lemma 1.1 that Y can be written as

0o Y
_ 1 *
Y—U( Y, 0 )U.

Denote EU :( E, E, ) Then,

D - EYE =D - E;Y1E, — (EY4E})"

Moreover,
~ D E\_ D  EI-P)
(D B2 i) = (D E), r(E; 0 )—r( (-PE o )
Er\ _ D  EI+P)

"NE o = "Ma+pEe 0 ’

(D E\ _ . D  EI+P)

“lEe o) T Bl a+pE 0 ’

i(D E2)_i( D E(I—P))

\E o0 \a-per 0 |

D E, Ei\ _ D E D E, E\_ D E
"W o o) T "Na-pE o) "\ Ef 0 0o )T\ a+PE 0 )

In view of Lemma 1.3, these results of this theorem are obvious. [

Corollary 3.3. Let D € C})"", E € C"™™ be given. Then
(i) Matrix equation EYE* = D has a solution Y € HC,>" (P) if and only if

D EI+P) D E D E
2r( D E)“( (I-PE 0 ):r( (I + P)E* o)”( (I - P)E* 0)'

(ii) Matrix equation EYE* = D has a solution Y € HC,”™(P) if and only if

D E(I-P) D E
Zr( D E )+max{r( (I - P)E* 0 )—Zr( (I-P)E 0 ),

D EI+P) D E B
r((I+P)E* 0 )‘27((1+p)15* o)'s++t-'s—+t+}‘0'

where s, and t are given by Theorem 3.2.
(iii) Matrix inequality EYE* > D has a solution Y € HC,;”"(P) if and only if

. [ D E
r(D E)ZZ(E* 0).
(iv) Matrix inequality EYE* > D has a solution Y € HC,”" (P) if and only if
. D  EI-P) D E
(D E)*“‘“{”((I—P)E* 0 )_7( (I - P)E" 0)'

. D  EI+P) D E\l_,
B\ 1+ PE 0 “"Na+pE 0 )T
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Corollary 3.4. Let A € C™", B € CP™and C € C}{" be given, X € C"™V be variable matrix, denote G = ( A B )

Then the following statements are equivalent:
(i) Matrix inequality AXB + (AXB)* > C is solvable;

(i)
r( C A B )+max{i+( g %* )—r( g 18 Eg ), i+( Ig:* 1(‘)1 )—r( Ig:* 1(‘)1 B; )}zO;

(iify EACE4 <0, FgCFp <0, and
r(C A B )+r4) = r(
r(C A B*)+r(B) = r(c 4B );

(tv) "(EGCEA) = r(EgCFp) = "(EgC), EACE4 < 0and FgCFp < 0.

0

Proof. Rewrite AXB + (AXB)* > Cas GYG" > C, where Y = ( X 0 ) is a Hermitian anti-reflexive matrix

with respect to the generalized reflection matrix P = ( Ig _(;
P

(iif) is followed by Corollary 3.3-(iv), and the equivalence of statements (ii) — (v) can be proved by Lemmas
16,1.7. O

). Then the equivalence of statements (7) and

The following results follow from Corollary 3.3.

Corollary 3.5. Let A € C™", B € C™* and C € CI*™ be given, X € Cx" and Y € C* be variable matrices. Then
(i) Matrix equation AXA* + BYB* = C is solvable if and only if

w(c a B)er( S 4)r( S 4 8)e(S 4 0)

(if) Matrix inequality AXA* + BYB* > C is solvable if and only if

C A B
A0 0
B 0 0

r(C A B)=i

4. Properties of the reflexive and anti-reflexive solutions to AX = B

For convenience, the following notations will be used in this section. For generalized reflection matrices
P e C™" and Q € C™", matrices A € C*" and B € C*", we set

=442 ) 4= 2475

and denote [A;(P)]" and [A;(P)]" by A}(P) and A!(P) (i = 1,2) for short respectively. Further define
S={XeC™(P,Q|AX =B}, T={XeC™(P,Q)|AX=B}. 7)

Lemma 4.1. ([21])Let A € C*" and B € C*" be given. Then

(i) AX = B has a solution X € C!*(P, Q) if and only if Al(P)A‘lL(P)B1(Q) = B1(Q). In this case, a general solution

X can be written as
X = A{(P)B1(Q) + Fa,»V,
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where V € CI™"(P, Q) is arbitrary.
(if) AX = B has a solution X € Ci*"(P, Q) if and only if A1(P)A{(P)B2(Q) = By(Q). In this case, a general solution
X can be written as

X = A{(P)B2(Q) + Fa, )W,
where W € CJ*"(P, Q) is arbitrary.
Note that condition Al(P)AI(P)Bl(Q) = B1(Q) is equivalent to r( A1(P) B1(Q) ) =r[A1(P)], i.e.
A B A .. . . A B A
( AP BQ ) = T( AP ) Similarly, A,(P)A}(P)B2(Q) = B»(Q) is equivalent to r( AP -BO ) = r( AP )

Theorem 4.2. Let A € C*" B e C*" and S, T be defined by (7). Then

maxr(X) = min{m+r( Bo ) n+r(fp ) r( i )w(“l‘m‘f; )

r(]i +BQQ )* (?J—Azf )}"( ap ); (8)
qine0 = o g ) o
e = mnfuso{ &) v ) 1)o7

r( T-BS ) (?Jr—Azf )} ( p) (10)
qr = o gg ) a

Proof. In view of Lemma 4.1 and Theorem 2.1, we have
maxr(X) = max rI=Aj(P)B1(Q) ~FanV]
- min{r( ~APBQ Fa ), o HDRQ),
r( —A%:P_)%(Q) FA1<p>(ém +P) ) r( —A*(p+)BQ1(Q) FA“P)% ~P) )}

Recall the fact that if M*N = 0, then r( M N ) = r(M) + r(N), and together with Lemma 1.7, we obtain

r( —AIPBUQ) Faw ) = rAJ(P)BI(Q]+r[Fa,m)]
= 1[BuQ]+m ~ 1Ay (P)]

e &3,

—-A(P)B1(Q) )+r( Fa,0)(Iin + P) )
0

I,-Q 0

r( ~AN(P)BIQ)  Fa,p(Lu +P) )
I,-Q

B + BQ A—AP
I, - )+r( I,+P )—r(
r( ~AYP)B1(Q)  Faypy(ln — P) )

I,+0 0
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In view of the above equalities, then (8) is evident. Similarly, (9)-(11) can be derived. [

Theorem 4.3. Let A € C*>" B e C*", C € €™, D € C™, and E € C be given. Then
(i) Consistent equations AX = B and CXD = E have a common solution X € C!™"(P,Q) if and only if

A B\ [ A p
"\ ap BQ )T\ ap )™

E C(Ly + P)

(L, — QD] + r( jgm jg ) . ?% . Ally +P) ] (12)
~ E C(I, - P)

(s + QD] + r( A ) = | W AP ] (13)

(i) Consistent equations AX = B and CXD = E have a common solution X € CJ”(P,Q) if and only if

A B \_ (A,
"\ap -BQ )T"\ ap )"

(I, + Q)D] + r( %:: if); ) BD  A(l,+D)

(I +Q)D 0

E C(I,, + P) ]

3 E C(l,—P)
(I, - QD] + r( gg’“ _1;; ) =+ BD  AU-P) |.
" (In - Q)D 0

Proof. Since AX = B has a solution X € CI*"(P, Q) if and only if r A B =r A In this case, a

' T YR\ AP BQ AP | '
general solution X can be written as

X = AY(P)B1(Q) + Fa,»V,

where V € C}”"(P, Q) is arbitrary. Substituting the above X into CXD = E yields

CFa,p)VD = E — CAY(P)B1(Q)D. (14)

Since CXD = E is consistent, then CF4,»)YD = E - CAI (P)B1(Q)D is also consistent for general solution Y.
It follows from [Lemma 2.1, 21] that,

A(P)

( [AQ,+PT" (A - P ),
Ly = [A(y + PP ALy + P) = [A(Ly = P AL, - P).

Fap

Hence, F4,p) are commutative with I,, + P and I, — P respectively. Thus, by Corollary 2.3 and Lemma 1.6,
simple computations show that

Y[CFAl(p)(Im + P)] T[C(Im + P)FAl(p)] = T’[C(Im + P)FA(1m+p)]

( s ) )

r( a ) ~ A, - P)]

*[CFa,py(In — P)]
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and

r( — CAI(P)B1(Q)D CPAl(P)(I +P) )
(I — QD

_ r( E - CAJ(P)BI(Q)D  C(ly + P)Faqu, +p) )
(In - Q)D 0
E-CANP)B1(QD C(I,, +P)
= 7 (I, - Q)D 0 — r[A(ln + P)]
0 A(L, +P)
_ t
E - CIA(L, + P)+] B(, + Q)D Ly + )
-+ —ClAU»—-P)I'BU, - Q)D — A, + P)]
(In - Q)D 0
0 Al + P)
- CIA(I, + P)I'BU, + Q)D C(I,, + P)
= r (I, - Q)D 0 —r[A(ln + P)]
0 A(L, +P)
— 1C(Iy + P)[A(Ly + P)I'B(I, + QD C(I,y + P)
=7 (In — QD 0 — 1[A(I + P)]
0 Al + P)

E C(I, + P)
= r| I,-QD 0 J— AL, + P)]
1B, + QD A, +P)
E C(I, + P)
= r| I,—QD 0 —r[A(I,, + P)]
BD A(l, + P)
E C(I, + P)
= r BD A(L, + P) ]— 1AL, + P)]
(I, - Q)D 0
r( — CA{(P)B1(Q)D CFA1(P)(I - P) )
(I, + QD
E C(I,, - P)
r BD AL, — P) |- r[A(I, - P)].
(In +Q)D 0

Therefore, (12) and (13) are followed. Similarly, we can prove statement (ii) by a same method, and the
details are omitted. [

Corollary 4.4. Let A € C*™, B e C*>", C € €™, and D € C™! be given. Without loss of generality, suppose that
consistent equations AX = B and XC = D have a common solution, i.e., BC = AD. Then
(i) AX = Band XC = D have a common solution X € CI™*(P, Q) if and only if

A B A C QC
r(AP BQ):r(AP)’ and r(C QC):r(D D )

(i1) AX = B and XC = D have a common solution X € Ci>"(P, Q) if and only if

A B A C QcC
r(AP —BQ):r(AP)’ and r(C QC):r(D _PD )
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Proof. (i) On account of Theorem 4.3, (12) and (13) reduce to

D I,+P D L +p
[l —Q)Cl+r(lu+P) = r " ?CQ)C A(Im0+ p) |= r( @ —O)C ; )
— (Im - P)D Iy +P _ (Im - P)D
B r( (In_Q)C 0 )—7’( (IH_Q)C )+7’(1m +P),
D I, —-P
_ " [ 4, +P)D
A+ QLU +rtu=P) = v BC Al =P) |- (o ) rt-n

Hence, r[(I, - Q)C] = r( g’" : 8]8 ) and r[(I, + Q)C] = r( (é’" :g))g ), which are equivalent to

f(-ac arac)=r F35 G30),

ie.,
C QcC
r(c Qc ):r( e 1913 )
Similarly, statement (ii) is obtained. [

Remark 4.5. It is important to point out that the conditions in statement (i) (or (ii)) of Corollary 4.4 ensure that
both AX = B and XC = D have a reflexive (or anti-reflexive) solution. So, in this case that these conditions are
satisfied, and if there exists a common solution to AX = B and XC = D, then there also exists a common reflexive
(or anti-reflexive) solution to them. Moreover, comparing with the results in [Theorem 2.1, 22], we note that the
condition BQC = APD (or BQC = —APD) is not necessary in statement (i) (or (ii)).
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