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Abstract. A k-tuple total dominating set (kTDS) of a graph G is a set S of vertices in which every vertex in
G is adjacent to at least k vertices in S; the minimum size of a kTDS is denoted γ×k,t(G). We give a Vizing-like
inequality for Cartesian product graphs, namely γ×k,t(G)γ×k,t(H) ≤ 2kγ×k,t(G�H) provided γ×k,t(G) ≤ 2kρ(G)
holds, where ρ denotes the packing number. We also give bounds on γ×k,t(G�H) in terms of (open) packing
numbers, and consider the extremal case of γ×k,t(Kn�Km), i.e., the rook’s graph, giving a constructive proof
of a general formula for γ×2,t(Kn�Km).

1. Introduction

Domination is well-studied in graph theory and the literature on this subject has been surveyed and
detailed in the two books by Haynes, Hedetniemi, and Slater [11, 12]. Among the many variations of
domination, the ones relevant to this paper is k-tuple domination and k-tuple total domination, which were
introduced by Harary and Haynes [10], and by Henning and Kazemi [14], respectively. Throughout this
paper, we use standard notation as listed in Table 1. All graphs considered here are finite, undirected, and
simple.

For a graph G = (V,E) and k ≥ 1, a set S ⊆ V is called a k-tuple total dominating set (kTDS) if every vertex
v ∈ V has at least k neighbors in S, i.e., |NG(v) ∩ S| ≥ k. A k-tuple dominating set (kDS) instead satisfies
|NG[v] ∩ S| ≥ k. The k-tuple domination number and the k-tuple total domination number, which we denote
γ×k(G) and γ×k,t(G), respectively, is the minimum cardinality of a kDS and a kTDS of G, respectively. The
familiar domination number is thus γ(G) = γ×1(G). We use min-kDS and min-kTDS to refer to kDSs and kTDSs
of minimum size, respectively.

An immediate necessary condition for a graph to have a k-tuple dominating set (resp. k-tuple total
dominating set) is that every vertex must have at least k − 1 (resp. k) neighbors. For example, for k ≥ 1, a
k-regular graph G = (V,E) has only one k-tuple total dominating set, namely V itself.

The Cartesian product G�H of two graphs G and H is the graph with vertex set V(G) × V(H) where
two vertices (u1, v1) and (u2, v2) are adjacent if and only if either u1 = u2 and v1v2 ∈ E(H) or v1 = v2 and
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G = (V,E) A graph with vertex set V = V(G) and edge set E = E(G).
NG(v) = {u ∈ V : uv ∈ E} The open neighborhood of vertex v in G.
NG[v] = NG(v) ∪ {v} The closed neighborhood of vertex v in G.
degG(v) = |NG(v)| The degree of a vertex v in G.
δ(G), ∆(G) The minimum degree and maximum degree of vertices in G.
Cn, Kn The n-vertex cycle and complete graph.
G�H The Cartesian product of graphs G and H.
Kn�Km The n ×m rook’s graph.
γ×k(G) The k-tuple domination number of G.
γ(G) = γ×1(G) The domination number of G.
γ×k,t(G) The k-tuple total domination number of G.
γt(G) = γ×1,t(G) The total domination number of G.
ρ(G) The maximum cardinality of a packing (packing number).
ρ(open)(G) The maximum cardinality of an open packing (open pack-

ing number).

Table 1: Table of notation.

u1u2 ∈ E(G). For more information on product graphs see [20]. We will be particularly interested in the case
when Kn�Km, which is known as the n ×m rook’s graph, as edges represent possible moves by a rook on an
n ×m chess board. The 3 × 4 rook’s graph is drawn in Figure 1, along with a min-2TDS.

Figure 1: The 3 × 4 rook’s graph, i.e., K3�K4. The dark vertices highlight a min-2TDS, so γ×2,t(K3�K4) = 6.

In 1963, and more formally in 1968, Vizing [23] made an elegant conjecture that has subsequently become
one the most famous open problems in domination theory.

Conjecture 1.1 (Vizing’s Conjecture). For any graphs G and H,

γ(G)γ(H) ≤ γ(G�H).

Over more than forty years (see [1] and references therein), Vizing’s Conjecture is has been shown to hold
for certain restricted classes of graphs, and furthermore, upper and lower bounds on the inequality have
gradually tightened. Additionally, research has explored inequalities (including Vizing-like inequalities)
for different variations of domination [12]. A significant breakthrough occurred in 2000, when Clark and
Suen [8] proved that

γ(G)γ(H) ≤ 2γ(G�H)

which led to the discovery of a Vizing-like inequality for total domination [15, 17], i.e.,

γt(G)γt(H) ≤ 2γt(G�H), (1)

as well as for paired [3, 6, 18], and fractional domination [9], and the {k}-domination function (integer
domination) [2, 7, 19], and total {k}-domination function [19].

Burchett, Lane, and Lachniet [5] and Burchett [4] found bounds and exact formulas for the k-tuple
domination number and k-domination number of the rook’s graph in square cases, i.e., Kn�Kn (where
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k-domination is like holds k-tuple total domination, but only vertices outside of the domination set need to
be dominated). The k-tuple total domination number is known for Kn × Km [13] and bounds are given for
supergeneralized Petersen graphs [21].

In this paper, we investigate inequalities for k-tuple total domination, i.e., we present lower and upper
bounds on γ×k,t(G�H) in terms of the orders of G and H, the packing numbers and open packing numbers,
and in terms of γ×k,t(G) and γ×k,t(H). One new result is Theorem 2.3, which gives a partial generalization of
(1). We also find formulas for γ×k,t(Kn�Km), and determine the value of γ×2,t(Kn�Km) in Proposition 3.8 for
all n and m.

2. General graphs

A subset S ⊆ V(G) is a packing (resp. open packing) if the closed (resp. open) neighborhoods of vertices in
S are pairwise disjoint. The packing number (resp. open packing number) of G, denoted ρ(G) (resp. ρ(open)(G)),
is the maximum cardinality of a packing (resp. an open packing). Note that vertices in packings S have
distance at least 3, i.e., if u, v ∈ S, then distG(u, v) ≥ 3. Reader can find more information on the packing
number in many papers such as [16, 22]. The following two lemmas are from [13].

Lemma 2.1. If G is an n-vertex graph with δ(G) ≥ k, then γ×k,t(G) ≥ dkn/∆(G)e.

Proof. The sum of the degrees of the vertices in any min-kTDS D is at least kn (since every vertex has at
least k neighbors in D) and at most |D|∆(G) (by definition of maximum degree). Hence |D|∆(G) ≥ kn and
the lemma follows since |D| = γ×k,t(G), by definition.

Lemma 2.2. If G is a graph with δ(G) ≥ k, then γ×k,t(G) ≥ kρ(open)(G) ≥ kρ(G).

Proof. A kTDS must contain k vertices from each of the ρ(open)(G) disjoint open neighborhoods in any
maximal open packing. The second inequality is because every packing in a graph is also open packing.

The following theorem gives an upper bound on the product of the k-tuple total domination numbers
of two graphs in terms of the k-tuple total domination number of their Cartesian product.

Theorem 2.3. Let G and H be two graphs, and suppose δ(H) ≥ k. Then

ρ(G)γ×k,t(H) ≤ γ×k,t(G�H).

Hence, if δ(G) ≥ k and γ×k,t(G) ≤ 2kρ(G), then

γ×k,t(G)γ×k,t(H) ≤ 2kγ×k,t(G�H).

Proof. Let S be a min-kTDS of G�H. Choose a maximal packing P := {vi}
ρ(G)
i=1 of G, and for each vertex vi in

the packing, let Hi be the subgraph of G�H induced by {vi} × V(H). An example is drawn in Figure 2.
We partition S into parts (a) Si, for i ∈ {1, 2, . . . , ρ(G)}, containing the vertices of S which are in or are

adjacent to vertices in Hi, and (b) X, the remaining vertices (if any). (The sets Si are disjoint, since P is a
packing of G.) Hence

|S| ≥ |S \ X| =

∣∣∣∣∣∣∣
ρ(G)⋃
i=1

Si

∣∣∣∣∣∣∣ =

ρ(G)∑
i=1

|Si| (2)

since the sets Si are disjoint. Moreover, every vertex in Hi has at least k neighbors in Si.
From Si, we can construct a kTDS D of Hi of size at most |Si| as follows:

• Add every vertex in Si ∩Hi to D.

• For each x ∈ Si \Hi, by definition of Cartesian product, x has a unique neighbor in Hi; call it x′.
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H1 H2

Figure 2: A Cartesian product graph G�H. The vertices of G drawn as stars highlight a maximum packing P of G, and are used to
identify H1 and H2 in G�H.

– If x′ has k or more neighbors in D, do nothing.

– Otherwise, since δ(H) ≥ k, we know x′ has a neighbor x′′ in Hi \D. Add x′′ to D.

Essentially, any x ∈ Si \Hi dominates a unique vertex x′ ∈ Hi so, if necessary, we replace it by some unused
x′′ ∈ Hi ∩N(x′) which also dominates x′. After performing these operations, |Si| ≥ |D| ≥ γ×k,t(H). Thus

γ×k,t(G�H) = |S|

≥

ρ(G)∑
i=1

|Si| [by (2)]

≥

ρ(G)∑
i=1

γ×k,t(H) [by the above]

= ρ(G)γ×k,t(H).

The second part of Theorem 2.3 is applicable when γ×k,t(G) ≤ 2kρ(G); in contrast Lemma 2.2 implies that
γ×k,t(G) ≥ kρ(G) holds when δ(G) ≥ k.

When k = 1, i.e., total domination, Theorem 2.3 gives the bound (1) when γt(G) ≤ 2ρ(G). Equality
holds in Theorem 2.3 when k = 1 in some instances: Modifying a construction in [15], we take a graph
G = (V,E) and (a) add at least one pendant vertex to each vertex in V, then (b) subdivide each edge in
E twice. Call the result G∗. Then V is both a maximum packing and a minimum dominating set of G∗.
So ρ(G∗) = γ(G∗) = |V| = n and, in fact, we also find γt(G∗) = 2n. Figure 3 illustrates an example of this
construction. Further, since V(G) × V(K2) is a (2n)-vertex total dominating set of G∗�K2, we have

γt(G∗)γt(K2) = 2γt(G∗�K2).

To further illustrate, the Petersen graph P has packing number ρ(P) = 1 and we compute:

k = 1 : γ×1,t(P) = 4 > 2kρ(P),
k = 2 : γ×2,t(P) = 8 > 2kρ(P),
k = 3 : γ×3,t(P) = 10 > 2kρ(P),

so γ×k,t(P) ≤ 2kρ(P) is not satisfied in all three cases. However, we can still apply the second part of
Theorem 2.3 when H is the Petersen graph and G is some other graph which satisfies δ(G) ≥ k and
γ×k,t(G) ≤ 2kρ(G).

We now derive lower bounds on γ×k,t(G�H) (Theorems 2.5 and 2.7) in terms of the packing and open
packing numbers of the graphs G and H.
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Figure 3: A construction of a graph G∗ (right) with ρ(G∗) = γ(G∗) = 5 and γt(G∗) = 10 from G = C5 (left). The graph G∗�K2 has
γt(G∗�K2) = 10 and is an instance of equality in Theorem 2.3.

Lemma 2.4. For graphs G and H, ρ(G�H) ≥ ρ(G)ρ(H).

Proof. Let PG and PH be maximum packings in G and H, respectively. It is sufficient to show that PG × PH,
which has size ρ(G)ρ(H), is a packing in G�H.

If two vertices (u, v), (x, y) ∈ PG × PH are adjacent, then, by definition of a Cartesian product, either (a)
u = x, in which case v, y ∈ PH are adjacent in H, contradicting the assumption that PH is a packing of H, or
(b) v = y, in which case u, x ∈ PG are adjacent in G, contradicting the assumption that PG is a packing of G.

If two distinct vertices (u, v), (x, y) ∈ PG × PH have a common neighbor, (a, b) say, in G�H, then by
definition

(a, b) ∈
( closed neighborhood of (u,v)︷                           ︸︸                           ︷
{u} ×NH[v] ∪NG[u] × {v}

)⋂( closed neighborhood of (x,y)︷                           ︸︸                           ︷
{x} ×NH[y] ∪NG[x] × {y}

)
.

Four cases arise, and in each case, we contradict the assumption that PG and PH are maximum packings,
tabulated below:

a = u and b ∈ NH[v] a ∈ NH[u] and b = v

a = x and b ∈ NH[y] distH(v, y) = 2
distG(u, x) = 1

or
u = x and distH(v, y) = 1

a ∈ NG[x] and b = y
distG(u, x) = 1

or
u = x and distH(v, y) = 1

distG(u, x) = 2

.

The following theorem follows from Lemmas 2.2 and 2.4.

Theorem 2.5. If G and H are two graphs with δ(G) + δ(H) ≥ k, then

γ×k,t(G�H) ≥ kρ(G)ρ(H).

We can also bound the open packing number of Cartesian product graphs, as in the following lemma.

Lemma 2.6. For graphs G and H, where G and H are not the union of disjoint K1 or K2 subgraphs,

ρ(open)(G�H) ≥ ρ(open)(G) + ρ(open)(H) − 1.

Proof. Let OG and OH be maximal open packings in G and H. Choose s ∈ V(G) \ OG and t ∈ V(H) \ OH.
(Note that s and t exist because G and H are not the union of disjoint K2 subgraphs.) An example is drawn
in Figure 4.

If s is adjacent to a vertex s′ ∈ OG in G, then it is adjacent to exactly one vertex in OG (since OG is an open
packing). If s′ exists, we define

T =
(
{s} ×OH

)
∪

(
(OG \ {s′}) × {t}

)
,
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otherwise, we define
T =

(
{s} ×OH

)
∪

(
OG × {t}

)
.

Either way, |T| ≥ ρ(open)(G) + ρ(open)(H) − 1, so it is sufficient to show that T is an open packing of G�H.
Assume, seeking a contradiction, that two distinct vertices (u, v), (x, y) ∈ T have a common neighbor.

t ∈ V(H) \OH −→

s ∈ V(G) \OG
↓

Figure 4: A Cartesian product graph G�H as in Figure 2 where both G and H are 3-vertex paths. The stars identify a maximum packing
OG in G (drawn horizontally) and the blue pentagons identify a maximum packing OH in H (drawn vertically). After deleting (s′, t)
(crossed out), we obtain an open packing of G�H.

As elements of T, the vertices (u, v) and (x, y) respectively satisfy (a) either u = s or v = t, and (b) either
x = s or y = t. Since (s, t) < T, if u = x = s, then v, y ∈ OH have a common neighbor in H, contradicting that
OH is an open packing. A symmetric contradiction arises if v = y = t. Thus, by symmetry, we can assume
u = s and y = t.

By definition of the Cartesian product, if (s, v) and (x, t) have a common neighbor in G�H, it is either
(s, t) or (x, v) (or both). Either way, we can deduce that x and s are adjacent in G. But, since (x, t) ∈ T, we
know that x ∈ OG or x ∈ OG \ {s′} (if s′ exists). Either way, this is a contradiction.

The following theorem follows from Lemmas 2.2 and 2.6.

Theorem 2.7. For graphs G and H with δ(G) + δ(H) ≥ k, where G is not the union of disjoint K2 subgraphs,

γ×k,t(G�H) ≥ k(ρ(open)(G) + ρ(open)(H) − 1).

We also include the following, simple lower bound on γ×k,t(G�H).

Proposition 2.8. For graphs G and H with δ(G) ≥ k,

γ×k,t(G�H) ≤ γ×k,t(G) |V(H)|.

Proof. A kTDS D of G gives rise to the k-TDS {(d, h) : d ∈ D and h ∈ V(H)} of G�H. An example is drawn in
Figure 5.

Figure 5: A Cartesian product graph G�H as in Figure 2. The stars mark a 1TDS in each copy of G (drawn horizontally), together
forming a 1TDS of G�H.

The following theorem establishes Kn�Km, i.e., the rook’s graph, as an extremal case, motivating the
study of this class of graphs in the next section.



A. P. Kazemi et al. / Filomat 32:19 (2018), 6713–6731 6719

Proposition 2.9. If G and H are spanning subgraphs of G′ and H′, respectively, and δ(G) + δ(H) ≥ k, then

γ×k,t(G�H) ≥ γ×k,t(G′�H′).

In particular,
γ×k,t(G�H) ≥ γ×k,t(Kn�Km)

if G has n vertices and H has m vertices.

Thus, any spanning subgraph Q of Kn�Km satisfiesγ×k,t(Q) ≥ γ×k,t(Kn�Km). The other extreme is achieved
by k-regular graphs. If Q is a graph with a k-regular spanning subgraph K, then γ×k,t(Q) ≤ γ×k,t(K) = |V(K)| =
|V(Q)|. Not all graphs Q have a δ(Q)-regular spanning subgraph.

3. The rook’s graph

In this section, we find formulas for the k-tuple total domination number of Kn�Km, i.e., the n×m rook’s
graph. Theorem 2.9 implies that γ×k,t(Kn�Km) is a lower bound on γ×k,t(G�H) when G has n vertices and H
has m vertices. Assume the vertex set of V(Kn) is Zn.

For any n ×m (0, 1)-matrix M = (mi j), we define

κ(i, j) =

i-th row sum︷       ︸︸       ︷(∑
z∈Zm

miz

)
+

j-th column sum︷       ︸︸       ︷(∑
z∈Zn

mzj

)
−2mi j.

A kTDS D of Kn�Km corresponds to an n ×m (0, 1)-matrix M = (mi j) with mi j = 1 if and only if (i, j) ∈ D; the
matrix M satisfies

κ(i, j) ≥ k

for all i ∈ Zn and j ∈ Zm, which we call the κ bound. We call an n × m (0, 1)-matrix M a kTDS matrix if
it satisfies the κ bound for all i ∈ Zn and j ∈ Zm. Futher, we call M a min-kTDS matrix if it has exactly
γ×k,t(Kn�Km) ones. Note that a kTDS matrix (resp. min-kTDS matrix) remains a kTDS matrix (resp. min-kTDS
matrix) under permutations of its rows and/or columns, and after taking its matrix transpose.

We can also interpret (0, 1)-matrices as biadjacency matrices of bipartite graphs (since Kn�Km is isomor-
phic to the line graph of Kn,m). Thus, a kTDS D of Kn�Km also corresponds to a bipartite graph with vertex
bipartition {Ri}i∈Zn ∪ {C j} j∈Zm and an edge RiC j whenever (i, j) ∈ D (or equivalently whenever mi j = 1). The
bipartite graph has the property that for any pair of vertices (Ri,C j),

k ≤

deg(Ri) + deg(C j) − 2 if Ri is adjacent to C j

deg(Ri) + deg(C j) if Ri is not adjacent to C j.
(3)

An example of these correspondences is given in Figure 6.

Lemma 3.1. When m ≥ n ≥ 1 and n + m , 2,

γ×k,t(Kn�Km) ≥
knm

n + m − 2
.

Proof. For any min-kTDS, γ×k,t(Kn�Km) is equal to the number of edges in the corresponding bipartite graph.
Let e = γ×k,t(Kn�Km). If we sum (3) over all pairs of vertices (Ri,C j) for an e-edge bipartite graph determined
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0 1 0 0

1 1 1 1

0 1 0 0

R1

R2

R3

C1

C2

C3

C4

Figure 6: The 3 × 4 rook’s graph K3�K4 with the vertices in the 2TDS in Figure 1 labeled 1, illustrating the corresponding (0, 1)-matrix
and bipartite graph.

by a min-kTDS, we obtain

nmk ≤
∑

(Ri,C j)

right-hand side of (3)

=
∑

(Ri,C j)

deg(Ri) +
∑

(Ri,C j)

deg(C j) − 2e

= m
∑

Ri

deg(Ri) + n
∑
C j

deg(C j) − 2e

= me + ne − 2e
= (n + m − 2)γ×k,t(Kn�Km).

Lemma 3.1 will be tight when the κ(i, j) = k for all i ∈ Zn and j ∈ Zm. This occurs when n = 2 and
m ≥ k ≥ 1 for an n ×m (0, 1)-matrix with ones in the first k columns, and zeroes elsewhere. For example:

k = 1 k = 2 k = 3

It is also achieved by any n × m all-1 matrix when k = n + m − 2. If equality does not hold in Lemma 3.1,
then equality does not hold in the κ bound for some cell, or equivalently, some vertex of Kn�Km has more
than k neighbors in the corresponding kTDS. Of course, to have equality in Lemma 3.1, we must have knm
divisible by n + m − 2.

Lemma 3.2. For n ≥ 1 and m ≥ 1, an n ×m kTDS matrix with an all-0 column has at least kn ones.

Proof. If column j∗ is an all-0 column, then to achieve κ(i, j∗) ≥ k for any i ∈ Zn, we need k ones in row i.
Since this is true for all n rows, we must have kn ones.

There are instances when kn ones is the least number of ones in any n × m kTDS matrix; we establish
some cases in the following theorem.

Theorem 3.3. When m ≥ n ≥ 2 and m ≥ k,

γ×k,t(Kn�Km) ≤ kn (4)

with equality when m ≥ kn − 1.
When m ≥ k + 1,

γ×k,t(K1�Km) = k + 1. (5)
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Proof. If m ≥ n ≥ 2 and m ≥ k, the n ×m (0, 1)-matrix with ones in the first k columns, and zeros elsewhere
is a kTDS matrix, and has kn ones, proving (4).

Now also assume m ≥ kn − 1 and let M be an n × m kTDS matrix. If M has a column of zeros, then M
has at least kn ones by Lemma 3.2. If M has no column of zeros but has at least kn columns, then M has at
least kn ones. Thus, assume m = kn − 1 and M has a one in every column. If M has fewer than kn ones, it
must have exactly 1 one in each column. Therefore, if mi j = 1, then row i must have k + 1 ones to satisfy
κ(i, j) ≥ k. If this is true for every row, then M has at least (k + 1)n ≥ kn ones. Otherwise, there’s a row of
zeros, and Lemma 3.2 implies there are at least km ≥ kn ones.

To prove (5), we observe that the 1 × m (0, 1)-matrix with ones in the first k + 1 columns, and zeros
elsewhere is a kTDS matrix, and has k + 1 ones. We also observe that if a 1 ×m (0, 1)-matrix has fewer than
k + 1 ones, then κ(i, j) � k for the cells (i, j) containing ones, and thus is not a kTDS.

In fact, Theorem 3.3 resolves the k = 1 case since γ×k,t(Kn�Km) is undefined when n = m = 1 (as
δ(Kn�Km) < k).

3.1. 2-tuple total domination
In this section, we derive a general formula for γ×2,t(Kn�Km) in Proposition 3.8. Motivated by Burchett,

Lane, and Lachniet [5], given a (0, 1)-matrix M we construct a graph Γ(M) with vertices corresponding to the
ones in M, and edges between two ones belonging to the same row or column if there are no ones between
them. The following gives one such example:

1 0 0 0 0 0 1
1 0 1 0 0 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 0
1 1 0 0 0 0 0

In this way, 2TDS matrices M correspond to graphs, which have (connected) components. If the set of
vertices in some component of this graph is {(Ri,Ci)}, then we define the corresponding component of M as
the submatrix formed by the intersection of rows {Ri} and columns {Ci}. We shade two components in the
example above; in this example, the 5× 7 matrix is the union of two components (one 3× 4 component, and
one 2 × 3 component). A 2TDS matrix M with a component H, up to permutations of the rows and colums
of M, looks like one of the following:

H ∅

∅ ? ,
H
∅
, H ∅ , or H ,

where the question mark (?) denotes some (0, 1)-submatrix, and ∅ denotes an all-0 submatrix. Components
of 2TDS matrices have the following properties:

• Components have no all-0 rows and no all-0 columns.

• Components are 2TDS matrices in their own right.

• While Γ(M) is a graph, its components correspond to submatrices of M, so we can discuss, say, x × y
components. (Here, if the component has vertex set {(Ri,Ci)}, then it corresponds to an |{Ri}| × |{Ci}|

component in M.)

We will now study component switchings in 2TDS matrices. The following two lemmas give conditions
on when some kinds of switchings are possible without increasing the number of ones (Lemma 3.4) nor
violating the κ bound (Lemma 3.5).

Lemma 3.4. Let M be a 2TDS matrix and let H be an x × y component of M. Then the number of ones in H is at
least x + y − 1.
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Proof. Let Γ(H) be the subgraph of Γ(M) corresponding to H. We choose an arbitrary vertex v of Γ(H) which
has at least 2 neighbors (since M is a 2TDS matrix) but at most 4 neighbors (by definition of Γ). The closed
neighborhood NΓ(H)[v] has one of these properties:

• It has cardinality 5 and intersects 3 rows and 3 columns, and looks like the following:

• It has cardinality 4 and either (a) intersects 3 rows and 2 columns, or (b) intersects 2 rows and 3
columns, and looks like one of the following:

• It has cardinality 3 and either (a) intersects 1 row and 3 columns, (b) intersects 2 rows and 2 columns,
or (c) intersects 3 row and 1 columns, and looks like one of the following:

We proceed algorithmically. We initialize S ← NΓ(H)[v] and iteratively add vertices to S from Γ(H) which
(a) do not already belong to S, and (b) have a neighbor in S. As a result of each iteration:

1. the number of vertices in S increases by exactly 1, and

2. one of the following:

• the number of rows of M that S intersects increases by exactly 1, and the number of columns that
S intersects remains unchanged,

• the number of rows of M that S intersects remains unchanged, and the number of columns that
S intersects increases by exactly 1, or

• the number of rows of M that S intersects remains unchanged, and the number of columns that
S intersects remains unchanged.

Since H is a connected component, Γ(H) has a spanning tree, and thus every vertex of Γ(H) will be added
to S at some point. At the end of this process S intersects all x rows and all y columns of H. The number
of ones in H is equal to |S|, which is (a) at least 5 + (x − 3) + (y − 3), (b) at least 4 + (x − 3) + (y − 2) or
4 + (x − 2) + (y − 3), or (c) at least 3 + (x − 3) + (y − 1), or 3 + (x − 2) + (y − 2), or 3 + (x − 1) + (y − 3). Each of
these is equal to x + y − 1.

Lemma 3.5. Let M be a 2TDS matrix with no all-0 rows and no all-0 columns, and with an x×y union of components
K. Let H be an x × y 2TDS matrix with no all-0 rows and no all-0 columns. Then replacing K with H in M gives a
2TDS matrix.

Proof. Call the new submatrix M̂ = (m̂i j). We check the κ bound is satisfied:
• If cell (i, j) is in H, then since H is a 2TDS matrix, the κ bound is satisfied.
• If cell (i, j) neither shares a row nor column with H, then the κ-value for M̂ is the same as the κ-value

for M, so the κ bound is satisfied.
• If cell (i, j) is in M̂ \ H, and shares a column (resp. row) with H, we know (i) mi j = 0, otherwise the

submatrix K is not a union of components, and (ii) row i (resp. column j) contains a one in M̂, (iii) column j
(resp. row i) contains a one in H. Thus the κ bound is satisfied.
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As an example, suppose a 2TDS matrix M with no all-0 rows nor columns contains the union of
components

then we can replace it by

and Lemma 3.5 implies that the matrix obtained after performing this switch is also a 2TDS matrix.
Furthermore, since this switch decreases the number of ones, we deduce that the original matrix M is not a
min-2TDS matrix.

As another example, if a 2TDS matrix M no all-0 rows nor columns contains the component

we can replace it by

and Lemma 3.5 implies that we obtain a 2TDS matrix. Moreover, since the number of ones is unchanged
after performing this switch, if M is a min-2TDS matrix, then we obtain another min-2TDS matrix after
switching. Since Lemma 3.4 implies that any 3× 4 component of M has at least 6 ones, we can replace every
3×4 component in this way while still preserving the min-2TDS property, thereby reducing the possibilities
we need to consider.

In the subsequent material, switchings as per Lemma 3.5 will arise repeatedly, and we will not indicate
the use of Lemma 3.5 each time.

Lemmas 3.4 and 3.5 are the primary motivation for the next theorem (Theorem 3.6). We will repeatedly
use the following (0, 1)-matrices, which we give notation to: For x ≥ 1 and y ≥ 1, we define J(x, y) as the
x × y all-1 matrix. For y ≥ 6, we define the 2 × y matrix A(2, y) to have the first row (1, 1, 1, 0, 0, . . . , 0) and
second row (0, 0, 0, 1, 1, . . . , 1), depicted below for y ∈ {6, 7, 8, 9, 10}:

For x ≥ 3 and y ≥ 3, let B(x, y) be the x × y (0, 1)-matrix with an all-1 first row, an all-1 first column, and
zeroes elsewhere, depicted below for x ∈ {3, 4, 5} and y ∈ {3, 4, 5, 6}:

For x ≥ 4 and y ≥ 4, let C(x, y) be the x × y (0, 1)-matrix first row (0, 1, 1, . . . , 1), first column (0, 1, 1, . . . , 1)T,
and zeroes elsewhere, depicted below for x ∈ {4, 5, 6} and y ∈ {4, 5, 6, 7}:
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Theorem 3.6. For n ≥ 1 and m ≥ 1, excluding (n,m) ∈ {(1, 1), (1, 2), (2, 1)}, there exists an n×m min-2TDS matrix
M whose components, up to permutations of the rows and columns, are all either J(x, 1) for x ≥ 3 (or J(1, y) for y ≥ 3),
or J(x, 2) for x ≥ 2 (or J(2, y) for y ≥ 2), or M = B(3, 3).

Proof. We start with a min-2TDS matrix M. (Such a matrix does not exist when (n,m) ∈ {(1, 1), (1, 2), (2, 1)},
since δ(Kn�Km) ≤ 1 < 2).

Case I: M has an all-0 column (or, by symmetry, an all-0 row). Then M has at least 2n ones by Lemma 3.3,
which is the same number of ones as J(n, 2) with m − 2 appended columns of zeros, in which case the
theorem is true. We henceforth assume M has no all-0 rows nor all-0 columns.

Case II: M has a 2 × y component with y ≥ 6 (or its transpose). We replace it by A(2, y), but since A(2, y)
has y ones, whereas any 2× y component has at least y+1 ones by Lemma 3.4, we contradict the assumption
that M is a min-2TDS matrix.

Case III: M has an x × y component with x ≥ 3 and y ≥ 3. We replace it by B(x, y). Lemma 3.4 implies
that the number of ones has not increased, so we still have a min-2TDS matrix.

Case IV: M has a 2× y component H with 2 ≤ y ≤ 5 (or its transpose). There must be an all-1 column for
the component to be connected. Hence H has at least y + 1 ones.

• If there are no other components, then M = H = J(2, 2), as the other possible 2× y components are not
min-2TDSs.

• If there is at least one other component K, then:

– If H has at least two all-1 columns, then, since 2 ≤ y ≤ 5, it is equivalent to one of the following:

In this case, the union H ∪ K thus has dimensions x′ × y′ where x′ ≥ 3 and y′ ≥ 3 and at least
x′ + y′ − 1 ones. We replace this union of components with B(x′, y′), which has x′ + y′ − 1 ones.

– If H has exactly one all-1 column, then, since y ≤ 5 and H is a 2TDS, it is equivalent to:

∗ If the components of M except for H are all J(1, 3) matrices, then M has more than 2n ones,
whence Theorem 3.3 contradicts the assumption that M is a min-2TDS matrix.
∗ Otherwise, we can choose K to have at least 2 rows. The union H ∪K has dimensions x′ × y′

where x′ ≥ 4 and y′ ≥ 4 and at least x′ + y′ − 2 ones by Lemma 3.4. We replace H ∪ K by
C(x′, y′).

Case V: M has a 3 × y component with y ≥ 9 (or its transpose). As a result of Case III, components have
the form B(3, y), and we perform the switches indicated below:
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↓ ↓ ↓

and so on. By Lemma 3.5 we obtain a 2TDS matrix with fewer ones than M, giving a contradiction.
Case VI: M has a 3 × y component with 3 ≤ y ≤ 8 (or its transpose). As a result of Case III, components

have the form B(3, y):

If there are no other components, then M = B(3, y). However, B(3, y) is not a min-2TDS for 5 ≤ y ≤ 8, so
M ∈ {B(3, 3),B(3, 4)} (or M = B(3, 4)T = B(4, 3)). However, If M = B(3, 4), we can replace it with

which has the same number of ones as B(3, 4) (and likewise if M = B(4, 3)). If there is another component
K, then B(3, y) ∪ K has dimensions x′ × y′ where x′ ≥ 4 and y′ ≥ 4 and at least x′ + y′ − 2 ones. We replace
B(3, y) ∪ K with C(x′, y′), which has exactly x′ + y′ − 2 ones.

Case VII: M has an x × y component with x ≥ 4 and y ≥ 4. As a result of Case III, components have
the form B(x, y), which we can replace by C(x, y) to obtain a 2TDS matrix with fewer ones than M, giving a
contradiction.

The proof of Theorem 3.6 implies that, for all n ≥ 1 and m ≥ 1 except when (n,m) ∈ {(1, 1), (1, 2), (2, 1)},
there is some min-2TDS matrix whose components belong only to a strongly restricted family of components.
In the next theorem, we restrict this family of component further when considering matrices with no all-0
rows and no all-0 columns.

Theorem 3.7. For n ≥ 1 and m ≥ 1 except (n,m) ∈ {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (3, 4), (4, 3)}, if there exists an
n × m min-2TDS matrix with no all-0 rows and no all-0 columns, then there exists an n × m min-2TDS matrix M
whose components, up to permutations of the rows and columns, are all J(1, 3) or J(3, 1), except possibly for

• exactly one J(x, 1) component with 4 ≤ x ≤ 7;

• exactly one J(1, y) component with 4 ≤ y ≤ 7; or

• exactly one J(x, 1) component with 4 ≤ x ≤ 5 and exactly one J(1, y) component with 4 ≤ y ≤ 5.

Further, the number of ones in M isd3(n + m)/4e + 1 if m ≡ 3n + 4 (mod 8)
d3(n + m)/4e otherwise.

Proof. The proof of Theorem 3.6 implies we can assume that each component of M has one of the forms:
J(x, 1) for x ≥ 3, or J(1, y) for y ≥ 3.

Case I: M has two components J(1, y) and J(1, y′) with y ≥ 4 and y′ ≥ 4 (and possibly more components).
(Or, by symmetry, M has two components J(x, 1) and J(x′, 1) with x ≥ 4 and x′ ≥ 4.) We replace them by the
two components J(1, 3) and J(1, y + y′ − 3). An example is drawn below when y = 4 and y′ = 5:

↓
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We repeat this process until there is at most one component of the form J(1, y) with y ≥ 4, and likewise at
most one component of the form J(x, 1) with x ≥ 4.

Case II: M has a J(1, y) component with y ≥ 6 and a J(x, 1) component with x ≥ 4. (Or, by symmetry,
M has a J(x, 1) component with x ≥ 6 and a J(1, y) component with y ≥ 4.) We apply the switch indicated
below:

↓ ↓ ↓ ↓

and so on in other cases. This reduces the number of ones, contradicting that M is a min-2TDS matrix.
Case III: M has a J(1, y) component with y ≥ 10. (Or, by symmetry, M has a J(x, 1) component with x ≥ 10.)

There must also be a J(3, 1) component in M, otherwise every row contains at least 3 ones, contradicting
that M is a min-2TDS matrix. We apply the switch indicated below:

↓ ↓ ↓ ↓

and so on in other cases. These switches all reduce the number of ones, contradicting that M is a min-2TDS
matrix.

Case IV: M has a J(1, y) component with 8 ≤ y ≤ 9. (Or, by symmetry, M has a J(x, 1) component with
8 ≤ x ≤ 9.) There must also be at least two J(3, 1) components in M, otherwise the average number of ones
per row is at least (8 + 3)/4 > 2, contradicting that M is a min-2TDS matrix. We apply the switch indicated
below:

↓ ↓

These switches all reduce the number of ones, contradicting that M is a min-2TDS matrix.
Cases I–IV prove the first half of the theorem statement. Now let a be the number of J(3, 1) components

and let b be the number of J(1, 3) components.
Case V: M only has J(1, 3) and J(3, 1) components. Then

n = 3a + b,
m = a + 3b,

and the number of ones in M is 3(a + b) = 3(n + m)/4 = d3(n + m)/4e. In this case, we have m ≡ 3n (mod 8),
since by adding in a J(1, 3) or J(3, 1) component, we either increase m by 1 and n by 3, or we increase n by 1
and m by 3, and either way m ≡ 3n (mod 8) remains true.
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Case VI: M has a J(1, 4) component and a J(4, 1) component. Then

n = 5 + 3a + b,
m = 5 + a + 3b,

and the number of ones in M is 3(a + b) + 8 = 3(n + m − 10)/4 + 8 = d3(n + m)/4e. In this case, we have
m ≡ 3n + 6 (mod 8).

Case VII: M has a J(1, 5) component and a J(4, 1) component. (Or, by symmetry, M has a J(1, 4) component
and a J(5, 1) component.) Then

n = 5 + 3a + b,
m = 6 + a + 3b,

and the number of ones in M is 3(a + b) + 9 = 3(n + m − 11)/4 + 9 = d3(n + m)/4e. In this case, we have
m ≡ 3n + 7 (mod 8) (or m ≡ 3n + 3 (mod 8) in the transposed case).

Case VIII: M has a J(1, 5) component and a J(5, 1) component. Then

n = 6 + 3a + b,
m = 6 + a + 3b,

and the number of ones in M is 3(a + b) + 10 = 3(n + m− 12)/4 + 10 = d3(n + m)/4e+ 1. In this case, we have
m ≡ 3n + 4 (mod 8).

Case IX: M has a J(1, y) component with 4 ≤ y ≤ 7 and no J(x, 1) component with x ≥ 4. (Or, by symmetry,
M has a J(x, 1) component with 4 ≤ x ≤ 7 and no J(1, y) component with y ≥ 4.) We have

n = 1 + 3a + b
m = y + a + 3b

and the number of ones in M is

3(a + b) + y = 3(n + m − 1 − y)/4 + y
= 3(n + m)/4 + (y − 3)/4

=


3(n + m)/4 + 1/4 if y = 4
3(n + m)/4 + 1/2 if y = 5
3(n + m)/4 + 3/4 if y = 6
3(n + m)/4 + 1 if y = 7.

Since the number of ones is an integer quantity, this is equal to d3(n + m)/4e except when y = 7 when it is
equal to d3(n + m)/4e + 1. In this case we have m ≡ 3n + y − 3 (mod 8), i.e., m ≡ 3n + 1, 3n + 2, 3n + 3, 3n + 4
(mod 8) when y = 4, 5, 6, 7, respectively (and m ≡ 3n − 3x + 1 (mod 8) in the transposed case, i.e., m ≡
3n + 5, 3n + 2, 3n + 7, 3n + 4 (mod 8) when x = 4, 5, 6, 7, respectively).

With our highly restricted families of n×m min-2TDS matrices, we find a general formula forγ×2,t(Kn�Km)
by simply counting the ones in all possible cases. This gives the following proposition. The subsequent
Proposition 3.9 summarizes the matrices that need to be considered to find an example min-2TDS matrix
for arbitrary n ≥ 1 and m ≥ 1, when possible.

Proposition 3.8. For n ≥ 1 and m ≥ n, excluding (n,m) ∈ {(1, 1), (1, 2)},

γ×2,t(Kn�Km) =


3 if n = 1 and m ≥ 3,
2n if n ≥ 2 and m ≥ b(5n − 4)/3c + 1,
d3(n + m)/4e + 1 if m ≤ b(5n − 4)/3c and m ≡ 3n + 4 (mod 8),
d3(n + m)/4e otherwise.



A. P. Kazemi et al. / Filomat 32:19 (2018), 6713–6731 6728

Hence, in the square case, for n ≥ 2,

γ×2,t(Kn�Kn) =

d3n/2e + 1 if n ≡ 2 (mod 4),
d3n/2e otherwise.

Proof. If (n,m) ∈ {(1, 1), (1, 2)}, then there are no n×m min-2TDS matrices. If n = 1 and m ≥ 3, then any 1×m
(0, 1)-matrix with exactly 3 ones is a min-2TDS matrix. If (n,m) ∈ {(2, 2), (3, 3)}, then the following are n ×m
min-2TDS matrices:

d3(2 + 2)/4e + 1 = 4 ones d3(3 + 3)/4e = 5 ones

Now assume n ≥ 2 and (n,m) < {(2, 2), (3, 3)}.
Let M be an n×m min-2TDS matrix. If M has an all-0 row, then M has at least 2n ones, as in the proof of

Theorem 3.3. Likewise, if M has an all-0 column, then M has at least 2m ≥ 2n ones. If M has no all-0 rows
and no all-0 columns, then the number of ones in M isd3(n + m)/4e + 1 if m ≡ 3n + 4 (mod 8)

d3(n + m)/4e otherwise

by Theorem 3.7. Hence

γ×2,t(Kn�Km) =


3 if n = 1 and m ≥ 3,
min(2n, d3(n + m)/4e + 1) if n ≥ 2 and m ≡ 3n + 4 (mod 8),
min(2n, d3(n + m)/4e) otherwise.

If m > (5n−4)/3 (which occurs when m ≥ b(5n−4)/3c+1), then 3(n+m)/4 > 2n−1 implying 3(n+m)/4 ≥ 2n,
in which case

min(2n, d3(n + m)/4e) = min(2n, d3(n + m)/4e + 1) = 2n.

If m ≤ (5n − 4)/3, then 3(n + m)/4 ≤ 2n − 1 < 2n, in which case

min(2n, d3(n + m)/4e) = d3(n + m)/4e

and

min(2n, d3(n + m)/4e + 1) = d3(n + m)/4e + 1.

Theorem 2.3 implies that if n ≥ 3 and m ≥ 3 then

γ×2,t(Kn�Km) ≥
1
4
γ×2,t(Kn)γ×2,t(Km) =

9
4

= 2.25.

In contrast, Proposition 3.8 implies
γ×2,t(Kn�Km) = Θ(n)

when 3 ≤ n ≤ m and n→∞.

Proposition 3.9. Equality is realized in Proposition 3.8 by the following min-2TDS matrices:

• Two sporadic cases:
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• When n = 1 and m ≥ 3, any 1 ×m (0, 1)-matrix with exactly 3 ones, e.g.

• When n ≥ 2 and m ≥ b(5n− 4)/3c+ 1, any n×m (0, 1)-matrix with two columns of ones and zeroes elsewhere,
e.g.

• When n ≥ 3 and m ≤ b(5n − 4)/3c, except (n,m) = (3, 3), the (0, 1)-matrices with block structure

A ∅ ∅

∅ B ∅

∅ ∅ C

where A = ∅ or A is one of the following:

and B = ∅ or one of the following:

and so on, and C = ∅ or one of the following:

and so on.

4. Concluding remarks

Tables 2, 3, and 4 give examples of min-kTDS matrices for small n, m, and k ∈ {2, 3, 4}, found by computer
search. Where possible, we include a representative with no all-0 rows and no all-0 columns. In some cases,
the construction given in Proposition 3.9 (when k = 2) is the only possible construction (up to permutations
of the rows and columns, and matrix transposition).

A natural way to extend this work is to find a general formula for γ×k,t(Kn�Km) in the k = 3 or k = 4 cases
(as in Tables 3 and 4). It seems reasonable to suspect that the component switching method used here for
k = 2 will continue to be useful for larger k values. Other possible ways to extend this work are: (a) consider
higher dimensions, e.g., Kn�Km�K`, and (b) consider graphs which have Kn�Km as a spanning subgraph,
such as Latin rectangle graphs and the n ×m queen’s graph.
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m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

n = 2

n = 3 ∗ ∗ ∗ ∗ ∗

n = 4 ∗ ∗ ∗

n = 5 ∗ ∗

n = 6 ∗

n = 7 ∗ ∗

n = 8

Table 2: Small min-2TDS matrices. Asterisks indicate that there are unlisted min-2TDS matrices with the same dimensions that are
inequivalent under row and column permutations, and transposition (when m = n).

m = 3 m = 4 m = 5 m = 6 m = 7 m = 8

n = 2

n = 3 ∗ ∗ ∗

n = 4 ∗ ∗

n = 5 ∗ ∗ ∗ ∗

n = 6 ∗

n = 7 ∗ ∗

n = 8 ∗

Table 3: Small min-3TDS matrices.
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m = 3 m = 4 m = 5 m = 6 m = 7

n = 2 −

n = 3 ∗ ∗

n = 4 ∗ ∗ ∗

n = 5 ∗ ∗

n = 6

n = 7

Table 4: Small min-4TDS matrices.
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[20] W. Imrich, S. Klavžar, Product Graphs: Structure and Recognition, John Wiley and Sons, New York, 2000.
[21] A. P. Kazemi, B. Pahlavsay, k-tuple total domination in supergeneralized Petersen graphs, Comm. Math. App. 2 No.1 (2011)

21–30.
[22] J. Topp, L. Volkmann, On packing and covering numbers of graphs, Discrete Mathematics 96 (1991) 229–238.
[23] V. G. Vizing, Some unsolved problems in graph theory, Usp. Mat. Nauk 23 (1968) 117–134.


