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A Sharper Form of Half-Discrete Hilbert Inequality Related to Hardy
Inequality
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Abstract. We introduce some new sharper forms of the half-discrete Hilbert inequality which are connected
to the Hardy inequality.

1. Introduction

Suppose that p > 1,,1) + }] =1, f and g are positive functions such that f € L,(R;) and g € L,(IR;) then

the famous Hilbert inequality is given as

) -
ff x+y rdy < sin(z) ”fHP “g“q 1.1
0 0 14

The constant san is the best possible [6]. Inequality (1.1) was extended in different ways.

Refinements of some Hilbert-type inequalities by virtue of various methods are obtained in [7] ,[8] and
[9]. A survey of some recent results concerning Hilbert and Hilbert- type inequalities can be found in [17]
and [18].

The corresponding discrete form of inequality (1.1) is given for two nonnegative sequences of real
numbers a = {a,} and b = {b,} as

by T
2 < sl bl (12)

where a € {, and b € ;. Here the constant ﬁ is also the best possible [6]. For extensions and generaliza-
in( =

tions of inequality (1.2) see for example [19] and [22].
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In [15] Yang introduced the following half-discrete Hilbert’s inequality

) 1

0o

f flx i( —dx < B(A1,A2) [ f xP(=A)-1 f”(x)dx] [Z nqﬂ-M—laZ)q, (1.3)
0 n=1

0 n=1

here, A1,A2 > 0,A1 + A, = 4,0 < A1 < 1, and the constant B(A4, A7) is the best possible. In particular, for
A=1land Ay = %,/\2 = %weﬁnd

ff(x); x‘f:ndx < Si:% {ffl’(x)dx] [iaﬁ]q. (1.4)

For extensions and other half-discrete Hilbert’s inequalities see for example [13], [14], [16], [20], [21] and
[23].

Ifp>1,f(x)>0,and F(x) = f f(t)dt, then the well-known Hardy inequality [6] is given as
0

(e8]

((Fe) p Y
S oG] [ oo 0
0

0

where the constant (Ll) is the best possible. A weighted form of (1.5) is given also by Hardy [6] as

"
Jole2foc i oo
0 0

where p>1l,a<p-lorp<0,a>p- 1andtheconstant(p —
discovered by Hardy while he was trying to introduce a simple proof of the Hilbert inequality. In the book
[12] the following Hardy-type inequality is given

) is the best possible. Inequality (1.5) was

e8] e8]

f kpx[ ff(t ]"dK( o f & 2 (), (1.7)

—00 —00

where k <0and p > 1orp <0. If 0 < p < 1, then the reverse form of (1.5) holds. The constant (—k)” is the
best possible.
In [5](see also [12]) the following Hardy-type inequality is obtained for p > 1

0 x p 0o
1 p Y -1
_— f(t)dt] dx < (T) a7 fP(x)dx. (1.8)
Ix[lnx]p [! p-1 f

About the Hardy inequality (1.5), its history and development, we recommend interested readers to
see the papers [10] and [11].
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In a recent paper [3] the following sharper form of the half-discrete Hilbert’s inequality (1.3) is obtained

Jrof oo <tals o] (£
0 0

n=1 n=1

where the constant %B (%, %) is the best possible. Note that, if we apply the weighted Hardy inequality

(1.6) to (1.9) we get inequality (1.4) in the case of A; = %, Ay = % Another sharper form of inequality (1.10)

with A =1 is given in the paper [1]. Some sharper forms of inequality (1.1) which are related to Hardy
inequality are introduced in the papers [2] and [3].

Our goal in this paper is to give an extension of inequality (1.9) by introducing a new parameter and
two strictly increasing functions with some restrictions.

The paper is divided into four sections. In section two, we give the main notations and lemmas that
will be used in the paper. In section three, we introduce the main result of this paper which is in Theorem
3.1. In the last section, we give some examples and we introduce the connection between the obtained
half-discrete inequalities and Hardy inequalities .

2. Preliminaries and Lemmas

Recall that the Gamma function I'(0) and the Beta function B (u, v) are defined respectively by

o) = f t9-le7tdt, 6> 0,
0

o)

et

B(p,v) = W
0

at, u,v>0.

By the definition of the gamma function, we may write

r_ 1 fm A1~ (ery)t
= [ e gy, 1)
(x+y ) X

In this paper, we will always assume that u(x)(x € (a,b), —c0 < a < b < co)andv(n)(n € [ng — 1,0) , 19 € IN)
are strictly increasing differentiable functions with u(a*) = 0, v(ng — 1) = O,u(b™) = v(c0) = co.
We will need the following two Lemmas (the first one is given in the paper [2])

Lemma.2.1[see [2], Lemma 2.11. Letr>1,1+1=1,f>0, feL(ab), F(x) = ff(w)dw. Then for t > 0
a
and a > =X we have
1
b b G

f e f(x)dx < t"T(as + 1) f [0’ (e O F (x)dx

a a
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Lemma2.2. Letr > 1,1 + 1 =1, 4, > 0, and suppose that the function v(y)F™*! is concave on its domain. Then
fort>0and = < B < 0 we have

1

o] e —[Ss —o(n)t s
o)t -1 1 v(n) Fe
z ' e ", <P T (1 + Br) { E —v'(n)s—l a, s .

n=nop n=ngpy

Proof.
Using the Holder inequality, we get

Z e i, = Z {v(n)ﬁv’(n)%e_v('v’)[}{v( )P’ (n) le‘@an}
n=np n=nop
1 1
< [Z v(n)Pro’ (n)e ! ] (Z U(n)_’gsv'(n):e_”(")taflJ
n=ny n=no

Since the function v(y)?*! is concave, then its derivative (87 + 1) v(n)Pv’(n) is decreasing (Br + 1 > 0).
Hence,

1

) r 1
0 2 o(n) Pse—vmt s
Z ety < f ()P (x)e "Wt dx [Z o) e v)’ e @,
n=ny o—1 n=ng
) % 1
i n)—ﬁse—v(n)t s
= | [ 0¥e a0 o) Te T s
f ’;] U'(Tl)s_l n
g =
1
a1 i i v(n)—ﬁse—v(n)t 8
= PITA+)T Y .
(1+p7) {};ﬂo v'(npt "
3. Main Results
Theorem 3.1. Let p > 1,% + 1 =1, suppose that 0 < A < g, max(=2 g~ D<y<g A fa,>0,uandvare

functions as defined above and the functzon v satisfies the condition of Lemma 2.2. For f € L(a,b), define F(x) =
b

A-1
7 q

[ f@)dw . If [ () "1u (x)FF(x)dx < coand Y. ””’Ta < o, then
a n=ny

a

an
§ _ufﬂxw e L f(ux)w(n» "

n=np

1
b p

< C fu(x)w/\luf(x)lff’(x)dx [2 %ai]q, (3.1)

where the constant C = (% + 7/) B (% —V 5 y) is the best possible.
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Proof. By using (2.1) and applying the Holder inequality, we obtain

b o0
— 1 A=1 ,—(u(x)+o(n))t
I = _/\ f (%) Z f e dt |dx
n=np
_ 1 L —u(x)t %— . -0 n)t
= D f ; f feodx||t7 7Y e, |dt
0 a n=no
b P }l’ 00 o q %
1 _ _ . -
< T ftA Lpy fe Ot £(x)dx | dt ftA 1= (Ze ”(”)tan] dt| . (3.2)
0 a 0 n=to
By Lemma 2.1 for r = p,s = q, and by Lemma 2.2 for r = p, s = q, we obtain respectively,
b P b
f e fxydx| < tl_‘*”F(aq+1)§ f 1u(x) ™1’ (x)e "D FP (x)dx,
a a
q
= — —Bag—vmt
—o(n)t —Bg—q+1 1 U(?’l) e q
[Z e an) < t I'(l+Bp)? Z —Z)’(Tl)q_l -
n=np n=nop
Substituting these two inequalities in (3.2) we have
Mag + DT+ D} { °° (5 oo (1
ag+ ) pp+ —ap ! (\EP Atpy—ap p-u()t o A=qy=B-q+1 p=o(n)t
I< 0 fu(x) W (FP)| | 1O | dx ;v(n)ql |t et gy
a 0 =
Since [ 7= 10t = 3y(x)*7P=A-IT (A + py — ap + 1) and
0
f pA=ay=ap=a+le=oitdt = p(p)7r+a+a-A-1T (A — qy —qB—q+1), we find
0
1
b r 1
py-A-1, o)
I<D f u(x)P A1 () FP (x)dx [Z Waz )
a n=np
1 1
where the constant D = ~2D ¢+ pr(MWF(gp ) g’ . Now, if we set a = ’\;% and g = =01

and use the following formulas for the gamma function: I'(x + 1) = ul'(1) and rgiyy)) B(x,y), we deduce

that D = C. Inequality (3.1) is proved. To prove that the constant factor C in (3.1) is the best possible, we

define f~(x = M’;}/_Eu(x)w*lu'(x) forx € [a1,b) (0 < e <A +py), f~(x) =0forxe (a a1), where a; is such

that u(a;) = 1, and we let @, = o(n) T v/(1) (n > np). Then, we get E(x) = (u(x) 7~ — 1) for x € [ay,b),
(x) = 0 for x € (a,41) . Suppose that the constant C is not the best possible, then we may find a constant K
such that 0 < K < C and

1

q
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b [
o - P o p(n)r Al o
K| | u@)™ ' (x [ - 1] dx ————o(n)" Iy (n)T
ff( )Z N f @ L oo
b , P 1
< K fu(x)"’y_)“lu'(x) [u(x)/w%] dx] (Z U(n)_l_gv’(n)]
( (oo | %
= K| | ot #ds LU o(n) ' (n
1[ ] [v(no)m 2, w0
K| o) f" v(0)
< 5}17 U(n0)€+1 + U(T)H—l
_ K v’ (ng) 1 g _K ev’(ng) 1 ] (33)
b o)t T ev(mo)e | € [vlng)tt T v(ng)* '
On the other hand, we have
b o0
T A+py—éfzux) (x)v(n) v(n)
=g (u(x) + o(n))*
Apy—ew ea I
= —r - v'(n)o(n
. Z (myo(n) o)
/\ + py e o 6/\+py—z -1 ﬁ 6/’s+py—z -1
= — v’ (n)o(n) =<7 f i - f 7
p Z (e ) G+ ) ©+1)7"
A + 0 /\ /\ ﬁ m_l
py — ¢ / e-1 & A€ '
= v’ (n)o(n) [B( , ) + 0(1)] -
p Z q9 " p ©+1)"
A . P P ﬁ )
S AFPrTe [B(A L —)/)] f o (0)0(0)<"1d6 — f o (8)0(6)*~1d6 f 5 s
p p q . . -
A+py—e[ ()\—e A+e )]f__l
= B +v, - 7 dr — O(1)
p p v q v
o(no)
A+py—e (/\—e A+e )
= B +v, —y|-0Q). 3.4

Hence, if we let ¢ — 0*from (3.3) and (3.4) we obtain a contradiction. Thus, the proof of the
theorem is completed.

1



A.-O. K. Nizar, L. E. Azar, A. H. A. Batainehr / Filomat 32:19 (2018), 6733-6740 6739

4. Some Examples

Here we give some examples of inequality (3.1) by considering some special functions # and v that
satisfies the properties presented earlier. Precisely, u and v should be increasing functions on their domains
and o(n)f"*! = v(n)7 ™ must be concave (B = 2200710,

1. Let u(x) = x, x € (0, o) and v(n) = n, n > 1, then we find by (3.1)

1

oo . %
dx < C[ f x"’V‘A‘lP”(x)dx] [Z n‘”’*q‘)“laZ] , 4.1)

r = a
Of )

0 n=1
here F(x) = f fw)dw . If we puty = 0in (4.1) we get (1.9). If weletA =1,y = 22 we obtain the following
form
o0 . 1
n F(x)\ |
ff(x x+n %in% [f( x ) dx] {Z{an . “2
0 =

Applying Hardy inequality (1.5) to (4.2) we get (1.4). If we apply the weighted Hardy inequality (1.6) to
(4.1) we get

dx < C P=A=1-py £9(x\d - qr+q-A=1.4 q/ 4.3
ff(x)n1x+ X < 1[Oj‘x f(x)x] [;n ﬂn] (4.3)

where Ci =B ( + )/, 4 — )/). Inequality (4.3) is equivalent to inequality (1.3) if we set y + % = Ay and

—y =
2. If u(x) = €%, x € (—o0, 0) ,and v(n) = n,n > 1, we obtain by (3.1)

1
P

dx <C [ f (“P?’)"F”(x)de [Z n"”q_/‘_lai]q , 4.4)

n=1

fﬂxfl

here F(x) = f f(Hdt . If we apply (1.9) to the integral on the right of (4.4), we have

1

00 1

o)

dx <C [ f e~ (1py)x fp(x)dx] [Z n"”q"“lai]q .

n=1

ff(i

3. If u(x) =Inx,x € (1,), v(n) = Inn,n > 2, then we have

\—00

1

) o LS Fp(x) P [ o az 7
x<C f—dx ’
f e Z(lnx+lr1n) {1 x [Inx] "7 ] [Z_; (1nn)“1-q’/-“n1—q}

n
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here F(x) = 1ff(if)dt . In particular for A =1,y = ’%2, we get

o 1
q

L b

a, ¢ FF(x) al
ff(x)Z; lnx+lnndx < qsin 2 fx[lnx]pdx Z nt=a]’ (45)
1 "=

1 n=2

if we apply (1.10) to (4.5) we get the following half-discrete Hilbert-type inequality

0 . w L )
Ay d Tt P=1 4P (x)d g-1.4
f&) Inx+Inn sink W S
1 n=2 Py n=2
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