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Abstract. The ring RcL is introduced as a sub- f -ring of RL as a pointfree analogue to the subring Cc(X)
of C(X) consisting of elements with the countable image. We introduce zc-ideals in RcL and study their
properties. We prove that for any frame L, there exists a space X such that βL � OX with Cc(X) � Rc(OX) �
RcβL � R∗cL, and from this, we conclude that if α, β ∈ RcL, |α| ≤ |β|q for some q > 1, then α is a multiple of β
in RcL. Also, we show that IJ = I ∩ J whenever I and J are zc-ideals. In particular, we prove that an ideal of
RcL is a zc-ideal if and only if it is a z-ideals. In addition, we study the relation between zc-ideals and prime
ideals in RcL. Finally, we prove that RcL is a Gelfand ring.

1. Introduction

An ideal I of a ring A is a z-ideal if whenever two elements of A are in the same set of maximal ideals and
I contains one of the elements, then it also contains the other (the term “ring” means a commutative ring
with identity). A study of z-ideals in rings generally has been carried by Mason in the article [25]. We refer
to z-ideals as defined in [25] as “z-ideals á la Mason”. This algebraic definition of z-ideal was coined in the
context of rings of continuous functions by Kohls in [22] and is also in the text Rings of continuous functions
by Gillman and Jerison [16]. In pointfree topology, z-ideals were introduced by Dube in [8] in terms of the
cozero map. z-Ideals have been studied in the theory of abelian lattice-ordered groups [4, 27] and in the
context of Riesz space in [17] and [18].

This paper is mainly about the study of prime ideals and zc-ideals in the ring RcL, where RcL is the
sub- f -ring of RL consisting of all elements which have the pointfree countable image. The ring RcL is
introduced in [21] as the pointfree version of Cc(X), the subalgebra of C(X) of all continuous functions with
a countable image on a topological space X.

This paper is organized as follows. Section 2 is introductory. It is where we present relevant definitions
pertaining to frames and give relevant background for the other sections. In Section 3, we introduce zc-
ideals in RcL (see Definition 3.2) and study some properties of zc-ideals. In addition, we show that IJ = I∩ J
whenever I and J are zc-ideals, just as in C(X) and in RL (Proposition 3.14). We prove that for any frame L,
there exists a space X such that βL � OX with Cc(X) � Rc(OX) � RcβL � R∗cL, (see Lemmas 3.16 and 3.18).

2010 Mathematics Subject Classification. 06D22, 13A15, 54C05, 54C30
Keywords. Frame, Ring of real-valued continuous functions, Cozero element, z-Ideal, zc-Ideal, Prime ideal, f -ring
Received: 08 February 2017; Revised: 19 April 2017; Accepted: 16 May 2017
Communicated by Marko Petković
Corresponding author: A. A. Estaji
Research supported by Hakim Sabzevari University
Email addresses: aaestaji@hsu.ac.ir (A.A. Estaji), akarimi@gorganiau.ac.ir (A. Karimi Feizabadi), M.sarpooshi@yahoo.com

(M. Robat Sarpoushi)



A. A. Estaji et al. / Filomat 32:19 (2018), 6741–6752 6742

By this result, we show that if α, β ∈ RcL, |α| ≤ |β|q for some q > 1, then α is a multiple of β in RcL (Lemma
3.19). Also, we prove that a z-ideal in RcL is a zc-ideal if and only if it is a z-ideal á la Mason (see Proposition
3.27). In Section 4, we study the relation between prime ideals and zc-ideals in the ring RcL (see Proposition
4.4). In addition, we show that RcL is a Gelfand ring (see Corollary 4.7).

2. Preliminaries

Here, we recall some concepts and terminologies with frames, frame maps and the pointfree version of
the ring of continuous real-valued functions. Our references for frames are [20, 26] and our references for
the ring RL are [1, 2].

A frame is a complete lattice L in which the distributive law

x ∧
∨

S =
∨
{x ∧ s : s ∈ S}

holds for all x ∈ L and S ⊆ L. We denote the top element and the bottom element of L by >L and ⊥L
respectively, dropping the decorations if L is clear from the context. The frame of open subsets of a
topological space X is denoted by OX.

An element p ∈ L is said to be prime if p < > and a ∧ b ≤ p implies a ≤ p or b ≤ p. An element m ∈ L is
said to be maximal (or dual atom) if m < > and m ≤ x ≤ > implies m = x or x = >. As it is well known, every
maximal element is prime. A lattice-ordered ring A is called f - ring, if ( f ∧ 1)h = f h ∧ 1h for every f , 1 ∈ A
and every 0 ≤ h ∈ A.

Recall the contravariant functor Σ from Frm to the category Top of topological spaces which assigns to
each frame L its spectrum ΣL of prime elements with Σa = {p ∈ ΣL : a � p} (a ∈ L) as its open sets.

Let L be a frame. We say that a is rather below b, and write a ≺ b, if there exists a separating element s of L
with a ∧ s = ⊥ and s ∨ b = >. A frame L is called regular if each of its elements is a join of elements rather
below it. An element a of a frame L is said to be completely below b, written a ≺≺ b, if there exists a sequence
(cq), q ∈ Q ∩ [0, 1], where c0 = a, c1 = b, and cp ≺ cq whenever p < q. A frame L is called completely regular if
each a ∈ L is a join of elements completely below it.

A frame homomorphism (or frame map) is a map between frames which preserves finite meets, including
the top element, and arbitrary joins, including the bottom element.

An ideal J of L is said to be completely regular if for each x ∈ J there exists y ∈ J such that x ≺≺ y.
The set βL of all completely regular ideals of a frame L under set inclusion is a compact completely regular
frame, and jL : βL → L, defined by jL(I) =

∨
I, is a dense onto frame homomorphism, so that βL is a

compactification of L. The compactification βL is known as the Stone-Čech compactification of the frame L.
It is clear that βL is finite if and only if L is finite. The right adjoint j∗ : L → βL of the surjective frame
homomorphism jL is denoted by rL, and rL(a) = {x ∈ L : x ≺≺ a} for all a ∈ L (see [2, 3, 10, 26]).

Recall from [2] (see also [1]) that the frame of reals L(R) is obtained by taking the ordered pairs (p, q) of
rational numbers as generators and imposing the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s).
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s.
(R3) (p, q) =

∨
{(r, s) : p < r < s < q}.

(R4) > =
∨
{(p, q) : p, q ∈ Q}.

For the pairs (p, q) ∈ Q2, we let:

〈p, q〉 := {x ∈ Q : p < x < q} and �p, q~:= {x ∈ R : p < x < q}.

The set RL of all frame homomorphisms from L(R) to L has been studied as an f -ring in [2].
Corresponding to every operation � : Q2

→ Q (in particular +, .,∧,∨) we have an operation on RL,
denoted by the same symbol �, defined by:

α � β(p, q) =
∨
{α(r, s) ∧ β(u,w) :< r, s > � < u,w >≤< p, q >},
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where < r, s > � < u,w >≤< p, q > means that for each r < x < s and u < y < w we have p < x � y < q. For
any α ∈ RL and p, q ∈ Q, (−α)(p, q) = α(−q,−p) and for every r ∈ R, define the constant frame map r ∈ RL
by r(p, q) = >, whenever p < r < q, and otherwise r(p, q) = ⊥. An element α of RL is said to be bounded if
there exists n ∈N such that α(−n,n) = >. The set of all bounded elements of RL is denoted by R∗L which is
a sub- f -ring of RL. In connection with the Stone-Čech compactification of a frame L, it is also well known
R
∗L � R(βL).

The cozero map is the map coz : RL→ L, defined by

coz(α) =
∨
{α(p, 0) ∨ α(0, q) : p, q ∈ Q}.

A cozero element of L is an element of the form coz(α) for some α ∈ RL (see [2]). The cozero part of L,
is denoted by CozL. It is well known that L is completely regular if and only if coz(L) generates L. For
A ⊆ RL, let Coz[A] = {coz(α) : α ∈ A} and for A ⊆ CozL, we write Coz←[A] to designate the family maps
{α ∈ RL : coz(α) ∈ A}. An ideal I of RL is a z-ideal if, for any α ∈ RL and β ∈ I, coz(α) = coz(β) implies α ∈ I
(for more details, see [6–8, 11, 13]).

Here we recall some notations from [12]. Let a ∈ L and α ∈ RL. The sets {r ∈ Q : α(−, r) ≤ a} and
{s ∈ Q : α(s,−) ≤ a} are denoted by L(a, α) and U(a, α), respectively. For a , > it is obvious that for each
r ∈ L(a, α) and s ∈ U(a, α), r ≤ s. In fact, we have that if p ∈ ΣL and α ∈ RL, then (L(p, α),U(p, α)) is a Dedekind
cut for a real number which is denoted by p̃(α) (see [12]). Throughout this paper, for every α ∈ RL, we
define α[p] = p̃(α) where p is a prime element of L (see [13]).

It is well known that the homomorphism τ : L(R)→ OR taking (p, q) to �p, q~ is an isomorphism (see [2,
Proposition 2]). Now, we recall some concepts and results from [21] that we need to establish the principal
results of our paper.

Definition 2.1. [21] For any α ∈ RL, we say that α has the pointfree countable image if there exists S ⊆ R such that

(1) |S| ≤ ℵ0

(2) τ(u)∩ S ⊆ τ(v)∩ S implies α(u) ≤ α(v), for every u, v ∈ L(R) (denoted by α� S and say α is an overlap of S).

Lemma 2.2. [21] For any α ∈ RL and any S ⊆ R, the following statements are equivalent:

(1) α� S.
(2) τ(u) ∩ S = τ(v) ∩ S implies α(u) = α(v), for any u, v ∈ L(R).
(3) τ(p, q) ∩ S = τ(v) ∩ S implies α(p, q) = α(v), for any v ∈ L(R) and any p, q ∈ Q.
(4) τ(p, q) ∩ S ⊆ τ(v) ∩ S implies α(p, q) ≤ α(v), for any v ∈ L(R) and any p, q ∈ Q.

Definition 2.3. [21] For every frame L, we put

RcL := {α ∈ RL : α has the pointfree countable image}.

Corollary 2.4. [21] For any completely regular frame L, the set RcL is a sub- f -ring of RL.

3. zc-Ideals in RcL

Throughout this paper, all frames are assumed to be completely regular. We recall the notation z-ideal
of a ring A as was introduced by Mason in [25]. We refer to z-ideals as defined in [25] as “z-ideals á la
Mason”.

Denoted by Max(A) the set of all maximal ideals of a ring A. For a ∈ A and S ⊆ A, let

M(a) = {M ∈Max(A) : a ∈M} and M(S) = {M ∈Max(A) : M ⊇ S}.

Definition 3.1. An ideal I of a ring A is a z-ideal á la Mason if wheneverM(a) ⊇M(b) and b ∈ I, then a ∈ I.

In [8, Corollary 3.8], Dube shows that an ideal of RL is a z-ideal if and only if it is a z-ideal á la Mason. Here
we introduce and study zc-ideals in RcL. We begin by below definition.
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Definition 3.2. An ideal I in RcL is called a zc-ideal if, for every α ∈ RcL and β ∈ I, coz(α) = coz(β) implies α ∈ I.

Remark 3.3. It is evident that for a family {Iλ}λ∈Λ of zc-ideals of RcL,
⋂
λ∈Λ Iλ is a zc-ideal.

Recall from [9] that for each a ∈ L with a < >, the subset Ma of RL is defined by

Ma = {α ∈ RL : coz(α) ≤ a}.

They are distinct for distinct points. By [14, Lemma 4.2], if p is a prime element of L, then

Mp = {α ∈ RL : α[p] = 0 }.

Definition 3.4. For every a ∈ L, we let Mc
a := {α ∈ RcL : coz(α) ≤ a}.

Proposition 3.5. The following statements are equivalent for an ideal I of RcL.

(1) I is a zc-ideal.
(2) For any α, β ∈ RcL, α ∈ I and coz(β) ≤ coz(α) imply β ∈ I.
(3) I =

⋃
{Mc

coz(α) : α ∈ I}.

Proof. (1)⇒ (2). Assume α ∈ I and coz(β) ≤ coz(α). Then

coz(β) = coz(α) ∧ coz(β) = coz(αβ).

Since αβ ∈ I, by statement (1), we infer that β ∈ I.
(2) ⇒ (3). Clearly I ⊆

⋃
{Mc

coz(α) : α ∈ I}, because for every γ ∈ RcL, γ ∈ Mc
coz(γ). To see the inverse

inclusion, let α ∈ I and consider β ∈ Mc
coz(α). This means coz(β) ≤ coz(α), so that, by (2), β ∈ I. Therefore

Mc
coz(α) ⊆ I, and hence the desired inclusion.
(3) ⇒ (1). Let α ∈ I and β ∈ RcL with coz(α) = coz(β). Then β ∈ Mc

coz(β) = Mc
coz(α) ⊆ I, and hence (1)

follows.

Remark 3.6. Recall from [1] that if α ∈ RL be a unit element of RL and we define β ∈ RL by β(p, q) =
α(τ−1({ 1x : x ∈ τ(p, q) , x , 0})), then β = α−1.

Lemma 3.7. Let α be a unit element of RL. If α ∈ RcL, then α−1
∈ RcL.

Proof. Since α ∈ RcL, we infer from Definitions 2.1 and 2.3 that there is a countable subset S ⊆ R such that
α � S. Put S1 := { 1s : s ∈ S , s , 0}. We claim that α−1

� S1. To do this, suppose that (p, q),u ∈ L(R) and
τ(p, q) ∩ S1 = τ(u) ∩ S1. Since

{
1
s

: s ∈ τ(p, q) , s , 0} ∩ S = {
1
s

: s ∈ τ(u) , s , 0} ∩ S,

we conclude from Remark 3.6 and Lemma 2.2 that

α−1(p, q) = α(τ−1({ 1s : s ∈ τ(p, q) , s , 0}))
= α(τ−1({ 1s : s ∈ τ(u) , s , 0}))
= α−1(u).

Hence, by Lemma 2.2 and Definition 2.3, α−1
� S1, which shows that α−1

∈ RcL.

Lemma 3.8. Every maximal ideal of RcL, is a zc-ideal.
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Proof. Let I be a maximal ideal ofRcL and γ ∈ RcL be an element with coz(β) = coz(γ), where β ∈ I. It suffices
to show that γ ∈ I. Suppose that γ < I. Since I is maximal, we infer that there exist α ∈ RcL and ψ ∈ I such
that 1 = ψ + αγ. So

> = coz(ψ + αγ)
≤ coz(ψ) ∨ (coz(α) ∧ coz(γ))
≤ (coz(ψ) ∨ coz(α)) ∧ (coz(ψ) ∨ coz(γ))
≤ coz(ψ) ∨ coz(γ)
= coz(ψ) ∨ coz(β).

Therefore coz(ψ) ∨ coz(β) = >, thus coz(ψ2 + β2) = >. So, by Lemma 3.7, ψ2 + β2 is invertible in RcL which
is a contradiction. Hence γ ∈ I and the proof is complete.

Proposition 3.9. For any ideal I in RcL, AnnRcL(I) is a zc-ideal.

Proof. Let α ∈ RcL, β ∈ AnnRcL(I) and coz(α) ≤ coz(β). Thus

βγ = 0 ⇒ coz(β) ∧ coz(γ) = ⊥

⇒ coz(α) ∧ coz(γ) = ⊥

⇒ coz(αγ) = ⊥

⇒ αγ = 0,

for every γ ∈ I. Therefore α ∈ AnnRcL(I).

Remark 3.10. Let I be a zc-ideal and α, β ∈ RcL. If α2 + β2
∈ I, then α, β ∈ I. For we have

coz(α), coz(β) ≤ coz(α) ∨ coz(β) = coz(α2 + β2).

Since I is a zc-ideal, we conclude that α, β ∈ I.

Definition 3.11. Let L be a frame. We define:

Cozc[L] := {coz(α) : α ∈ RcL}.

Proposition 3.12. The following statements hold for any frame L.

(1) If I is a proper ideal of RcL, then Cozc[I] is a proper ideal of Cozc[L].
(2) If I is a proper ideal of Cozc[L], then Coz←c [I] is a proper ideal of RcL.
(3) If M is a maximal ideal of RcL, then Cozc[M] is a maximal ideal of Cozc[L].
(4) If M is a maximal ideal of Cozc[L], then Coz←c [M] is a maximal ideal of RcL.

Proof. (1). Let I be a proper ideal of RcL and coz(α), coz(β) ∈ Cozc[I]. Then

coz(α), coz(β) ≤ coz(α) ∨ coz(β) = coz(α2 + β2) ∈ Cozc[I].

Thus Cozc[I] is directed. Now, assume coz(α), coz(β) ∈ Cozc[I] and coz(α) ≤ coz(β). Then

coz(α) = coz(α) ∧ coz(β) = coz(αβ) ∈ Cozc[I].

Therefore Cozc[I] is a downset and so Cozc[I] is an ideal of Cozc[L]. If Cozc[I] is not proper, there is γ ∈ I
such that coz(γ) = >. Thus γ ∈ I is invertible, that is a contradiction.

(2). Considerα, β ∈ Coz←c [I], then coz(α), coz(β) ∈ I.Since I is an ideal of Cozc[L], we have coz(α)∨coz(β) ∈
I. Therefore coz(α + β) ≤ coz(α) ∨ coz(β) ∈ I implies that coz(α + β) ∈ I. So α + β ∈ Coz←c [I]. Now, assume
α ∈ Coz←c [I] and γ ∈ RcL. Then, coz(α) ∈ I and coz(γ) ∈ Cozc L. Also

coz(α) ≥ coz(α) ∧ coz(γ) = coz(αγ).
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Thus, coz(αγ) ∈ I and so, αγ ∈ Coz←c [I]. If Coz←c [I] is not proper, there is an invertible element β ∈ RcL such
that β ∈ Coz←c [I]. Therefore > = coz(β) ∈ I, which is a contradiction.

(3). Let M be a maximal ideal of RcL and J be a proper ideal of Cozc[L] such that Cozc[M] ⊆ J. Since M is
maximal, we conclude from Lemma 3.8 that M = Coz←c [Coz[M]]. Now

M = Coz←c [Cozc[M]] ⊆ Coz←c [J] ⊆ Cozc[L].

Since M is maximal, we infer that M = Coz←c [J], so Cozc[M] = J.
(4). Assume α < Coz←c [M]. Then coz(α) < M, and so there is b ∈ M such that coz(α) ∨ b = >. Since M is

an ideal of Cozc[L], we can choose γ ∈ RcL such that coz(γ) = b. Then

> = coz(α) ∨ b = coz(α) ∨ coz(γ) = coz(α2) ∨ coz(γ2) = coz(α2 + γ2),

which implies that α2 + γ2 is invertible in RcL, by Lemma 3.7. Therefore for every α ∈ RcL \ Coz←c [M], the
ideal < α,Coz←c [M] > is not a proper ideal of RcL. Hence Coz←c [M] is a maximal ideal of RcL.

In [24], Mason shows that if I and J are z-ideals, then IJ is a z-ideal precisely when IJ = I ∩ J. In RL, just as
in C(X), the product of two z-ideals is always a z-ideal. We study this result in RcL as we show next. To do
this, we utilize the following lemma.

Lemma 3.13. Let α ∈ RL and ρ3 : L(R)→ L(R) by ρ3(p, q) = (p3, q3). Then

(1) ρ3 ∈ R(L(R)).
(2) ρ3

3 = idL(R).
(3) (α ◦ ρ3)3 = α.
(4) coz(α ◦ ρ3) = coz(α).
(5) If α ∈ RcL, then α ◦ ρ3 ∈ RcL.

Proof. (1). We check the conditions (R1)-(R4).
(R1). Let (p, q), (r, s) ∈ L(R). Then

ρ3(p, q) ∧ ρ3(r, s) = (p3, q3) ∧ (r3, s3)
= (max{p3, r3

},min{q3, s3
})

= ((max{p, r})3, (min{q, s})3)
= ρ3(p ∨ r, q ∧ s).

(R2). Assume p ≤ r < q ≤ s ∈ Q. Then

ρ3(p, q) ∨ ρ3(r, s) = (p3, q3) ∨ (r3, s3) = (p3, s3) = ρ3(p, s),

because p3
≤ r3 < q3

≤ s3.
(R3). We trivially have∨

{ρ3(r, s) : p < r < s < q} =
∨
{(r3, s3) : p < r < s < q}

=
∨
{(r3, s3) : p3 < r3 < s3 < q3

}

= (p3, q3)
= ρ3(p, q).

(R4). We have ∨
{ρ3(p, q) : p, q ∈ Q} =

∨
{(p3, q3) : p, q ∈ Q} = >.

Thus ρ3 is a frame map, so ρ3 ∈ R(L(R)).
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(2). Consider (p, q) ∈ L(R), then

ρ3
3(p, q) =

∨
{ρ3(r1, s1) ∧ ρ3(r2, s2) ∧ ρ3(r3, s3) :< r1, s1 > . < r2, s2 > . < r3, s3 >⊆< p, q >}

≥ (p, q).

Thus ρ3
3 = idL(R) by regularity of L.

(3). Let (p, q) ∈ L(R). Then, we conclude from (2) that

(α ◦ ρ3)3(p, q) = α ◦ ρ3
3(p, q) = α ◦ id(p, q) = α(p, q).

Hence, (α ◦ ρ3)3 = α.
(4). First, we note that

coz(ρ3) = ρ3(−, 0) ∨ ρ3(0,−) = (−, 0) ∨ (0,−).

Also, we infer from (3) that α1/3 = α ◦ ρ3. Therefore

coz(α1/3) = coz(α ◦ ρ3) = α(coz(ρ3)) = α((−, 0) ∨ (0,−)) = coz(α).

(5). Let α ∈ RcL. Then, by Definitions 2.1 and 2.3, there is a countable subset S ⊆ R such that
α � S. Put S0 = { 3

√
s : s ∈ S}. We show that α ◦ ρ3 � S0. Assume (p, q),u ∈ L(R) with u =

∨
i∈I(ai, bi)

and τ(p, q) ∩ S0 = τ(u) ∩ S0. Since τ(p3, q3) ∩ S = τ(
∨

(a3
i , b

3
i )) ∩ S, we conclude from Lemma 2.2 that

α(p3, q3) = α(
∨

(a3
i , b

3
i )), which follows that α ◦ ρ3(p, q) = α ◦ ρ3(u). Thus, by Lemma 2.2, α ◦ ρ3 � S0. Hence

α ◦ ρ3 ∈ RcL and the proof is complete.

Proposition 3.14. If P and Q are zc-ideals in RcL, then PQ = P ∩Q.

Proof. Since PQ ⊆ P ∩ Q always holds, we show the reverse inclusion. Let α ∈ P ∩ Q. Suppose that ρ3
be the same in Lemma 3.13. Then, by Lemma 3.13(3,5), we have α1/3

∈ RcL and α1/3α1/3
∈ RcL. Also,

α = (α1/3)3 = α1/3α2/3 and coz(α) = coz(α1/3). Now, since α ∈ P ∩ Q and P,Q are zc-ideals, we infer that
α1/3
∈ P and α1/3

∈ Q Hence, (α1/3)2
∈ Q. Therefore α = α1/3(α1/3)2

∈ PQ and proof is complete.

Remark 3.15. By [2, Proposition 4], we know that the map

θ : Frm(L(R),OX) −→ Top(X,R)
ϕ 7−→ ϕ̃

such that p < ϕ̃(x) < q if and only x ∈ ϕ(p, q) is an isomorphism (also, see [5]).

Lemma 3.16. For any space X, Rc(OX) � Cc(X).

Proof. Define
θ|Rc(OX) : Rc(OX) −→ Cc(X)

ϕ 7−→ ϕ̃

such that p < ϕ̃(x) < q if and only x ∈ ϕ(p, q).
Consider ϕ ∈ Rc(OX). Then, by Definitions 2.1 and 2.3, there is a countable subset S ⊆ R such that

ϕ � S. We claim that Imϕ̃ ⊆ S. Suppose that Imϕ̃ * S and y ∈ Imϕ̃ \ S. So there is an element x ∈ X such
that y = ϕ̃(x). Since τ is an isomorphism, there is an element v ∈ L(R) such that τ(v) = R \ {y} and also
τ(>L(R)) = R. Now, by Definition 2.1, τ(v) ∩ S = τ(>L(R)) ∩ S, it follows that

ϕ(v) = ϕ(>L(R)) = ϕ(R) = >OX = X.

Thus x ∈ X = ϕ(v). Therefore ϕ̃(x) ∈ R \ {y}, which is a contradiction with ϕ̃(x) = y. Thus Imϕ̃ ⊆ S, which
follows that θ(ϕ) ∈ Cc(X).
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Now, we show that θ|Rc(OX) is onto. Suppose that f ∈ Cc(X). Then Im f := S is a countable subset of R.
By Remark 3.15, θ is onto implies that there is ϕ ∈ R(OX) such that θ(ϕ) = f . We claim that ϕ ∈ Rc(OX).
Assume (a, b), v ∈ L(R) with v =

∨
λ∈Λ(aλ, bλ) and τ(a, b) ∩ S ⊆ τ(v) ∩ S. Therefore,

x ∈ ϕ(a, b) ⇒ a < f (x) < b
⇒ f (x) ∈ τ(a, b) ∩ S
⇒ f (x) ∈ τ(v) ∩ S.

Since τ(v) is an open subset of R, there is p, q ∈ Q such that

f (x) ∈ τ(p, q) ∩ S ⊆ τ(v) ∩ S

and hence x ∈ ϕ(p, q) ≤ ϕ(v). Thus x ∈ ϕ(v), so ϕ(a, b) ⊆ ϕ(v). Now, by Lemma 2.2 and Definition 2.3,
ϕ ∈ Rc(OX). Therefore, by Remark 3.15, θ|Rc(OX) is an isomorphism and hence Rc(OX) � Cc(X).

Remark 3.17. Recall from [9] that we denote by tL the ring isomorphism

tL : RβL→ R∗L given by tL(α) = jL(α),

the inverse of which we will denote by ϕ 7→ ϕβ. It is also important to note that
∨
αβ(p, q) = α(p, q), for all

p, q ∈ Q.

Lemma 3.18. For any frame L, R∗cL � RcβL, where R∗cL = RcL ∩ R∗L

Proof. We define
tL|RcβL : RcβL −→ R

∗
cL

α 7−→ jL ◦ α

Consider α ∈ RcβL. So, by Definitions 2.1 and 2.3, there is a countable subset S ⊆ R such that α�S. Assume
(p, q), v ∈ L(R), and τ(p, q) ∩ S = τ(v) ∩ S. Then we conclude from Lemma 2.2 that

α(p, q) = α(v) ⇒ jL ◦ α(p, q) = jL ◦ α(v)
⇒ tL|RcβL(α)(p, q) = tL|RcβL(α)(v)

Thus, by Lemma 2.2, tL(α)� S.
Now, suppose that α ∈ R∗cL. Then there is a countable subset S ⊆ R such that α� S. Let (p, q), v ∈ L(R)

and τ(p, q) ∩ S = τ(v) ∩ S. Then we conclude from Lemma 2.2 that

α(p, q) = α(v) ⇒
∨
αβ(p, q) =

∨
αβ(v)

⇒ αβ(p, q) = αβ(v). (since βL is compact)

Therefore αβ = t−1
L |RcβL(α) ∈ RcβL. Hence tL(αβ) =

∨
αβ = α, which shows that tL|RcβL is onto. Consequently,

by Remark 3.17, tL|RcβL is an isomorphism.

We shall study the relation between zc-ideal and prime ideal minimal over an ideal. For this, we recall that
in [16, 1D] the following results play a useful role in the context of C(X). It is shown that the pointfree
version of this results is also true (see [19]). The following results are the counterpart for RcL.

Lemma 3.19. Let α, β ∈ RcL. If |α| ≤ |β|q for some q > 1, then α is a multiple of β. In particular, if |α| ≤ |β|, then
whenever αq is defined for every q > 1, αq is a multiple of β.
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Proof. Multiply by 1
1+|α| .(

1
1+|β| )

q
both sides of the stated inequality to obtain

α
1 + |α|

.(
1

1 + |β|
)
q

≤
1

1 + |α|
.(
|β|

1 + |β|
)
q

.

Since of each of the factors in this inequality is in R∗cL, and by Corollaries 3.16 and 3.18, R∗cL is isomorphic to
a Cc(X) via an f -ring isomorphism, we deduce from [15, Corollary 2.5], that α

1+|α| is a multiple of |β|
1+|β| . This

implies α is a multiple of β, as desired.

Proposition 3.20. Let Q be an ideal of RcL, and α ∈ RcL. If Mc
coz(α) ⊆

√
Q, then Mc

coz(α) ⊆ Q.

Proof. Let β ∈ Mc
coz(α) ⊆

√
Q. Without loss of generality, we assume that |β| ≤ 1. We define γ = Σ∞n=12−n.β

1
n .

Hence
coz(γ) =

∨
n coz(2−n.β

1
n )

=
∨

n(coz(2−n) ∧ coz(β
1
n ))

=
∨

n coz(β
1
n )

= coz(β).

Since coz(γ) = coz(β) and Mc
coz(α) is a zc-ideal, then γ ∈ Mc

coz(α). Hence γ ∈
√

Q and hence there is m ∈ N

such that γm
∈ Q. Furthermore, since 2−n.β

1
n ≤ γ, for every n ∈ N, we have 2−2m.β

1
2m ≤ γ which implies

that (2−2m.β
1

2m )m
≤ γm and hence 2−2m2

.β
1
2 ≤ γm. Therefore, by Lemma 3.19, there exists τ ∈ RcL such that

β = τ.γm. This shows that β ∈ Q, and hence Mc
coz(α) ⊆ Q.

Corollary 3.21. An ideal of RcL is a zc-ideal if and only if its radical is a zc-ideal.

Proof. (⇒) : It is evident.
(⇐) : Let Q be an ideal of RcL. Suppose that for α, β ∈ RcL, α ∈ Q and coz(α) = coz(β). Since

√
Q is a

zc-ideal, β ∈
√

Q. By Proposition 3.20, Mc
coz(β) ⊆

√
Q and hence Mc

coz(β) ⊆ Q. Since β ∈Mc
coz(β) ⊆ Q, it implies

that β ∈ Q. Therefore Q is a zc-ideal.

Corollary 3.22. Let Q be an ideal of RcL. Then Q is a zc-ideal if and only if every prime ideal minimal over it is a
zc-ideal.

Proof. Suppose every prime ideal minimal over Q is a zc-ideal. Then, by Corollary 3.21, it is sufficient to
show that

√
Q is a zc-ideal. We know that

√
Q is the intersection of prime ideals minimal over Q . Hence

√
Q is an intersection of zc-ideals, thus it is a zc-ideal.

Conversely, let Q be a zc-ideal and P ∈ Min(Q). Consider α, β ∈ RcL with coz(α) = coz(β), α ∈ P and
β < P. We put

S = (RcL \ P)
⋃
{γαn : γ ∈ RcL \ P , n ∈N }.

It is clear that S is a multiplicatively closed set of RcL. If ϕ ∈ S ∩ Q, then there are n ∈ N and γ ∈ RcL \ P
such that ϕ = γαn

∈ Q ⊆ P. We have

coz(ϕ) = coz(γαn) = coz(γ) ∧ coz(α) = coz(γ) ∧ coz(β) = coz(γβ).

From Q is a zc-ideal and ϕ ∈ Q, we conclude that γβ ∈ Q ⊆ P, which follows that γ ∈ P or β ∈ P. That
is a contradiction. Therefore S ∩ Q = ∅. By [28, Theorem 3.44], there exists a prime ideal P′ ∈ RcL such
that S ∩ P′ = ∅ and Q ⊆ P′. Now, if ϕ ∈ P′, then ϕ < S, it implies that ϕ ∈ P. Thus Q ⊆ P′ ⊆ P and since
P ∈ Min(Q), we infer that P′ = P. We have α ∈ P = P′ and α ∈ S, and so α ∈ P′ and α < P′, which is a
contradiction.

Now, we discuss on the zc-ideals of RcL and contraction of z-ideals of RL.
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Proposition 3.23. An ideal J in RcL is a zc-ideal if and only if it is a contraction of a z-ideal in RL.

Proof. Suppose that J is a zc-ideal of RcL. Put

I = {α ∈ RL : coz(α) ≤ coz(β) , for some β ∈ J}.

Clearly, I is a z-ideal in RL and J ⊆ Ic. On the other hand, if α ∈ Ic, there exists β ∈ J with coz(α) ≤ coz(β).
Since J is zc-ideal, we conclude that α ∈ J, as desired.

Conversely, let J = Ic, where I is a z-ideal in RL. Then J is clearly a zc-ideal in RcL.

Corollary 3.24. An ideal P in RcL is a prime zc-ideal if and only if it is a contraction of a prime z-ideal in RL.

Proof. Let P be a prime zc-ideal in RcL. Consider S = RcL \ P as a multiplicatively closed set in RL. By
Proposition 3.23, P is a contraction of a z-ideal in RL, I say. Clearly, I ∩ S = ∅, so there is a prime ideal
Q ∈ RL minimal over I with Q ∩ S = ∅. Now, from [25] we have that Q is a z-ideal in RL. It is evident that
P = Ic

⊆ Qc
⊆ P. Therefore P = Qc, as desired. The converse is evident.

Corollary 3.25. Every maximal ideal N of RcL is a contraction of a maximal ideal in RL.

Proof. Let N be a maximal ideal in RcL. By Lemma 3.8, N is a zc-ideal. Hence, from Proposition 3.23, we
infer that N = Ic, where I is a z-ideal in RL. But there is a maximal ideal M in RL containing I. Therefore
N = Ic

⊆Mc implies that N = Mc and we are done.

We shall see the relation between zc-ideals in RcL and z-ideal á la Mason.
For α ∈ RcL, we putMc(α) := {M ∈Max(RcL) : α ∈M}.

Lemma 3.26. For α, β ∈ RcL, the following statements are equivalent:

(1) coz(β) ≤ coz(α).
(2) Mc

coz(β) ⊆Mc
coz(α).

(3) Mc(α) ⊆Mc(β).

Proof. (1)⇒ (2). It is evident.
(2)⇒ (3). Suppose that M ∈Mc(α). Then, by Proposition 3.12, Cozc[M] is a maximal ideal of Cozc[L] such

that coz(α) ∈ Cozc[M]. By hypothesis, coz(β) ∈ Coz[M]. So, by Proposition 3.12, β ∈ Coz←c [Cozc[M]] = M.
Thus M ∈Mc(β). HenceMc(α) ⊆Mc(β).

(3)⇒ (1). By Corollary 3.25, we have

Mc(α) = {Mc : M ∈M(α)} and Mc(β) = {Mc : M ∈M(β)}.

Suppose that M ∈ M(α). Then, by (3), we have Mc
∈ Mc(α) ⊆ Mc(β), which follows that M ∈ M(β). Thus

M(α) ⊆ M(β), and so β ∈
⋂
M(β) ⊆

⋂
M(α). Now, from [8, Lemma 3.7] and [23, Lemma 3.1], we have

β ∈
⋂
M(α) = {ϕ ∈ RL : coz(ϕ) ≤ coz(α)}. Therefore coz(β) ≤ coz(α).

Proposition 3.27. An ideal I in RcL is a zc-ideal if and only if it is a z-ideal á la Mason.

Proof. Let I be a zc-ideal and suppose that α, β ∈ RcL such thatM(α) ⊆M(β) and α ∈ I. SinceMc(α) ⊆Mc(β),
we conclude by Lemma 3.26 that coz(β) ≤ coz(α), which follows that β ∈ I, because I is a zc-ideal. Therefore
I is a z-ideal á la Mason.

Conversely, let I be a z-ideal á la Mason. Suppose that coz(β) ≤ coz(α) and α ∈ I. Then, by Lemma
3.26, Mc(α) ⊆ Mc(β), which follows that M(α) ⊆ M(β). Therefore, we have β ∈ I because I is a z-ideal á la
Mason.
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4. The relation between zc-ideals and prime ideals

In this section, we study the relation between prime ideals and zc-ideals in the ring RcL. We begin by
some evident instances.

Lemma 4.1. Let I be a proper ideal and P be a prime ideal in RcL. If I ∩ P is a zc-ideal and I * P, then P is a zc-ideal.

Proof. Let coz(α) = coz(β) where α ∈ P and β ∈ RcL. Since I * P, there is γ ∈ I \ P. But coz(αγ) = coz(βγ) and
αγ ∈ P∩ I. Since P∩ I is a zc-ideal, it follows that βγ ∈ P∩ I. So βγ ∈ P, we infer that β ∈ P (since P is a prime
ideal). Hence P is a zc-ideal.

Corollary 4.2. Let I be an ideal and P be a prime ideal in RcL such that P ∩ I is a zc-ideal. Then I or P is a zc-ideal.

Proof. If I * P, then we conclude from Lemma 4.1 that P is a zc-ideal. If I ⊆ P, then we have I∩P = I. Hence,
by assumptions, I is a zc-ideal.

Corollary 4.3. Let P and Q be two prime ideals in RcL that are not in a chain. If P∩Q is a zc-ideal, then either P or
Q are zc-ideals.

Proof. Let coz(α) = coz(β) where α ∈ P and β ∈ RcL. As P and Q are not the chain, so Q * P and P * Q.
Since Q * P, there is γ ∈ Q \ P. But coz(αγ) = coz(βγ), αγ ∈ P ∩ Q. Since P ∩ Q is a zc-ideal, it follows that
βγ ∈ P∩Q. So βγ ∈ P, we infer that β ∈ P (since P is prime). Hence P is a zc-ideal. Similarly to prove that Q
is a zc-ideal.

It is well known in the classical situation that a z-ideal of C(X) is prime if and only if it contains a prime
ideal (see [16, Theorem 2.9]). It is shown that the pointfree version of this result is also true (see [6]). If we
apply the proof of [23, Lemma 4.8] word-for-word, we obtain the following for RcL.

Proposition 4.4. Let I be a proper zc-ideal in RcL. The following statements are equivalent:

(1) I is a prime ideal in RcL.
(2) I contains a prime ideal in RcL.
(3) For all α, β ∈ RcL, if αβ = 0, then α ∈ I or β ∈ I.
(4) Given α ∈ RcL, there exists a cozero element a ∈ Cozc[I] such that

α(0,−) ≤ a or α(−, 0) ≤ a.

Corollary 4.5. Let I be a proper ideal of Cozc[L] such that for every α, β ∈ RcL, coz(α) ∧ coz(β) = ⊥ implies that
coz(α) ∈ I or coz(β) ∈ I. Then the following statements hold:

(1) Coz←c [I] is a prime zc-ideal of RcL.
(2) I is a prime ideal of Cozc[L].

Proof. (1). Let α, β ∈ RcL and αβ = 0. Then coz(α) ∧ coz(β) = ⊥ and, by assumption, coz(α) ∈ I or coz(β) ∈ I.
This means that α ∈ Coz←c [I] or β ∈ Coz←c [I]. Since Coz←c [I] is a zc-ideal of RcL, by Proposition 4.4, Coz←c [I]
is a prime zc-ideal of RcL.

(2). Let α, β ∈ RcL and coz(αβ) = coz(α) ∧ coz(β) ∈ I. Then αβ ∈ Coz←c [I] and, by (1), α ∈ Coz←c [I] or
β ∈ Coz←c [I]. Hence coz(α) ∈ I or coz(β) ∈ I. Thus I is a prime ideal of Cozc[L].

In proof of Proposition 4.6, we use this fact: Let J, J′ be two ideals. If J ∩ J′ is prime then either J ⊆ J′ or
J′ ⊆ J. About the following proposition, we must say that it was established by Dube in [7] in the context
of RL.

Proposition 4.6. Every prime ideal of RcL is included in a unique maximal ideal.

Proof. We know that every prime ideal is included in at least one maximal ideal. Let M and M′ be two
distinct maximal ideals. Then, by Lemma 3.8 and Remark 3.3, M ∩M′ is a zc-ideal. But it is not prime, by
Proposition 4.4, M ∩M′ contains no prime ideal.
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A commutative ring with identity is called Gelfand ring [20] if every prime ideal is contained in a unique
maximal ideal. In [7], Dube shows that RL is a Gelfand ring. As a result of Proposition 4.6, we have the
following.

Corollary 4.7. RcL is a Gelfand ring.
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