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Abstract. The ring R L is introduced as a sub- f-ring of RL as a pointfree analogue to the subring C.(X)
of C(X) consisting of elements with the countable image. We introduce z.-ideals in R.L and study their
properties. We prove that for any frame L, there exists a space X such that fL = OX with C.(X) = R.(DX) =
RBL = R:L, and from this, we conclude that if a, € R.L, |a| < ||? for some g > 1, then a is a multiple of
in R.L. Also, we show that I] = I N ] whenever I and | are z.-ideals. In particular, we prove that an ideal of
R.Lis a zc-ideal if and only if it is a z-ideals. In addition, we study the relation between z.-ideals and prime
ideals in R L. Finally, we prove that R.L is a Gelfand ring.

1. Introduction

Anideal I of aring A is a z-ideal if whenever two elements of A are in the same set of maximal ideals and
I contains one of the elements, then it also contains the other (the term “ring” means a commutative ring
with identity). A study of z-ideals in rings generally has been carried by Mason in the article [25]. We refer
to z-ideals as defined in [25] as “z-ideals 4 la Mason”. This algebraic definition of z-ideal was coined in the
context of rings of continuous functions by Kohls in [22] and is also in the text Rings of continuous functions
by Gillman and Jerison [16]. In pointfree topology, z-ideals were introduced by Dube in [8] in terms of the
cozero map. z-Ideals have been studied in the theory of abelian lattice-ordered groups [4, 27] and in the
context of Riesz space in [17] and [18].

This paper is mainly about the study of prime ideals and z.-ideals in the ring R.L, where R.L is the
sub-f-ring of RL consisting of all elements which have the pointfree countable image. The ring R.L is
introduced in [21] as the pointfree version of C.(X), the subalgebra of C(X) of all continuous functions with
a countable image on a topological space X.

This paper is organized as follows. Section 2 is introductory. It is where we present relevant definitions
pertaining to frames and give relevant background for the other sections. In Section 3, we introduce z-
ideals in R.L (see Definition 3.2) and study some properties of z.-ideals. In addition, we show thatI] =IN]
whenever I and | are z.-ideals, just as in C(X) and in RL (Proposition 3.14). We prove that for any frame L,
there exists a space X such that fL = DX with C.(X) = R.(0X) = RAL = R/L, (see Lemmas 3.16 and 3.18).
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By this result, we show that if @, f € R.L, |a| < |B|7 for some q > 1, then « is a multiple of § in R.L (Lemma
3.19). Also, we prove that a z-ideal in R.L is a z.-ideal if and only if it is a z-ideal 4 la Mason (see Proposition
3.27). In Section 4, we study the relation between prime ideals and z.-ideals in the ring R.L (see Proposition
4.4). In addition, we show that R.L is a Gelfand ring (see Corollary 4.7).

2. Preliminaries

Here, we recall some concepts and terminologies with frames, frame maps and the pointfree version of
the ring of continuous real-valued functions. Our references for frames are [20, 26] and our references for
the ring RL are [1, 2].

A frame is a complete lattice L in which the distributive law

x/\\/S:\/{x/\s:SES}

holds for all x € L and S € L. We denote the top element and the bottom element of L by T, and 1
respectively, dropping the decorations if L is clear from the context. The frame of open subsets of a
topological space X is denoted by OX.

An element p € L is said to be primeif p < Tanda Ab < p impliesa < por b < p. An element m € L is
said to be maximal (or dual atom) if m < T and m < x < T implies m = x or x = T. As it is well known, every
maximal element is prime. A lattice-ordered ring A is called f- ring, if (f A g)h = fh A gh for every f,g € A
and every 0 </ € A.

Recall the contravariant functor L from Frm to the category Top of topological spaces which assigns to
each frame L its spectrum LL of prime elements with X, = {p € L : a £ p} (a € L) as its open sets.

Let L be a frame. We say thata is rather below b, and write a < b, if there exists a separating element s of L
withaAs=_LandsVb=T. A frame L is called regular if each of its elements is a join of elements rather
below it. An element a of a frame L is said to be completely below b, written a << b, if there exists a sequence
(cg),9€QNI0,1], where ¢y = a, c1 = b, and ¢, < ¢; whenever p < gq. A frame L is called completely regular if
each a € L is a join of elements completely below it.

A frame homomorphism (or frame map) is a map between frames which preserves finite meets, including
the top element, and arbitrary joins, including the bottom element.

An ideal | of L is said to be completely regular if for each x € | there exists y € | such that x << v.
The set L of all completely regular ideals of a frame L under set inclusion is a compact completely regular
frame, and j; : pL — L, defined by j.(I) = VI, is a dense onto frame homomorphism, so that L is a
compactification of L. The compactification gL is known as the Stone-Cech compactification of the frame L.
It is clear that L is finite if and only if L is finite. The right adjoint j. : L — BL of the surjective frame
homomorphism j; is denoted by 1, and r1(a) = {x € L : x << a} for alla € L (see [2, 3, 10, 26]).

Recall from [2] (see also [1]) that the frame of reals L(IR) is obtained by taking the ordered pairs (p, 4) of
rational numbers as generators and imposing the following relations:

RY) (p,g) A (r,;s) =(pVT,qN\5s).

(R2) (p,q) Vv (r,5) = (p,s) wheneverp < r < g <s.

R3) (v, 9) =Virs):p<r<s<g)

R4 T = V{9 :pq€Qh

For the pairs (p, q) € Q?, we let:

P, =xeQ:p<x<g} and Ip,gl:={xeR:p <x<gqg}

The set RL of all frame homomorphisms from £L(IR) to L has been studied as an f-ring in [2].
Corresponding to every operation ¢ : Q> — Q (in particular +,., A, V) we have an operation on RL,
denoted by the same symbol o, defined by:

aoBp,q) = \/{a(r,s) AB(u,w) <15 >0 <u,w><<p,q >},



A. A. Estaji et al. / Filomat 32:19 (2018), 6741-6752 6743

where < 7,5 > ¢ < u,w ><< p,q > means that for eachr < x <sand u < y < w we havep < x o y < gq. For
any ¢ € RLand p,q € Q, (—a)(p,q) = a(—q,—p) and for every r € R, define the constant frame map r € RL
by 1(p,q) = T, whenever p < r < g, and otherwise r(p,q) = L. An element a of RL is said to be bounded if
there exists n € IN such that a(—n, ) = T. The set of all bounded elements of RL is denoted by R*L which is
a sub-f-ring of RL. In connection with the Stone-Cech compactification of a frame L, it is also well known
RL = R(BL).

The cozero map is the map coz : RL — L, defined by

coz(a) = \/{a(p,0) v a(0,) : p, 7 € Q).

A cozero element of L is an element of the form coz(a) for some a € RL (see [2]). The cozero part of L,
is denoted by CozL. It is well known that L is completely regular if and only if coz(L) generates L. For
A € RL, let Coz[A] = {coz(a) : a € A} and for A C CozL, we write Coz"[A] to designate the family maps
{a € RL : coz(a) € A}. Anideal I of RL is a z-ideal if, for any a € RL and § € I, coz(a) = coz(p) implies a € I
(for more details, see [6-8, 11, 13]).

Here we recall some notations from [12]. Leta € L and a € RL. The sets {r € Q : a(—,r) < a} and
{s € Q: a(s,—) < a} are denoted by L(a, a) and U(a, a), respectively. For a # T it is obvious that for each
r € L(a,a)and s € U(a, a), r < s. Infact, we have thatif p € XL and a € RL, then (L(p, @), U(p, a)) is a Dedekind
cut for a real number which is denoted by p(«) (see [12]). Throughout this paper, for every a € RL, we
define a[p] = p(«) where p is a prime element of L (see [13]).

It is well known that the homomorphism 7 : £(IR) — OR taking (p, q) to Jlp, 4l is an isomorphism (see [2,
Proposition 2]). Now, we recall some concepts and results from [21] that we need to establish the principal
results of our paper.

Definition 2.1. [21] For any a € RL, we say that « has the pointfree countable image if there exists  C R such that

(1) 151 <N
(2) T(w) NS C t(v) NS implies a(u) < a(v), for every u,v € L(R) (denoted by o 4 S and say « is an overlap of S).

Lemma 2.2. [21] For any o € RL and any S C R, the following statements are equivalent:

(1) a «65.

(2) T(w) NS = 7(v) NS implies a(u) = a(v), for any u,v € L(R).

(3) t(p,q9) NS = 1(v) NS implies a(p, q) = a(v), for any v € L(R) and any p,q € Q.
4) (p,q9) NS C 1(v) NS implies a(p, q) < a(v), for any v € L(R) and any p,q € Q.

Definition 2.3. [21] For every frame L, we put
R.L :={a € RL : a has the pointfree countable image}.

Corollary 2.4. [21] For any completely regular frame L, the set R L is a sub-f-ring of RL.

3. z.-Ideals in R.L

Throughout this paper, all frames are assumed to be completely regular. We recall the notation z-ideal
of a ring A as was introduced by Mason in [25]. We refer to z-ideals as defined in [25] as “z-ideals 4 la
Mason”.

Denoted by Max(A) the set of all maximal ideals of a ring A. Fora € Aand S C A, let

M) = {MeMax(A):ae M} and IN(S) ={M € Max(A): M 2 S}.
Definition 3.1. An ideal I of a ring A is a z-ideal d la Mason if whenever Mi(a) 2 M(b) and b € I, then a € 1.

In [8, Corollary 3.8], Dube shows that an ideal of RL is a z-ideal if and only if it is a z-ideal 4 la Mason. Here
we introduce and study z.-ideals in R.L. We begin by below definition.
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Definition 3.2. An ideal I in R.L is called a z.-ideal if, for every a € R.L and B € I, coz(a) = coz(p) implies a € I.
Remark 3.3. It is evident that for a family {I)} ea of zc-ideals of R.L, (ea L1 is a zc-ideal.
Recall from [9] that for each a € L with a < T, the subset M, of RL is defined by

M, ={a € RL : coz(a) < a}.
They are distinct for distinct points. By [14, Lemma 4.2], if p is a prime element of L, then
M, ={aeRL:a[p] =0}.

Definition 3.4. For everya € L, we let M, := {a € R.L : coz(a) < a}.

Proposition 3.5. The following statements are equivalent for an ideal I of R.L.

(1) Iisa z.--ideal.
(2) Forany a,p € R.L, a € I and coz(B) < coz(a) imply € L.
@) I=UMe  aell

coz(a)
Proof. (1) = (2). Assume «a € [ and coz(B) < coz(«). Then
coz(f) = coz(a) A coz(p) = coz(ap).

Since af € I, by statement (1), we infer that g € I.
(2) > (3). Clearly I € U{MEOZ(Q) : a € I}, because for every y € R.L, y € Mﬁoz(y). To see the inverse
inclusion, let « € I and consider € Mioz(a). This means coz(B) < coz(a), so that, by (2), p € I. Therefore

Mc¢ C I, and hence the desired inclusion.
coz(a)

(3) = (1). Let a € I and B € R.L with coz(a) = coz(B). Then € Mzoz(ﬂ) = Mioz(a) C I, and hence (1)
follows. O

Remark 3.6. Recall from [1] that if @ € RL be a unit element of RL and we define g € RL by B(p,q) =
a(t (i :xe1(p,q), x #0})), thenp=a~'.

Lemma 3.7. Let o be a unit element of RL. If « € R L, then a™! € R L.
Proof. Since a € R.L, we infer from Definitions 2.1 and 2.3 that there is a countable subset S € R such that

a 45 PutS! := {1 :5€8,s # 0}. We claim that a~! « $'. To do this, suppose that (p,q),u € L(R) and
(p,q) NS! = 7(u) N $L. Since

{%:ser(p,q),siO}ﬂ;‘B:{%:SET(u),siO}ﬂS,

we conclude from Remark 3.6 and Lemma 2.2 that

alpg) = a5 :se(@p.q), s #0})
= a(t'({i:set(u), s #0))
= al(u).

Hence, by Lemma 2.2 and Definition 2.3, a~! 4%, which shows thata™! e R.L. O

Lemma 3.8. Every maximal ideal of R.L, is a z.-ideal.
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Proof. LetIbe a maximalideal of R.L and y € R.L be an element with coz(f) = coz(y), where g € I. It suffices
to show that y € I. Suppose that y ¢ I. Since I is maximal, we infer that there exist & € R.L and ¢ € [ such
that1=1¢ + ay. So

T

coz(y + ay)

coz(y) V (coz(a) A coz(y))

(coz(h) V coz(a)) A (coz() V coz(y))
coz(y) V coz(y)

coz(y) V coz(p).

Therefore coz(y) V coz(B) = T, thus coz(y? + p?) = T. So, by Lemma 3.7, ¢* + p? is invertible in R.L which
is a contradiction. Hence y € I and the proof is complete. [

IANIAIA

Proposition 3.9. For any ideal I in R.L, Anng (1) is a z.-ideal.

Proof. Let @ € R.L, B € Anng 1(I) and coz(e) < coz(B). Thus

By =0 = coz(f) Acoz(y) =L
= coz(a) Acoz(y) =L
= coz(ay) =L
= ay=0,

for every y € I. Therefore o € Anng (I). O
Remark 3.10. Let I be a z.-ideal and a, f € R.L. If a® + g% € I, then a, B € I. For we have
coz(a), coz(p) < coz(a) V coz(B) = coz(a® + ﬁz).
Since I is a z.-ideal, we conclude that o, § € L.
Definition 3.11. Let L be a frame. We define:
Coz[L] := {coz(a) : a € R.L}.

Proposition 3.12. The following statements hold for any frame L.

(1) IfIis a proper ideal of R.L, then Coz.[I] is a proper ideal of Coz.[L].

(2) IfIis a proper ideal of Coz[L], then Coz [I] is a proper ideal of R L.

(3) If M is a maximal ideal of R.L, then Coz.[M] is a maximal ideal of Coz[L].
(4) If M is a maximal ideal of Coz.[L], then Coz: [M] is a maximal ideal of R.L.

Proof. (1). Let I be a proper ideal of R.L and coz(x), coz(f) € Coz[I]. Then
coz(a), coz(B) < coz(a) V coz(f) = coz(a® + ﬁz) € Coz[I].
Thus Coz.[I] is directed. Now, assume coz(w), coz(B) € Coz[I] and coz(a) < coz(B). Then
coz(a) = coz(a) A coz(B) = coz(ap) € Coz[I].

Therefore Coz.[I] is a downset and so Coz.[I] is an ideal of Coz.[L]. If Coz[I] is not proper, there is y € I
such that coz(y) = T. Thus y € [ is invertible, that is a contradiction.

(2). Considera, 8 € Coz. [I], then coz(a), coz(B) € I.Since I is anideal of Coz[L], we have coz(a)Vcoz(B) €
I. Therefore coz(a + ) < coz(a) V coz(f) € I implies that coz(a + ) € I. So a + 8 € Coz. [I]. Now, assume
a € Coz{ [I] and y € R.L. Then, coz(a) € I and coz(y) € Coz. L. Also

coz(a) > coz(a) A coz(y) = coz(ay).



A. A. Estaji et al. / Filomat 32:19 (2018), 67416752 6746

Thus, coz(ay) € I and so, ay € Coz [I]. If Coz: [I] is not proper, there is an invertible element € R.L such
that g € Coz. [I]. Therefore T = coz(f) € I, which is a contradiction.

(3). Let M be a maximal ideal of R.L and | be a proper ideal of Coz.[L] such that Coz.[M] C J. Since M is
maximal, we conclude from Lemma 3.8 that M = Coz; [Coz[M]]. Now

M = Coz{ [Coz[M]] € Coz: []] € Coz[L].

Since M is maximal, we infer that M = Coz; []], so Coz.[M] = J.
(4). Assume a ¢ Coz. [M]. Then coz(a) ¢ M, and so there is b € M such that coz(a) V b = T. Since M is
an ideal of Coz[L], we can choose y € R.L such that coz(y) = b. Then

T = coz(a) V b = coz(a) V coz(y) = coz(a?) v coz(yz) = coz(a?® + 7/2),

which implies that a?+ 7/2 is invertible in R.L, by Lemma 3.7. Therefore for every a € R.L \ Coz: [M], the
ideal < a, Coz_ [M] > is not a proper ideal of R.L. Hence Coz: [M] is a maximal ideal of R.L. O

In [24], Mason shows that if | and | are z-ideals, then I] is a z-ideal precisely when I] = I N J. In RL, just as
in C(X), the product of two z-ideals is always a z-ideal. We study this result in R.L as we show next. To do
this, we utilize the following lemma.

Lemma 3.13. Let & € RL and p3 : L(R) — L(R) by ps(p,q) = (v°,4°). Then
(1) p3 € RIL[R)).
(2) pg = idL(IR)-
3) (aops)’=a.

(4) coz(a o p3) = coz(a).
(®) Ifa € R.L, then a o p3 € R.L.

Proof. (1). We check the conditions (R1)-(R4).
(R1). Let (p, 9), (r,5) € L(R). Then

pa(p,q) A p3(r,5) = (P, 4°) A (P,57)
= (max{p?,*}, min{g?,s°})
= ((max{p, r})?, (min{g, s})*)
= p3(pV1,qN\s).

(R2). Assumep <r < g <s€Q. Then

PS(P/ Q) \ PS(T’IS) = (p3r 113) \ (TSI 53) = (P3/ 53) = p3(Pr S)/

because p® < r* < g® < §3.
(R3). We trivially have

Vips(r,s):p<r<s<gql = VI, :p<r<s<g)
VI, pP <P <8 < g?)
©°, 9

p3(p, 9).

(R4). We have
\Vipsw.g):pge@ = \/1¢*. 4" :pgeQ =T
Thus p3 is a frame map, so p3 € R(L(R)).
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(2). Consider (p, 9) € L(R), then

P3(p,q) = Vips(r1,51) A ps(ra,s2) A pa(rs,s3) 1< 711,51 > . <712,5 > . <r3,53 >C< p,q >}
2 (p,q)-

Thus p3 = id ;(r) by regularity of L.
(3). Let (p, q9) € L(R). Then, we conclude from (2) that

(@0 p3)*(p,q) = aopi(p,q) = acid(p,q) = alp,q).

Hence, (@ 0 p3)® = a.
(4). First, we note that
Coz(p3) = p3(_/ 0) \ p3(0/ _) = (_/ O) \% (0/ _)'

Also, we infer from (3) that a'/® = a o p3. Therefore
coz(a'’®) = coz(a o p3) = a(coz(pz)) = a((—,0) v (0, -)) = coz(a).

(5). Let @ € R.L. Then, by Definitions 2.1 and 2.3, there is a countable subset 5 C R such that
a 4S8 PutS$y = {s : s € ). We show that a o p; €« 5. Assume (p,q),u € L(R) with u = \/;.(a;, by)
and (p,q) N S = () N'Sy. Since (P>, 4°) NS = 1(\/(a},b?)) N5, we conclude from Lemma 2.2 that
a(P?®, ) = a(\/(a},b?)), which follows that a o p3(p,q) = a 0 p3(u). Thus, by Lemma 2.2, a o p; < Sy. Hence
a o p3 € R.L and the proof is complete. [

Proposition 3.14. If P and Q are z.-ideals in R.L, then PQ = PN Q.

Proof. Since PQ € P N Q always holds, we show the reverse inclusion. Let « € P N Q. Suppose that p3
be the same in Lemma 3.13. Then, by Lemma 3.13(3,5), we have a'/® € R.L and a'?a'/® € R.L. Also,
a = (a'?)® = al8a?3 and coz(a) = coz(a!’?). Now, since a« € PN Q and P,Q are z.-ideals, we infer that
a'® € Pand a'® € Q Hence, (¢'/%)? € Q. Therefore a = a'/3(a'/?)? € PQ and proof is complete. [J

Remark 3.15. By [2, Proposition 4], we know that the map

6: Frm(L(R), 0X) — Top(X,R)
P = ¢
such that p < ¢(x) < g if and only x € ¢(p, q) is an isomorphism (also, see [5]).
Lemma 3.16. For any space X, R.(OX) = C.(X).
Proof. Define
Olr.ox) : Re(DX) —  Cu(X)
g — ¢

such that p < ¢(x) < g if and only x € ¢(p, 9).

Consider ¢ € R(DX). Then, by Definitions 2.1 and 2.3, there is a countable subset 5 C R such that
¢ 45. We claim that Im@ C $. Suppose that Ime ¢ S and y € Img \ S. So there is an element x € X such
that y = ¢(x). Since 7 is an isomorphism, there is an element v € £L(R) such that 7(v) = R\ {y} and also
(T gw)) = R. Now, by Definition 2.1, 7(v) N § = ©(T gr)) N S, it follows that

P©) = p(Tzw) = p(R) = Tox = X.

Thus x € X = ¢(v). Therefore ¢(x) € R\ {y}, which is a contradiction with ¢(x) = y. Thus Im¢ C $, which
follows that 6(p) € C.(X).
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Now, we show that 0|g (ox) is onto. Suppose that f € C.(X). Then Imf := § is a countable subset of R.
By Remark 3.15, 0 is onto implies that there is ¢ € R(OX) such that 6(p) = f. We claim that ¢ € R (DX).
Assume (a,0),v € L(R) withv =\ cx(ax, b)) and t(a,b) NS C t(v) N S. Therefore,

xep@b) = a<f(x)<b
= f(x)et@bns
= f(x)er(®)NS.

Since 7(v) is an open subset of R, there is p,q € Q such that
fx)etp,q)NSCt(®)NS

and hence x € ¢(p,q) < @(v). Thus x € ¢(v), so ¢(a,b) € (). Now, by Lemma 2.2 and Definition 2.3,
@ € R(OX). Therefore, by Remark 3.15, Olg (ox) is an isomorphism and hence R.(0X) = C.(X). O

Remark 3.17. Recall from [9] that we denote by t; the ring isomorphism
tt:RBL - R'L  givenby  tr(a) = jr(a),

the inverse of which we will denote by ¢ — ¢P. It is also important to note that \/ a#(p, q) = a(p, g), for all
p,q€Q.

Lemma 3.18. For any frame L, RIL = R.BL, where R:L = R.LNR'L

Proof. We define
tLl‘RcﬁL : RCﬂL — R:L
a ]'L ow

Consider a € R.SL. So, by Definitions 2.1 and 2.3, there is a countable subset 5 € R such that @ 4 5. Assume
(p,9),ve LMR),and 7(p,q) N'S = 1(v) N S. Then we conclude from Lemma 2.2 that

ap,q) =a@®) = jroalp,q) = jLoa)
= trlrp(a)(p, q9) = telrpr(a)(©)

Thus, by Lemma 2.2, t;(a) « 5.
Now, suppose that @ € RL. Then there is a countable subset 5 C R such that « 4 5. Let (p, ), v € L(R)
and 7(p,q) NS = 1(v) N S. Then we conclude from Lemma 2.2 that

alp,q) =a@) = Vaf(p,q) =V al(v)
= df(p,q) = aP(v). (since BL is compact)

Therefore of = ;g pr(ex) € RBL. Hence t1(af) = \/ af = o, which shows that t; |z g is onto. Consequently,
by Remark 3.17, t;|g gr is an isomorphism. [J

We shall study the relation between z.-ideal and prime ideal minimal over an ideal. For this, we recall that
in [16, 1D] the following results play a useful role in the context of C(X). It is shown that the pointfree
version of this results is also true (see [19]). The following results are the counterpart for R.L.

Lemma 3.19. Let o, € R.L. If la| < |Bl7 for some q > 1, then « is a multiple of B. In particular, if |a| < ||, then
whenever o is defined for every q > 1, a7 is a multiple of B.
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Proof. Multiply by ﬁa\‘(ﬁm)q both sides of the stated inequality to obtain

1 Bl 1

+|a|'(1+|/3|)'

a 1 1
( ) <
1+1al "1+1p| 1

Since of each of the factors in this inequality is in R}L, and by Corollaries 3.16 and 3.18, R’L is isomorphic to

_a
1+|a|

is a multiple of L This

a C¢(X) via an f-ring isomorphism, we deduce from [15, Corollary 2.5], that Tl

implies a is a multiple of g, as desired. [

Proposition 3.20. Let Q be an ideal of R.L, and a € R.L. IF M C +/Q, then M{ . € Q.

coz(a) —

Proof. Letpe M\ < VQ. Without loss of generality, we assume that || < 1. We define y = £ 278 "
Hence

coz(y) = V, coz(Z‘”.‘Brl?)
= V,(coz(2™) A coz(B+))
=V, coz(pr)
= coz(fB).
Since coz(y) = coz(B) and Mioz(a) is a z,-ideal, then y € Mioz(a). Hence y € v/Q and hence there is m € N

such that " € Q. Furthermore, since 2‘”.ﬁ% <y, for every n € N, we have 2‘2’”.ﬁﬁ < y which implies
that (272" f27)" < " and hence 272" g2 < ™. Therefore, by Lemma 3.19, there exists 7 € R.L such that
p = t.y™. This shows that f € Q,and hence M, € Q. O

Corollary 3.21. An ideal of R.L is a z.-ideal if and only if its radical is a z.-ideal.

Proof. (=) :1Itis evident.

(<) : Let Q be an ideal of R.L. Suppose that for a, € R.L, a € Q and coz(a) = coz(f). Since VQ is a
z-ideal, B € VQ. By Proposition 3.20, M¢ vQ and hence M, € Q-Since g€ M{_ ) € Q, it implies
that g € Q. Therefore Q is a z.-ideal. [J

on(p) <

Corollary 3.22. Let Q be an ideal of R.L. Then Q is a z.-ideal if and only if every prime ideal minimal over it is a
z.-ideal.

Proof. Suppose every prime ideal minimal over Q is a z.-ideal. Then, by Corollary 3.21, it is sufficient to
show that Q is a z.-ideal. We know that +/Q is the intersection of prime ideals minimal over Q . Hence
4/Q is an intersection of z.-ideals, thus it is a z.-ideal.

Conversely, let Q be a z.-ideal and P € Min(Q). Consider «,f € R.L with coz(a) = coz(f), a« € P and
p ¢ P. We put

Sz(RcL\P)U{ya”:yeRCL\P, neN}.

It is clear that S is a multiplicatively closed set of R.L. If ¢ € S N Q, then there are n € N and y € R.L \ P
such that ¢ = ya" € Q C P. We have

coz(p) = coz(ya") = coz(y) A coz(a) = coz(y) A coz(B) = coz(yp).

From Q is a z.-ideal and ¢ € Q, we conclude that y € Q C P, which follows that y € P or § € P. That
is a contradiction. Therefore SN Q = 0. By [28, Theorem 3.44], there exists a prime ideal P’ € R.L such
that SN P’ = Pand Q € P'. Now, if ¢ € P/, then ¢ ¢ S, it implies that ¢ € P. Thus Q € P’ C P and since
P € Min(Q), we infer that P = P. Wehavea € P = P’ and a € S, and so @« € P’ and a ¢ P’, which is a
contradiction. [J

Now, we discuss on the z.-ideals of R.L and contraction of z-ideals of RL.
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Proposition 3.23. An ideal | in R L is a z.-ideal if and only if it is a contraction of a z-ideal in RL.
Proof. Suppose that | is a z.-ideal of R.L. Put
I={a€RL:coz(a) < coz(f), forsome € J}.

Clearly, I is a z-ideal in RL and | C I°. On the other hand, if @ € I, there exists § € | with coz(a) < coz(f).
Since ] is z.-ideal, we conclude that a € J, as desired.
Conversely, let | = I, where [ is a z-ideal in RL. Then | is clearly a z.-ideal in R.L. I

Corollary 3.24. An ideal P in R.L is a prime z.-ideal if and only if it is a contraction of a prime z-ideal in RL.

Proof. Let P be a prime z.-ideal in R.L. Consider S = R.L \ P as a multiplicatively closed set in RL. By
Proposition 3.23, P is a contraction of a z-ideal in RL, I say. Clearly, I NS = 0, so there is a prime ideal
Q € RL minimal over I with Q N S = (). Now, from [25] we have that Q is a z-ideal in RL. It is evident that
P =1° C Q° C P. Therefore P = (J, as desired. The converse is evident. [J

Corollary 3.25. Every maximal ideal N of R.L is a contraction of a maximal ideal in RL.

Proof. Let N be a maximal ideal in R.L. By Lemma 3.8, N is a z.-ideal. Hence, from Proposition 3.23, we
infer that N = I°, where [ is a z-ideal in RL. But there is a maximal ideal M in RL containing I. Therefore
N = I° € M° implies that N = M and we are done. [J

We shall see the relation between z.-ideals in R.L and z-ideal 4 1a Mason.
For a € R.L, we put M(a) := {M € Max(R.L) : a € M}.

Lemma 3.26. For a,f € R.L, the following statements are equivalent:

(1) coz(p) < coz(a).
(2) Me c M

coz(B) = coz(a)”

(3) M. () € M (B).

Proof. (1) = (2). Itis evident.

(2) = (3). Suppose that M € M («). Then, by Proposition 3.12, Coz.[M] is a maximal ideal of Coz.[L] such
that coz(a) € Coz.[M]. By hypothesis, coz(B) € Coz[M]. So, by Proposition 3.12, § € Coz. [Coz[M]] = M.
Thus M € Mi.(B). Hence M. (ax) € Mi.(B).

(3) = (1). By Corollary 3.25, we have

Me(a) = (M°: M € M(a)} and M(B) = {M* : M € M(B)}.

Suppose that M € Mi(a). Then, by (3), we have M € M, (a) € M.(B), which follows that M € M(B). Thus
M(a) € M(B), and so B € NM(B) € NM(a). Now, from [8, Lemma 3.7] and [23, Lemma 3.1], we have
B e MNM(a) =1{p € RL: coz(p) < coz(a)}. Therefore coz(f) < coz(a). O

Proposition 3.27. An ideal I in R.L is a z.-ideal if and only if it is a z-ideal 4 la Mason.

Proof. Let I be a z.-ideal and suppose that a, § € R.L such that 9i(a) € M(B) and a € I. Since Mi.(a) € Mi.(B),
we conclude by Lemma 3.26 that coz(B) < coz(a), which follows that 8 € I, because I is a z.-ideal. Therefore
[ is a z-ideal 4 la Mason.

Conversely, let I be a z-ideal & la Mason. Suppose that coz(f) < coz(a) and o € I. Then, by Lemma
3.26, M.(a) € M.(B), which follows that M(a) € NM(B). Therefore, we have § € I because I is a z-ideal 4 la
Mason. O
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4. The relation between z.-ideals and prime ideals

In this section, we study the relation between prime ideals and z.-ideals in the ring R.L. We begin by
some evident instances.

Lemma 4.1. Let I be a proper ideal and P be a prime ideal in R.L. If N P is a z.-ideal and I € P, then P is a z.-ideal.

Proof. Let coz(a) = coz(B) where a € P and € R.L. Since I € P, thereis y € I\ P. But coz(ay) = coz(fy) and
ay € PN 1. Since PN1is a z.-ideal, it follows that By € PN 1. So By € P, we infer that § € P (since P is a prime
ideal). Hence P is a z.-ideal. (O

Corollary 4.2. Let I be an ideal and P be a prime ideal in R.L such that P N1 is a z.-ideal. Then I or P is a z.-ideal.

Proof. 1f I € P, then we conclude from Lemma 4.1 that P is a z.-ideal. If I C P, then we have INP = . Hence,
by assumptions, I is a z.-ideal. [

Corollary 4.3. Let P and Q be two prime ideals in R.L that are not in a chain. If PN Q is a z.-ideal, then either P or
Q are z.-ideals.

Proof. Let coz(a) = coz(B) where a € P and € R.L. As P and Q are not the chain, so Q € Pand P € Q.
Since Q € P, there is y € Q \ P. But coz(ay) = coz(fy), ay € PN Q. Since P N Q is a z.-ideal, it follows that
By € PN Q. So By € P, we infer that § € P (since P is prime). Hence P is a z.-ideal. Similarly to prove that Q
isaz.-ideal. [

It is well known in the classical situation that a z-ideal of C(X) is prime if and only if it contains a prime
ideal (see [16, Theorem 2.9]). It is shown that the pointfree version of this result is also true (see [6]). If we
apply the proof of [23, Lemma 4.8] word-for-word, we obtain the following for R.L.

Proposition 4.4. Let I be a proper z.-ideal in R L. The following statements are equivalent:

(1) Iisa prime ideal in R L.

(2) I contains a prime ideal in R.L.

() Foralla,peR.L,ifap =0, thena € Lor p € 1.

(4) Given a € R.L, there exists a cozero element a € Coz.[I] such that

a(0,-) <aora(-,0)<a.

Corollary 4.5. Let I be a proper ideal of Coz.[L] such that for every a, p € R.L, coz(a) A coz(f) = L implies that
coz(a) € I or coz(B) € 1. Then the following statements hold:

(1) Coz: [I]is a prime z.-ideal of R.L.
(2) Iis a prime ideal of Coz[L].

Proof. (1). Let a, p € R.L and af = 0. Then coz(a) A coz(B) = L and, by assumption, coz(a) € I or coz(p) € I.
This means that @ € Coz; [I] or B € Coz. [I]. Since Coz; [I] is a z.-ideal of R.L, by Proposition 4.4, Coz: [I]
is a prime z.-ideal of R.L.

(2). Let a,B € R.L and coz(aB) = coz(a) A coz(B) € I. Then ap € Coz. [I] and, by (1), a € Coz.[I] or
B € Coz; [I]. Hence coz(a) € I or coz(B) € I. Thus I is a prime ideal of Coz.[L]. O

In proof of Proposition 4.6, we use this fact: Let |, ]’ be two ideals. If ] N ]’ is prime then either | C |’ or
J' € J. About the following proposition, we must say that it was established by Dube in [7] in the context
of RL.

Proposition 4.6. Every prime ideal of R L is included in a unique maximal ideal.

Proof. We know that every prime ideal is included in at least one maximal ideal. Let M and M’ be two
distinct maximal ideals. Then, by Lemma 3.8 and Remark 3.3, M N M’ is a z.-ideal. But it is not prime, by
Proposition 4.4, M N M’ contains no prime ideal. [
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A commutative ring with identity is called Gelfand ring [20] if every prime ideal is contained in a unique
maximal ideal. In [7], Dube shows that RL is a Gelfand ring. As a result of Proposition 4.6, we have the
following.

Corollary 4.7. R.L is a Gelfand ring.
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