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Abstract. Let C : X→ X be a bounded linear operator on a Banach space X over the field F(=R or C), and
K : [0,T0) → F a locally integrable function for some 0 < T0 ≤ ∞. Under some suitable assumptions, we
deduce some relationship between the generation of a local (or an exponentially bounded) K-convoluted(

C 0
0 C

)
-semigroup on X × X with subgenerator (resp., the generator)

(
0 I
B A

)
and one of the following

cases: (i) the well-posedness of a complete second-order abstract Cauchy problem ACP(A,B, f , x, y): w′′(t) =
Aw′(t) + Bw(t) + f (t) for a.e. t ∈ (0,T0) with w(0) = x and w′(0) = y; (ii) a Miyadera-Feller-Phillips-Hille-
Yosida type condition; (iii) B is a subgenerator (resp., the generator) of a locally Lipschitz continuous local
α-times integrated C-cosine function on X for which A may not be bounded; (iv) A is a subgenerator (resp.,
the generator) of a local α-times integrated C-semigroup on X for which B may not be bounded.

1. Introduction

Let X be a non-trivial Banach space over the field F(=R or C) with norm ‖ · ‖, and let L(X) denote the
family of all bounded linear operators from X into itself. For each 0 < T0 ≤ ∞, we consider the following
two abstract Cauchy problems:

ACP(A, f , x)
{

u′(t) = Au(t) + f (t) for a.e. t ∈ (0,T0)
u(0) = x

and

ACP(A,B, f , x, y)
{

w′′(t) = Aw′(t) + Bw(t) + f (t) for a.e. t ∈ (0,T0)
w(0) = x,w′(0) = y,

where x, y ∈ X, A : D(A) ⊂ X→ X and B : D(B) ⊂ X→ X are closed linear operators, and f ∈ L1
loc([0,T0),X)

(the family of all locally integrable functions from [0,T0) into X). A function u is called a (strong) solution
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of ACP(A, f , x) if u ∈ C([0,T0),X) satisfies ACP(A, f , x) (that is u(0) = x and for a.e. t ∈ (0,T0), u(t) is
differentiable and u(t) ∈ D(A), and u′(t)=Au(t)+ f (t) for a.e. t ∈ (0,T0)). For each C ∈ L(X) and K ∈
L1

loc([0,T0),F), a subfamily S(·)(= {S(t) | 0 ≤ t < T0}) of L(X) is called a local K-convoluted C-semigroup on X
if it is strongly continuous, S(·)C = CS(·), and satisfies

S(t)S(s)x = [
∫ t+s

0
−

∫ t

0
−

∫ s

0
]K(t + s − r)S(r)Cxdr (1)

for all 0 ≤ t, s, t+s < T0 and x ∈ X (see [10,11,15]). In particular, S(·) is called a local (0-times integrated) C-
semigroup on X if K = j−1 (the Dirac measure at 0) or equivalently, S(·) is strongly continuous, S(·)C = CS(·),
and satisfies

S(t)S(s)x = S(t + s)Cx for all 0 ≤ t, s, t + s < T0 and x ∈ X (2)

(see [2,5,23,33,36-37]). Moreover, we say that S(·) is nondegenerate if x = 0 whenever S(t)x = 0 for all
0 ≤ t < T0 or exponentially bounded if T0 = ∞ and there exist M, ω > 0 such that ‖S(t)‖ ≤ Meωt for all
t ≥ 0. The nondegeneracy of a local K-convoluted C-semigroup S(·) on X implies that S(0) = C if K = j−1,
and S(0) = 0 (zero operator on X) otherwise, and the (integral) generator A : D(A) ⊂ X → X of S(·) is
a closed linear operator in X defined by D(A) ={x ∈ X |S(·)x − K0(·)Cx=S̃(·)yx on [0,T0) for some yx ∈ X}
and Ax = yx for all x ∈ D(A). Here Kβ(t) = K ∗ jβ(t) =

∫ t

0 K(t − s) jβ(s)ds for β > −1 with jβ(t) = tβ
Γ(β+1) , Γ(·)

denotes the Gamma function, and S̃(t)z =
∫ t

0 S(s)zds. In general, a local K-convoluted C-semigroup on X
is called a K-convoluted C-semigroup on X if T0 = ∞ (see [10,11]); a (local) K-convoluted C-semigroup
on X is called a (local) K-convoluted semigroup on X if C = I (identity operator on X) or a (local) α-
times integrated C-semigroup on X if K = jα−1 for some α ≥ 0 (see [1,2,8,12,16, 21-25,27-32,36,38-39,42]).
It is known that the theory of local α-times integrated C-semigroup is related to another family in L(X)
which is called a local α-times integrated C-cosine function (see [1,10,12,17,22,39]). Perturbation of local
K-convoluted C-semigroups have been extensively studied by many authors (see [1,13-14,18-19,25,38-39 for
the case K = jα−1 for some α ≥ 0, and [10] for the general case). Some basic properites of a nondegenerate
(local) K-convoluted C-semigroup on X have been established by many authors in [2,5,33,36] for the case
K = jα−1 with α = 0, in [16,23] with α > 0 is arbitrary, and in [10,15] for the general case. In section 2, we
will apply the conclusion of [15, Theorem 3.7] to show that T is a subgenerator of a local K-convoluted
C-semigroup on X×X if and only if for each (x, y) ∈ DACP(A,B,K0CBx + KCy, 0, 0) has a unique solution w
which depends contiouously differentiable on (x, y), and satisfies Bw + Aw′ ∈ C([0,T0),X) (see Theorem 2.3
below). Here T =

(
0 I
B A

)
,C =

(
C 0
0 C

)
, andD is a fixed subspace of D(B) × D(A) that is dense in X × X.

We then show that T is a subgenerator of an exponentially bounded K-convoluted C-semigroup on X × X
if and only if there exist M, ω > 0 so that λ ∈ ρC(A,B) and

‖[K̂(λ)λ(λ2
− λA − B)

−1
C]

(k)
‖, ‖[K̂(λ)(λ2 − λA − B)−1CBD(B)∩D(A)]

(k)
‖ ≤

Mk!
(λ − ω)k+1 (3)

for all λ > ω and k ∈ N ∪ {0} if and only if there exist M, ω > 0 so that for each pair x, y ∈ D(B) ∩ D(A)
ACP(A,B,K0CBx + KCy, 0, 0) has a unique solution w with ‖w(t)‖, ‖w′(t)‖ ≤ Meωt(‖x‖ + ‖y‖) for all t ≥ 0 and
Bw + Aw′ ∈ C([0,∞),X) (see Corollary 2.4 and Theorem 2.7 below). Here ρC(A,B)={λ ∈ F |λ2

− λA − B
is injective,R(C) ⊂ R(λ2

− λA − B), and (λ2
− λA − B)−1C ∈ L(X)}. When ρ(T ) (resolvent set of T ) is

nonempty, we can apply a modification of [15, Corollary 3.6] (see Theorem 2.2 below) to obtain that T is
the generator of a local K-convoluted C-semigroup on X × X if and only if for each (x, y) ∈ D(B) × D(A)
ACP(A,B,K0CBx + KCy, 0, 0) has a unique solution w with Bw + Aw′ ∈ C([0,T0),X) (see Theorem 2.9 below).
In section 3, we will apply the modifications of [13, Theorems 2.10, 2.12 and Theorems 3.1-3.2] concerning
the bounded and unbounded perturbations of a local α-times integrated C-semigroup on X with or without
the local Lipschitz continuity (see Theorems 3.1-3.2 and 3.15-3.16 below) and a basic property of local
α-times integrated C-cosine function (see [10, Theorem 2.1.11]) to obtain two new equivalence conditions
concerning the generations of a local α-times integrated C-semigroup on X × X with subgenerator (resp.,
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the generator)
(

0 I
B A

)
and either a locally Lipschitz continuous local α-times integrated C-cosine function

on X with subgenerator (resp., the generator) B for which A may not be bounded (see Theorems 3.4-3.5
and 3.7-3.8 below) or a local α-times integrated C-semigroup on X with subgenerator (resp., the generator)
A for which B may not be bounded (see Theorems 3.12-3.13 and 3.17-3.18 below). Under some suitable
assumptions, which can be used to show those preceding equivalence conditions which are equivalent to B
is the generator of a locally Lipschitz continuous local α-times integrated C-cosine function on X for which
A may not be bounded (see Corollaries 3.9 and 3.10 below), and are also equivalent to A is the generator
of a local α-times integrated C-semigroup on X for which B may not be bounded (see Corollaries 3.19 and
3.20 below).

2. Abstract Cauchy Problems

In this section, we consider the abstract Cauchy problem ACP(A,B, f , x, y) which were extensively
studied for the case f = 0 (see [3,4]). A function u is called a (strong) solution of ACP(A,B, f , x, y) if
u ∈ C1([0,T0),X) satisfies ACP(A,B, f , x, y) (that is u(0) = x, u′(0) = y, and for a.e. t ∈ (0,T0), u′(t) is
differentiable and u′(t) ∈ D(A), and u′′(t)=Au′(t)+Bu(t)+ f (t) for a.e. t ∈ (0,T0)). In the following, we always
assume that C ∈ L(X) is injective, K0 a kernel on [0,T0), and both A and B are biclosed linear operators in
X (that is x ∈ D(A), y ∈ D(B) and Ax + By = z whenever xn ∈ D(A), yn ∈ D(B) with xn → x, yn → y and
Axn + Byn → z), CA ⊂ AC and CB ⊂ BC.
Lemma 2.1. Assume that D is a subspace of D(B) × D(A). Then for each (x, y) ∈ D ACP(T ,KC

(
x
y

)
,
(

0
0

)
)

has a unique solution
(

u
v

)
in C([0,T0), [T ]) if and only if for each (x, y) ∈ D ACP(A,B,K0CBx + KCy, 0, 0) has a

unique solution w with Bw + Aw′ ∈ C([0,T0),X). In this case, w = j0 ∗ v. In particular, w ∈ C1([0,T0), [D(A)]) ∩
C([0,T0), [D(B)]) if either A or B is bounded. Here T =

(
0 I
B A

)
and C =

(
C 0
0 C

)
.

Proof. Since the biclosedness of A and B with CA ⊂ AC and CB ⊂ BC implies that T is a closed linear
operator in X × X with CT ⊂ TC. Suppose that (x, y) ∈ D and

(
u
v

)
denotes the unique solution of

ACP(T ,KC
(

x
y

)
,
(

0
0

)
) in C([0,T0), [T ]). Then v and Bu + Av are continuous on [0,T0), and u′ = v + KCx and

v′ = Bu + Av + KCy a.e. on [0,T0), so that u = j0 ∗ v + K0Cx on [0,T0), j0 ∗ v(t) ∈ D(B) for all t ∈ [0,T0), and
v′ = Bj0 ∗ v + K0CBx + Av + KCy a.e. on [0,T0). Hence, w = j0 ∗ v is a solution of ACP(A,B,K0CBx + KCy, 0, 0)
with Bw + Aw′ ∈ C([0,T0),X). The uniqueness of solutions of ACP(A,B,K0CBx + KCy, 0, 0) follows from
the fact that

(
0
0

)
is the unique solution of ACP(T ,

(
0
0

)
,
(

0
0

)
) in C([0,T0), [T ]). Conversely, suppose that

(x, y) ∈ D and w denotes the unique solution of ACP(A,B,K0CBx + KCy, 0, 0) with Bw + Aw′ ∈ C([0,T0),X).
We set u = w + K0Cx and v = w′ on [0,T0). Then

(
u(0)
v(0)

)
=

(
0
0

)
,
(

u(t)
v(t)

)
∈ D(B) × D(A) = D(T ) for all

t ∈ [0,T0) and T
(

u
v

)
is continuous on [0,T0), and for a.e. t ∈ (0,T0)

(
u(t)
v(t)

)
is differentiable and

(
u′(t)
v′(t)

)
=(

w′(t) + K(t)Cx
w′′(t)

)
=

(
w′(t) + K(t)Cx

Aw′(t) + Bw(t) + K0(t)CBx + K(t)Cy

)
=
(

v(t) + K(t)Cx
Av(t) + Bu(t) + K(t)Cy

)
=T

(
u(t)
v(t)

)
+ K(t)C

(
x
y

)
, and so

(
u
v

)
is a

solution of ACP(T ,KC
(

x
y

)
,
(

0
0

)
) in C([0,T0), [T ]). The uniqueness of solutions of ACP(T ,KC

(
x
y

)
,
(

0
0

)
)

in C([0,T0), [T ]) follows from the fact that 0 is the unique solution of ACP(A,B, 0, 0, 0).

By slightly modifying the proof of [15, Theorem 3.7], the next theorem concerning the well-posedness
of ACP(A, f , x) is attained, and so its proof is omitted.
Theorem 2.2. Assume that D is dense in X for some subspace D of D(A). Then the following are equivalent :

(i) A is a subgenerator of a nondegenerate local K-convoluted C-semigroup S(·) on X;
(ii) for each x ∈ D ACP(A,KCx, 0) has a unique solution u(·; Cx) in

C([0,T0), [D(A)]) which depends continuously on x (that is {u(·; Cxn)}∞n=1 converges uniformly on compact
subsets of [0,T0) whenever {xn}

∞

n=1 is a Cauchy sequence in (D, ‖ · ‖)).
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In this case, u(·,Cx) = S(·)x.
Just as an application of Theorem 2.2, the next theorem concerning the well-posedness of ACP(A,B, f , x, y)

is also attained.
Theorem 2.3. Assume thatD is dense in X×X for some subspaceD of D(B)×D(A). Then T is a subgenerator of a
local K-convoluted C-semigroup S(·) on X ×X if and only if for each (x, y) ∈ D ACP(A,B,K0CBx + KCy, 0, 0) has a
unique solution w which depends continuously differentiable on (x, y) (that is {wn(·)}∞n=1 and {w′n(·)}∞n=1 both converge
uniformly on compact subsets of [0,T0) whenever {xn}

∞

n=1 is a Cauchy sequence in (D(B), ‖ · ‖) and {yn}
∞

n=1 a Cauchy
sequence in (D(A), ‖ · ‖)), and Bw + Aw′ ∈ C([0,T0),X). Here T =

(
0 I
B A

)
,C =

(
C 0
0 C

)
, and wn denotes the

unique solution of ACP(A,B,K0CBxn + KCyn, 0, 0).

Proof. Since for each (x, y) ∈ D
(

u
v

)
is the unique solution of ACP(T ,KC

(
x
y

)
,
(

0
0

)
) in C([0,T0), [T ]) if

and only if for each (x, y) ∈ D u = w + K0Cx and v = w′ on [0,T0), and w is the unique solution of
ACP(A,B,K0CBx + KCy, 0, 0) with Bw + Aw′ ∈ C([0,T0),X). By Theorem 2.2, we also have

(
u
v

)
= S(·)

(
x
y

)
.

Consequently, T is a subgenerator of a local K-convoluted C-semigroup on X × X if and only if for each
(x, y) ∈ D ACP(A,B,K0CBx + KCy, 0, 0) has a unique solution w which depends continuously differentiable
on (x, y).

Corollary 2.4. Assume that D is dense in X × X for some subspace D of D(B) × D(A), and K0 exponentially
bounded. Then T is a subgenerator of an exponentially bounded K-convoluted C-semigroup on X × X if and only
if there exist M, ω > 0 such that for each (x, y) ∈ D ACP(A,B,K0CBx + KCy, 0, 0) has a unique solution w with
‖w(t)‖, ‖w′(t)‖ ≤Meωt(‖x‖ + ‖y‖) for all t ≥ 0 and Bw + Aw′ ∈ C([0,∞),X).
Lemma 2.5. (see [20])Assume that λ ∈ ρC(T ) (C-resolvent set of T ). Then

(i) λ ∈ ρC(A,B);
(ii) (λ2

−λA−B)−1C(λ−AD(B)∩D(A)) and (λ2
−λA−B)−1CBD(B)∩D(A) are closable, and their closures are bounded

and have the same domain;
(iii)

(λ − T )−1
C =

(
(λ2 − λA − B)−1C(λ − AD(B)∩D(A)) (λ2

− λA − B)−1C
(λ2 − λA − B)−1CBD(B)∩D(A) λ(λ2

− λA − B)−1C

)
on D((λ2 − λA − B)−1C(λ − AD(B)∩D(A))) × X, and on X × X if D(B) ∩D(A) is dense in X.

Lemma 2.6.(see [20])Assume that λ ∈ ρC(A,B). Then

(i) λ − T is injective;
(ii) (λ2

−λA−B)−1C(λ−AD(B)∩D(A)) and (λ2
−λA−B)−1CBD(B)∩D(A) are closable and their closures have the same

domain, and

(λ − T )
(

(λ2 − λA − B)−1C(λ − AD(B)∩D(A)) (λ2
− λA − B)−1C

(λ2 − λA − B)−1CBD(B)∩D(A) λ(λ2
− λA − B)−1C

)
= C

on D((λ2 − λA − B)−1C(λ − AD(B)∩D(A))) × X;
(iii) λ ∈ ρC(T ) and

(λ − T )−1
C =

(
(λ2 − λA − B)−1C(λ − AD(B)∩D(A)) (λ2

− λA − B)−1C
(λ2 − λA − B)−1CBD(B)∩D(A) λ(λ2

− λA − B)−1C

)
,

if (λ2 − λA − B)−1C(λ − AD(B)∩D(A)) ∈ L(X).

In particular, the conclusion of (iii) holds when A or B in L(X), or D(B) ∩ D(A) is dense in X with AB = BA on
D(B) ∩D(A).

Since K̂(λ)(λ2 − λA − B)−1C(λ − AD(B)∩D(A)) =[K̂(λ)(λ2 − λA − B)−1CBD(B)∩D(A)] 1
λ + K̂0(λ)C and K̂(λ)(λ2

−

λA−B)−1C=[K̂(λ)λ(λ2
−λA−B)−1C] 1

λ , we can combine Lemma 2.5 with Lemma 2.6 and [10, Theorem 2.2.5]
to obtain the next new Miyadera-Feller-Phillips-Hille-Yosida type theorem concerning the generation of an
exponentially bounded K-convoluted C-semigroup on X × X.
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Theorem 2.7. Assume that D(B)∩D(A) is dense in X, K0 exponentially bounded, and K̂(λ) , 0 for λ large enough.
Then T is a subgenerator of an exponentially bounded K-convoluted C-semigroup on X × X if and only if there exist
M, ω > 0 such that λ ∈ ρC(A,B) and (3) holds for all λ > ω and k ∈N ∪ {0}.

Just as a result in [26, Theorem 2] for the case of C0-semigroup and a result in [20, Corollary 2.10] for the
case of local C-semigroup, we can combine Corollary 2.4 with Theorem 2.7 to obtain the next corollary.
Corollary 2.8. Assume that D(B)∩D(A) is dense in X, K0 exponentially bounded, and K̂(λ) , 0 for λ large enough.
Then the following ststements are equivalent:

(i) T is a subgenerator of an exponentially bounded K-convoluted C-semigroup on X × X;
(ii) There exist M, ω > 0 such that λ ∈ ρC(A,B) and (3) holds for all λ > ω and k ∈N ∪ {0};

(iii) There exist M, ω > 0 such that for each pair x, y ∈ D(B) ∩ D(A) ACP(A,B,K0CBx + KCy, 0, 0) has a unique
solution w with ‖w(t)‖, ‖w′(t)‖ ≤Meωt(‖x‖ + ‖y‖) for all t ≥ 0 and Bw + Aw′ ∈ C([0,∞),X).

Combining Lemma 2.1 with [15, Corollary 3.6], the next theorem is also attained.
Theorem 2.9. Assume that ρ(T ) (resolvent set of T ) is nonempty. Then T is the generator of a local K-convoluted
C-semigroup on X × X if and only if for each (x, y) ∈ D(B) × D(A) ACP(A,B,K0CBx + KCy, 0, 0) has a unique
solution w with Bw + Aw′ ∈ C([0,T0),X).

3. Generation of Local α-Times Integrated C-Semigroups and C-Cosine Functions on X

Just as in the proofs of [18, Theorem 2.7 and Theorem 2.9] , we can modify the proofs of [14, Theorem
2.12 and Theorem 3.2] to obtain next two theorems, and so their proofs are omitted.
Theorem 3.1. Let B be a subgenerator (resp., the generator) of a locally Lipschitz continuous nondegenerate local
α-times integrated C-semigroup on X for some α ≥ 1. Assume that A is a bounded linear operator from D(B) into
R(C) ⊂ X. Then A + B is a subgenerator (resp., the generator) of a locally Lipschitz continuous nondegenerate local
α-times integrated C-semigroup on X, if either α = 1 or α > 1 with C−1Ax ∈ D(Bl−1) for all x ∈ D(B). Here l denotes
the smallest nonnegative integer that is larger than or equal to α.
Theorem 3.2. Let B be a subgenerator (resp., the generator) of a locally Lipschitz continuous nondegenerate local
α-times integrated C-semigroup on X for some α ≥ 1. Assume that A is a bounded linear operator from [D(B)] into
R(C) such that A + B is a closed linear operator. Then A + B is a subgenerator (resp., the generator) of a locally
Lipschitz continuous nondegenerate local α-times integrated C-semigroup on X, if C−1Ax ∈ D(Bl) for all x ∈ D(B).
Here l denotes the smallest nonnegative integer that is larger than or equal to α.
Lemma 3.3. Let A be a bounded linear operator from X into R(C) or a bounded linear operator from [D(B)] into
R(C), v =

(
B
A

)
and y ∈ D(A). Assume that y1 = C−1Ay and a1 =

(
0
y1

)
. Then

(i) a1 ∈ D(T ) and T a1 =
(

y1
y2

)
with y2 = v · a1;

(ii) For each n ∈ N with n ≥ 2, we have a1 ∈ D(T n) if and only if ak =
(

yk−1
yk

)
∈ D(T ) and T ak = ak+1 for all

2 ≤ k ≤ n if and only if y1, yk = v · ak−1 ∈ D(B) for all 2 ≤ k ≤ n − 1.

Theorem 3.4. Let T be a subgenerator (resp., the generator) of a local α-times integrated C-semigroup on X × X
for some α ≥ 1. Assume that A is a bounded linear operator from X into R(C). Then B is a subgenerator (resp., the
generator) of a locally Lipschitz continuous local α-times integrated C-cosine function on X, if for each y ∈ X we have
yk ∈ D(B) for all 1 ≤ k ≤ l − 1. Here yk is given as in Lemma 3.3 and l denotes the smallest nonnegative integer that
is larger than or equal to α.

Proof. Suppose that
(

0 I
B A

)
is a subgenerator (resp., the generator) of a local α-times integrated C-

semigroup on X × X. Then it is also a subgenerator (resp., the generator) of a locally Lipschitz continuous
local (α+ 1)-times integrated C-semigroup on X×X, and so

(
0 I
B 0

)
is a subgenerator (resp., the generator)

of a locally Lipschitz continuous local (α + 1)-times integrated C-semigroup on X × X. Hence, B is a sub-
generator (resp., the generator) of a locally Lipschitz continuous local α-times integrated C-cosine function
on X.
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Theorem 3.5. Let T be a subgenerator (resp., the generator) of a local α-times integrated C-semigroup on X ×X for
some α ≥ 1. Assume that A is a bounded linear operator from [D(B)] into R(C). Then B is a subgenerator (resp., the
generator) of a locally Lipschitz continuous local α-times integrated C-cosine function on X, if for each y ∈ D(B) we
have yk ∈ D(B) for all 1 ≤ k ≤ l. Here yk is given as in Lemma 3.3 and l denotes the smallest nonnegative integer
that is larger than or equal to α.
Lemma 3.6. Let A be a bounded linear operator from D(B) into R(C) or a bounded linear operator from [D(B)] into
R(C), S =

(
0 I
B 0

)
, and y ∈ D(A). Assume that y1 = C−1Ay and a1 =

(
0
y1

)
. Then

(i) a1 ∈ D(S) and Sa1 =
(

y1
0

)
;

(ii) For each m ∈N with m ≥ 2, we have a1 ∈ D(S2m) if and only if y1 ∈ D(Bm) if and only if a1 ∈ D(S2m+1).

Theorem 3.7. Let B be a subgenerator (resp., the generator) of a locally Lipschitz continuous local α-times integrated
C-cosine function on X for some α ≥ 1. Assume that D(B) is dense in X and A is a bounded linear operator from X
into R(C). Then T is a subgenerator (resp., the generator) of a local α-times integrated C-semigroup on X × X, if
R(C−1A) ⊂ D(Bm). Here m denotes the smallest nonnegative integer that is larger than or equal to α

2 .

Proof. Suppose that D(B) is dense in X and B a subgenerator (resp., the generator) of a locally Lipschitz
continuous local α-times integrated C-cosine function on X. Then

(
0 I
B 0

)
is a subgenerator (resp., the

generator) of a locally Lipschitz continuous local (α + 1)-times integrated C-semigroup on X × X, and
so

(
0 I
B A

)
is a subgenerator (resp., the generator) of a locally Lipschitz continuous local (α + 1)-times

integrated C-semigroup on X × X. Hence, it is also a subgenerator (resp., the generator) of a local α-times
integrated C-semigroup on X × X.

Theorem 3.8. Let B be a subgenerator (resp., the generator) of a locally Lipschitz continuous local α-times integrated
C-cosine function on X for some α ≥ 1. Assume that D(B) is dense in X and A is a bounded linear operator from
[D(B)] into R(C). ThenT is a subgenerator (resp., the generator) of a local α-times integrated C-semigroup on X×X,
if R(C−1A) ⊂ D(Bm). Here m denotes the smallest nonnegative integer that is larger than or equal to α

2 .
Combining Theorems 2.9 and 3.1 with Theorems 3.4 and 3.7, the next corollary is also attained.

Corollary 3.9. Assume that ρ(A,B) is nonempty and A ∈ L(X). Then the following are equivalent :

(i) T is the generator of a local K-convoluted C-semigroup on X × X;
(ii) For each (x, y) ∈ D(B) ×D(A) ACP(A,B,K0CBx + KCy, 0, 0) has a unique solution w in C([0,T0), [D(B)]).

Moreover, (i)-(ii) imply

(iii) B is the generator of a locally Lipschitz continuous local α-times integrated C-cosine function on X, if K = jα−1
for some 1 ≤ α ≤ 2, R(A) ⊂ R(C) and R(C−1A) ⊂ D(Bl−1), and (i) − (iii) are equivalent if the assumption of
D(B) is dense in X is also added.

Similarly, we can combine Theorems 2.9 and 3.2 with Theorems 3.5 and 3.8 to obtain next corollary.
Corollary 3.10. Assume that D(B) ∩D(A) is dense in X, ρ(A,B) nonempty, and AB = BA on D(B) ∩D(A). Then
the following are equivalent :

(i) T is the generator of a local K-convoluted C-semigroup on X × X;
(ii) For each (x, y) ∈ D(B) × D(A) ACP(A,B,K0CBx + KCy, 0, 0) has a unique solution w with Bw + Aw′ ∈

C([0,T0),X).

Moreover, (i)-(ii) are equivalent to

(iii) B is the generator of a locally Lipschitz continuous local once integrated C-cosine function on X,

if K = j0 and A is a bounded linear operator from [D(B)] into R(C) with R(C−1A) ⊂ D(B).
Lemma 3.11. Let B be a bounded linear operator from D(A) into R(C) or a bounded linear operator from [D(A)] into
R(C), v =

(
B
A

)
and x ∈ D(B). Assume that x1 = C−1Bx and b1 =

(
0
x1

)
. Then
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(i) b1 ∈ D(T ) and T b1 =
(

x1
x2

)
with x2 = v · b1 if and only if x1 ∈ D(A);

(ii) For each n ∈ N with n ≥ 2, we have b1 ∈ D(T n) if and only if bk =
(

xk−1
xk

)
∈ D(T ) and T bk = bk+1 for all

1 ≤ k ≤ n if and only if x1, xk = v · bk−1 ∈ D(A) for all 2 ≤ k ≤ n (if and only if x1 ∈ D(A2) for n = 2).

Theorem 3.12. Let T be a subgenerator (resp., the generator) of a local α-times integrated C-semigroup on X × X
for some α > 0. Assume that B is a bounded linear operator from D(A) into R(C). Then A is a subgenerator (resp.,
the generator) of a local α-times integrated C-semigroup on X, if for each x ∈ X we have xk ∈ D(A) for all 1 ≤ k ≤ l.
Here xk is given as in Lemma 3.11 and l denotes the smallest nonnegative integer that is larger than or equal to α.

Proof. Clearly, C
(

0 I
0 A

)
=
(

0 I
0 A

)
C on X × D(A) (resp., C−1

(
0 I
0 A

)
C=

(
0 I
0 A

)
) is equivalent to CA = AC

on D(A) (resp., C−1AC = A). Suppose that
(

0 I
B A

)
is a subgenerator (resp., the generator) of a local α-times

integratedC-semigroup on X×X. Then
(

0 I
0 A

)
is a subgenerator (resp., the generator) of a local α-times in-

tegratedC-semigroupS(·) on X×X. For each pair x, y ∈ X, we set
(

u(t)
v(t)

)
= j0∗S(t)

(
x
y

)
for all 0 ≤ t < T0. Then(

u
v

)
∈ C1([0,T0),X × X) ∩ C([0,T0), [T ]),

(
u(0)
v(0)

)
=

(
0
0

)
and

(
u′(t)
v′(t)

)
=
(

0 I
0 A

)(
u(t)
v(t)

)
+
(

jα(t)Cx
jα(t)Cy

)
=
(

v(t)
Av(t)

)
+(

jα(t)Cx
jα(t)Cy

)
for all 0 ≤ t < T0, so that u(0) = 0 = v(0), u′(t) = v(t) + jα(t)Cx and v′(t) = Av(t) + jα(t)Cy for

all 0 ≤ t < T0. Hence, v is a solution of ACP(A, jαCy, 0) in C1([0,T0),X) ∩ C([0,T0), [D(A)]), u(0) = 0,
and u′ = v + jαCx on [0,T0). To show that A is a subgenerator (resp., the generator) of a local α-times
integrated C-semigroup on X, we remain only to show that 0 is the unique solution of ACP(A, 0, 0) in
C1([0,T0),X) ∩ C([0,T0), [D(A)]) (see [15, Corollary 3.6]). To this end, suppose that v is a solution of
ACP(A, 0, 0) in C1([0,T0),X)∩C([0,T0), [D(A)]). We set u = j0 ∗ v, then u(0) = 0 = v(0) and

(
u′(t)
v′(t)

)
=
(

v(t)
Av(t)

)
=(

0 I
0 A

)(
u(t)
v(t)

)
for all 0 ≤ t < T0. The uniqueness of solutions of ACP(A, 0, 0) follows from the uniqueness

of solutions of ACP(
(

0 I
0 A

)
,
(

0
0

)
,
(

0
0

)
).

Theorem 3.13. Let T be a subgenerator (resp., the generator) of a local α-times integrated C-semigroup on X×X for
some α > 0. Assume that B is a bounded linear operator from [D(A)] into R(C). Then A is a subgenerator (resp., the
generator) of a local α-times integrated C-semigroup on X, if for each x ∈ X we have xk ∈ D(A) for all 1 ≤ k ≤ l + 1.
Here xk is given as in Lemma 3.11 and l denotes the smallest nonnegative integer that is larger than or equal to α.
Lemma 3.14. Let B be bounded linear operator from D(A) into R(C) or a bounded linear operator from [D(A)] into
R(C), S =

(
0 I
0 A

)
, and x ∈ D(B). Assume that x1 = C−1Bx and b1 =

(
0
x1

)
. Then

(i) b1 ∈ D(S) and Sb1 =
(

x1
Ax1

)
= b2 if and only if x1 ∈ D(A);

(ii) For each n ∈ N with n ≥ 2, we have b1 ∈ D(Sn) if and only if b1, bk = Sbk−1 ∈ D(S) for all 2 ≤ k ≤ n if and
only if x1 ∈ D(An).

Just as in the proofs of [18, Theorem 2.8 and Theorem 2.10] , we can modify the proofs of [14, Theorem
2.10 and Theorem 3.1] to obtain next two theorems, and so their proofs are omitted.
Theorem 3.15. Let A be a subgenerator (resp., the generator) of a nondegenerate localα-times integrated C-semigroup
on X for some α > 0. Assume that B is a bounded linear operator from D(A) into R(C). Then A + B is a subgenerator
(resp., the generator) of a nondegenerate localα-times integrated C-semigroup on X, if C−1Bx ∈ D(Al) for all x ∈ D(A).
Here l denotes the smallest nonnegative integer that is larger than or equal to α.
Theorem 3.16. Let A be a subgenerator (resp., the generator) of a nondegenerate localα-times integrated C-semigroup
on X for some α > 0. Assume that B is a bounded linear operator from [D(A)] into R(C) such that A + B is a closed
linear operator. Then A + B is a subgenerator (resp., the generator) of a nondegenerate local α-times integrated
C-semigroup on X, if C−1Bx ∈ D(Al+1) for all x ∈ D(A). Here l denotes the smallest nonnegative integer that is larger
than or equal to α.
Theorem 3.17. Let A be a subgenerator (resp., the generator) of a local α-times integrated C-semigroup on X for
some α > 0. Assume that B is a bounded linear operator from D(A) into R(C). Then T is a subgenerator (resp.,
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the generator) of a local α-times integrated C-semigroup on X × X, if R(C−1B) ⊂ D(Al). Here l denotes the smallest
nonnegative integer that is larger than or equal to α.

Proof. Suppose that A is a subgenerator (resp., the generator) of a local α-times integrated C-semigroup S(·)
on X. To show that

(
0 I
0 A

)
is a subgenerator (resp., the generator) of a localα-times integratedC-semigroup

on X×X, we need only to show that for each pair x, y ∈ X ACP(
(

0 I
0 A

)
,
(

jαCx
jαCy

)
,
(

0
0

)
) has a unique solution

in C1([0,T0),X ×X)∩C([0,T0), [
(

0 I
0 A

)
]). Let us achieve this. For each pair x, y ∈ X, we set v(t) = j0 ∗ S(t)y

and u(t) = j0 ∗v(t)+ jα+1Cx for all 0 ≤ t < T0. Then u(0) = 0 = v(0), and v′(t)=S(t)y=Av(t)+ jα(t)Cy and u′(t) =

v(t) + jα(t)Cx for all 0 ≤ t < T0, so that
(

u′(t)
v′(t)

)
=
(

v(t) + jα(t)Cx
Av(t) + jα(t)Cy

)
=

(
0 I
0 A

)(
u(t)
v(t)

)
+

(
jα(t)Cx
jα(t)Cy

)
for all 0 ≤ t < T0.

Hence,
(

u
v

)
is a solution of ACP(

(
0 I
0 A

)
,
(

jαCx
jαCy

)
,
(

0
0

)
) in C1([0,T0),X × X) ∩ C([0,T0), [

(
0 I
0 A

)
]). The

uniqueness of solutions of ACP(
(

0 I
0 A

)
,
(

0
0

)
,
(

0
0

)
) in C1([0,T0),X×X)∩C([0,T0), [

(
0 I
0 A

)
]) follows from

the uniqueness of solutions of ACP(A, 0, 0). Consequently,
(

0 I
0 A

)
is a subgenerator (resp., the generator)

of a local α-times integrated C-semigroup on X × X, which implies that T is a subgenerator (resp., the
generator) of a local α-times integrated C-semigroup on X × X.

Theorem 3.18. Let A be a subgenerator (resp., the generator) of a local α-times integrated C-semigroup on X for
some α > 0. Assume that B is a bounded linear operator from [D(A)] into R(C). Then T is a subgenerator (resp., the
generator) of a local α-times integrated C-semigroup on X × X, if R(C−1B) ⊂ D(Al+1). Here l denotes the smallest
nonnegative integer that is larger than or equal to α.

Combining Theorems 2.9 and 3.1 with Theorems 3.12 and 3.17, the next corollary is also attained.
Corollary 3.19. Assume that ρ(A,B) is nonempty and B ∈ L(X). Then the following are equivalent :

(i) T is the generator of a local K-convoluted C-semigroup on X × X;
(ii) For each (x, y) ∈ D(B) ×D(A) ACP(A,B,K0CBx + KCy, 0, 0) has a unique solution w in C1([0,T0), [D(A)]).

Moreover, (i)-(ii) are equivalent to

(iii) A is the generator of a local α-times integrated C-semigroup on X,

if K = jα−1 for some 0 < α ≤ 2, R(B) ⊂ R(C), and R(C−1B) ⊂ D(Al).
Similarly, we can combine Theorems 2.9 and 3.1 with Theorems 3.13 and 3.18 to obtain next corollary.

Corollary 3.20. Assume that D(B) ∩D(A) is dense in X, ρ(A,B) nonempty, and AB = BA on D(B) ∩D(A). Then
the following are equivalent :

(i) T is the generator of a local K-convoluted C-semigroup on X × X;
(ii) For each (x, y) ∈ D(B) × D(A) ACP(A,B,K0CBx + KCy, 0, 0) has a unique solution w with Bw + Aw′ ∈

C([0,T0),X).

Moreover, (i)-(ii) are equivalent to

(iii) A is the generator of a local α-times integrated C-semigroup on X,

if K = jα−1 for some 0 < α ≤ 1 and B is a bounded linear operator from [D(A)] into R(C) with R(C−1B) ⊂ D(A2).
We end this paper with a simple illustrative example. Let X = Cb(R)( or L∞(R)), and A be the maximal

differential operator in X defined by Au =
k∑

j=0
a jD ju onR for all u ∈ D(A), then Y= UCb(R)( or C0(R))= D(A).

Here a0, a1, · · · , ak ∈ C and D ju(x) = u( j)(x) for all x ∈ R. It is shown in [28,39] that for each α > 1
2 , A generates

an exponentially bounded, norm continuous α-times integrated semigroup S(·) on X which is defined by

(S(t) f )(x) = 1
√

2π
(φ̃α,t ∗ f )(t) for all f ∈ X and t ≥ 0 if the polynomial p(x) =

k∑
j=0

a j(ix) j satisfies sup
x∈R

Re(p(x)) < ∞.

Here φ̃α,t denotes the inverse Fourier transform of φα,t with φα,t(x) = 1
Γ(α)

∫ t

0 (t − s)α−1ep(x)sds. An application

of Corollary 3.19 shows that for each bounded linear operator B : X → D(A),
(

0 I
B A

)
generates an

exponentially bounded, norm continuous α-times integrated semigroup on X × X when α ≤ 2.
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[28] M. Mijatović, S, Pilipović and F. Vajzović, α-Times Integrated Semigroups (α ∈ R+), J. Math. Anal. Appl. 210 (1997) 790-803.
[29] I. Miyadera, M. Okubo and N. Tanaka, On Integrated Semigroups where are not Exponentially Bounded, Proc. Japan Acad. 69

(1993) 199-204.
[30] F. Neubrander, Integrated Semigroups and their Applications to the Abstract Cauchy Problem, Pacific J. Math. 135 (1988) 111-155.
[31] F. Neubrander, Integrated Semigroups and their Applications to Complete Second Order Cauchy Problems, Semigroup Forum

38 (1989) 233-251.
[32] S. Nicaise, The Hille-Yosida and Trotter-Kato Theorems for Integrated Semigroups, J. Math. Anal. Appl. 180 (1993) 303-316.
[33] S.-Y. Shaw and C.-C. Kuo, Generation of Local C-Semigroups and Solvability of the Abstract Cauchy Problems, Taiwanese J.

Math. 9 (2005) 291-311.
[34] M. Sova, Linear Differential Equations in Banach spaces in: Rozprovy Ceskoslovenske acad. Vd. Rada. Mat. Prirod. Ved. 85 (1975)

1-150.
[35] N. Tanaka and I. Miyadera, C-semigroups and the Abstract Cauchy Problem, J. Math. Anal. Appl. 170 (1992) 196-206.
[36] N. Tanaka and N. Okazawa, Local C-Semigroups and Local Integrated Semigroups, Proc. London Math. Soc. 61(3) (1990) 63-90.
[37] S.-W. Wang and M.-C. Gao, Automatic Extensions of Local Regularized Semigroups and Local Regularized Cosine Functions,

Proc. London Math. Soc. 127 (1999) 1651-1663.
[38] S.-W. Wang, M.-Y. Wang and Y. Shen, Perturbation Theorems for Local Integrated Semigroups and Their Applications, Studia

Math. 170 (2005) 121-146.
[39] T.-J. Xiao and J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Lectures Notes in Math. (1701),

Springer, 1998.
[40] T.-J. Xiao and J. Liang, On Complete Second Order Linear Differential Equations in Banach spaces, Pacific J. Math. 142 (1990)

175-195.
[41] T.-J. Xiao and J. Liang, Differential Operators and C-Wellposedness of Complete Second Order Abstract Cauchy Problems, Pacific

J. Math. 186 (1988) 167-200.
[42] T.J. Xiao and J. Liang, Approximations of Laplace Transforms and Integrated Semigroups, J. Funct. Anal. 172 (2000) 202-220.


