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Abstract. In this paper, the notion of the radius of robust feasibility is considered for a convex program with
general convex and compact uncertainty set. An exact calculating formula for the radius of robust feasibility
is given for this uncertain convex program. Moreover, we give a necessary and sufficient condition for
robust feasibility for uncertain convex programs to be positive. We also give some examples to illustrate
our results.

1. Introduction

Robust optimization was first introduced by Soyster [1] to find the robust solution of uncertain linear
program problem. But it is not until the last 20 years that it gathered the attention of the scientific community.
In the late 1990s, Ben-Tal and Nemirovski [2, 3] and El-Ghaoui et al. [4, 5] independently have made an
important step forward to developing a theory for robust optimization. They have given some elegant
and significant results, such as the tractability and probability bounds, on robust optimization for linear as
well as convex programs (see the monograph [6]). Recently, many authors have studied the optimality and
duality in robust optimization for various mathematical programs, see [7–12] and other references therein.

In the framework of robust optimization, the key issue is to deal with the solutions of robust counterpart
of uncertain programs. But, to get its robust counterpart, we must enforce the constraints for all possible
uncertainties with the specified uncertainty sets. This may result that the robust counterpart is not feasible.
To guarantee the feasibility, Goberna et al. [10] first introduced the notion of the radius of robust feasibility
for robust semi-infinite linear programs. The main approach of [10] was inspired by the elegant work on
the notion of consistency radius for linear semi-infinite programming in order to guarantee the feasibility
of the nominal problem under perturbations preserving the number of constraints [13–15]. In [16], Goberna
et al. employed a new proof way, which is different from the one of [10], to obtain the exact formula for
the radius of robust multi-objective programs. Goberna et al. [17] extended the main results of [16] to
robust convex programs. In 2017, Chuong and Jeyakumar [18] observed that the formula are valid only
for programs with a ball uncertainty set, and then study the radius of robust feasibility for uncertain linear
programs under a general convex and compact uncertainty.

2010 Mathematics Subject Classification. 49K99, 65K10,90C31
Keywords. Uncertain convex program; Robust optimization; Uncertainty set; Radius of robust feasibility
Received: 04 April 2017; Accepted: 10 October 2017
Communicated by Naseer Shahzad
Research supported by the Basic and Advanced Research Project of Chongqing (cstc2015jcyjBX0131 and cstc2015jcyjA30009),

the Preparatory Project of Chongqing Jiaotong University (2018PY22) and the Program of Chongqing Innovation Team Project in
University (CXTDX201601022)

Email addresses: cqjtulixb@yeah.net (Xiao-Bing Li), wangql97@126.com (Qi-Lin Wang)



X. B. Li, Q. L. Wang / Filomat 32:19 (2018), 6809–6818 6810

Motivated by the work reported in [10, 16–18], this paper aims to establish some results of the radius
of robust feasibility for uncertain convex programs under a general convex and compact uncertainty. The
distinguishing feature of our work lies in the use of convex and compact uncertainty set which includes
the ellipsoidal, ball, polytope and box uncertainty sets and so on. Under this uncertainty set, we first
give an exact formula for radius of robust feasibility for uncertain convex programs. Then, by using the
exact calculating formula, we obtain a necessary and sufficient condition for robust feasibility for uncertain
convex programs to be positive. Moreover, it is shown that our results can be refined in the special cases of
[10, 16–18].

The paper is organized as follows. In Section 2, we present some concepts and auxiliary results. In
Section 3, we exhibit an exact formula for the radius of robust feasibility for uncertain convex programs,
and a necessary and sufficient condition for robust feasibility for uncertain convex programs to be positive.
Some examples are also given to illustrate the main results.

2. Preliminaries

In this section, we give some definitions and some auxiliary results which will be used in the sequel.
Let 0n and ‖ · ‖ be the vector of zeros and the Euclidean norm in Rn, respectively. The inner product
between x ∈ Rn and y ∈ Rn, is defined by 〈x, y〉 = x>y. The closed unit ball and the distance associated
the above norm are denoted by Bn and d, respectively. Given a nonempty set D of Rn, the notations
int D, cl D and conv D will stand for the interior, the boundary and the convex hull of D, respectively. Let
cone Z := R+conv D denote the convex conical hull of D ∪ {0n}. An extended real-valued function h on Rn

is said to be proper if h(x) > −∞ for all x ∈ Rn and there exists x0 ∈ Rn such that h(x0) < +∞. We denote
by Γ(Rn) the class of proper convex lower semicontinuous extended real-valued function. Let h ∈ Γ(Rn).
The conjugate function h∗ : Rn

→ R is defined as h∗(y) := sup{y>x − h(x) : x ∈ dom h}, where the effective
domain of h, dom h is given by

dom h := {x ∈ Rn : h(x) < +∞}.

The epigraph of h, epi h is defined as

epi h := {(x, r) ∈ Rn
×R : x ∈ dom h, h(x) ≤ r}.

If h̃(x) := h(x) − α for any x ∈ Rn, α ∈ R, then epi h̃∗ = epi h∗ + (0n, α). Moreover, for any a ∈ Rn and b ∈ R, let
p(x) := h(x) + a>x − b for all x ∈ Rn, and hence epi p∗ = epi h∗ + (a, b).

Let Z be a closed and convex set in Rn with 0n ∈ int Z. We define a function φZ : Rn
→ R+ as

φZ(x) := inf{t > 0 : x ∈ tZ}.

This is the Minkowski functional in the convex analysis. It is well known that the Minkowski functional
has many elegant properties. Now we recall the following properties of the Minkowski functional.

Lemma 2.1. [19, Lemma 1.3.13] Let Z be a closed and convex set inRn with 0n ∈ int Z. Then, φZ is sublinear
(i.e., convex and positivity homogenous of degree one) and continuous, and cl Z = {x ∈ Rn : φZ(x) ≤ 1}. If
in addition Z is bounded and symmetric (i.e., if it contains x it also contains −x), then φZ = ‖ · ‖ is a normal
on Rn generated by Z.

Consider the convex program in face of data uncertainty in the constraints

(UP) min
x∈Rn

f̄ (x)

s.t. 1̄ j(x) + a>j x − b j ≤ 0, j ∈ J

where f̄ : Rn
→ R and 1̄ j : Rn

→ R, j ∈ J := {1, · · · , q} are convex functions, (a j, b j) ∈ Rn
× R, j ∈ J are

uncertain vectors which belong to the uncertainty set Uα
j .
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Following the robust optimization methodology in [6], the robust counterpart of the original problem
(UP) can be given by

(RPα) min
x∈Rn

f̄ (x)

s.t. 1̄ j(x) + a>j x − b j ≤ 0,∀(a j, b j) ∈ Uα
j , j ∈ J,

where the uncertain constraints are enforced for every possible value of the parameters (a j, b j), j ∈ J within
the uncertainty set Uα

j . Let Fα := {x ∈ Rn : 1̄ j(x) + a>j x − b j ≤ 0,∀(a j, b j) ∈ Uα
j , j ∈ J} denote the feasible set of

(RPα). Then, the feasible solution set F is said to be the robust feasible set of (UP).
Throughout this paper, unless otherwise specified, assume that the uncertainty data (a j, b j) ∈ Uα

j with

Uα
j := (ā j, b̄ j) + αZ, j ∈ J,

where (ā j, b̄ j) ∈ Rn+1, j ∈ J are fixed and Z is a convex and compact set with 0n+1 ∈ int Z and α ≥ 0. We also
suppose that the nominal problem (RP0) is feasible, i.e., {x ∈ Rn : 1̄ j(x) + ā>j x − b̄ j ≤ 0, j ∈ J} is nonempty.

We recall the following notion of the epigraphical set of constraint system in (RP0).

Definition 2.2. The epigraphical set of the constraint system of the nominal problem (RP0), E(1̄, ā, b̄), asso-
ciated to 1̄ := (1̄1, · · · , 1̄q), ā := (ā1, · · · , āq) and b̄ := (b̄1, · · · , b̄q), is defined to be

E(1̄, ā, b̄) := conv

⋃
j∈J

{epi 1̄∗j + (ā j, b̄ j)}

 .
As the constraint system, F0, of the nominal problem (RP0) is a convex system, it can be equivalently
rewritten as an infinite linear system. Therefore, the notion of the epigraphical set was inspired by the
concept of hypographical set for linear semi-infinite program of [14].

Following [10, 16–18], we define the concept of radius of the robust feasibility for problem (RPα) as
follows.

Definition 2.3. The radius of robust feasibility of problem (RPα) is defined by

ρ = sup{α ∈ R+ : (RPα) is feasible}.

To discuss the radius of robust feasibility, we first recall the dual characterization of the solutions of a
semi-infinite convex system.

Lemma 2.4. [20, Theorem 3.1] Let ht ∈ Γ(Rn) for all t ∈ T (an arbitrary index set). Then, {x ∈ Rn : ht(x) ≤ 0, t ∈
T} , ∅ if and only if (0n,−1) < cl cone (

⋃
t∈T

epi h∗t).

Goberna et al. [17] first established the next lemma to present the bounds for the radius of robust
feasibility.

Lemma 2.5. [17, Lemma 2.2] Let h j : Rn
→ R, j ∈ J be convex functions. Let α ≥ 0 and let Z ⊂ Rn+1 be a convex

and compact set with 0n+1 ∈ int Z. Assume that (0n,−1) ∈ cl cone (
⋃
j∈J

epi h∗j + αZ). Then, for any δ > 0, we have

(0n,−1) ∈ cl cone

⋃
j∈J

epi h∗j + (α + δ)Z

 .
3. Main Results

The aim of this section is to study the radius of robust feasibility for an uncertain convex program with
a compact and convex uncertainty set. First, we first give the formula for calculating the radius of robust
feasibility.
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Theorem 3.1. Let the nominal problem (RP0) be feasible.Then

ρ = inf
(y,s)∈E(1̄,ā,b̄)

ΦZ(−y,−s). (1)

Proof. First, we show that

ρ ≤ inf
(y,s)∈E(1̄,ā,b̄)

φZ(−y,−s). (2)

Take any (y, s) ∈ E(1̄, ā, b̄). Then, by the definition of E(1̄, ā, b̄) and the Carathéodory Theorem, there exist

λl ≥ 0 with
n+2∑
l=1
λl = 1, jl ∈ J, u jl ∈ dom (1̄ jl )

∗ and r jl ≥ 0, l = 1, · · · ,n + 2, such that

(y, s) =

n+2∑
l=1

λl

(
u jl + ā jl , 1̄

∗

jl
(u jl ) + r jl + b̄ jl

)
. (3)

Let ε > 0. Then, (3) and
n+2∑
l=1
λl = 1 together implies that

(0n,−ε) =

n+2∑
l=1

λl

(
(u jl + ā jl , 1̄

∗

jl
(u jl ) + r jl + b̄ jl ) + (−y,−s − ε)

)
.

Dividing by ε on both sides, we have

(0n,−1) =

n+2∑
l=1

λl

ε

(
(u jl + ā jl , 1̄

∗

jl
(u jl ) + r jl + b̄ jl ) + (−y,−s − ε)

)
. (4)

By the definition of φZ, for the above ε > 0, there exists tε > 0 such that

(−y,−s − ε) ∈ tεZ and tε < φZ(−y,−s − ε) + ε. (5)

Now, let α ≥ 0 such that (RPα) is feasible. Then, we have

{x ∈ Rn : 1̄ j(x) + a>j x − b j ≤ 0,∀(a j, b j) ∈ (ā j, b̄ j) + αZ, j ∈ J} , ∅. (6)

We claim that

α ≤ φZ(−y,−s − ε) + ε. (7)

Noting that φZ is a continuous function, we take ε → 0 in (7), and then can obtain α ≤ φZ(−y,−s). By the
definition of radius ρ, we have ρ ≤ φZ(−y,−s), and hence (2) holds.

Now, we turn our attention to the claim. Indeed, we assume by contradiction that α > φZ(−y,−s − ε),
which together with (5) implies that α > tε. Moreover, from the first inclusion of (5), there exists z ∈ Z such
that (−y,−s − ε) = tεz. Since Z is convex and 0n+1 ∈ Z, we have

(−y,−s − ε) = α
( tε
α

z + (1 −
tε
α

)0n+1

)
∈ αZ. (8)

So, (4) and (8) together yields that

(0n,−1) ∈ cone

⋃
j∈J

{epi 1̄∗j + (ā j, b̄ j) + αZ}


⊂ cl cone

 ⋃
(a j,b j)∈(ā j,b̄ j)+αZ, j∈J

{epi 1̄∗j + (a j, b j)}

 . (9)
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Let h j(x) := 1̄ j(x) + a>j x − b j for any x ∈ Rn and j ∈ J. Then, by the definition of epigraph, we have
epi h∗j = epi 1̄∗j + (a j, b j). Thus, (9) implies that

(0n,−1) ∈ cl cone

 ⋃
(a j,b j)∈(ā j,b̄ j)+αZ, j∈J

epi h̄∗j

 . (10)

According to Lemma 2.4, (10) is equivalent to the following condition

{x ∈ Rn : h j(x) = 1̄ j(x) + a>j x − b j ≤ 0,∀(a j, b j) ∈ (ā j, b̄ j) + αZ, j ∈ J} = ∅,

which contradicts (6).
Last, we verify that

ρ ≥ inf
(y,s)∈E(1̄,ā,b̄)

φZ(−y,−s). (11)

Assume to the contrary that

ρ < inf
(y,s)∈E(1̄,ā,b̄)

φZ(−y,−s). (12)

For each ε > 0, let ᾱ := ρ + ε. By the definition of ρ, we have

{x ∈ Rn : 1̄ j(x) + a>j x − b j ≤ 0,∀(a j, b j) ∈ (ā j, b̄ j) + ᾱZ, j ∈ J} = ∅. (13)

Thus, according to Lemma 2.4, (13) is equivalent to the following condition

(0n,−1) ∈ cl cone

 ⋃
(a j,b j)∈(ā j,b̄ j)+ᾱZ, j∈J

{epi 1̄∗j + (a j, b j)}


⊂ cl cone

⋃
j∈J

{epi 1̄∗j + (ā j, b̄ j) + ᾱZ}

 ,
which together with Lemma 2.5 yields that

(0n,−1) ∈ cone

⋃
j∈J

{epi 1̄∗j + (ā j, b̄ j) + (ᾱ + ε)Z}

 . (14)

Then, by the Carathédory Theorem, there exist λk ≥ 0, jk ∈ J, u jk ∈ dom (1̄ jk )
∗, r jk ≥ 0 and z jk ∈ Z,

k = 1, · · · ,n + 2, such that

(0n,−1) =

n+2∑
k=1

λk

(
(u jk + ā jk , 1̄

∗

jk
(u jk ) + r jk + b̄ jk ) + (ᾱ + ε)z jk

)
. (15)

Clearly, (15) implies that
n+2∑
k=1
λk , 0. Letting λ̄k := λk

n+2∑
k=1
λk

, we have λ̄k ≥ 0 with
n+2∑
k=1
λ̄k = 1. Then, dividing by

n+2∑
k=1
λk on both sides of (15) and rearranging terms, we can get

−(ᾱ + ε)
n+2∑
k=1

λ̄kz jk =

n+2∑
k=1

λ̄k

(
u jk + ,̄ā jk + 1∗jk (u jk ) + r jk + b̄ jk

)
+

1
n+2∑
k=1
λk

(0n, 1). (16)
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Letting z̄ :=
n+2∑
k=1
λ̄kz jk , we have z̄ ∈ Z due to the convexity of Z. Moreover, since (0n, 1) is a recession of

E(1̄, ā, b̄), it follows from (16) that −(ᾱ + ε)z̄ ∈ E(1̄, ā, b̄). Thus, by Lemma 2.1, we have

inf
(y,s)∈E(1̄,ā,b̄)

φZ(−y,−s) ≤ φZ ((ᾱ + ε)z̄) ≤ ᾱ + ε = ρ + 2ε. (17)

Letting ε→ 0 in (17), we can get inf
(y,s)∈E(1̄,ā,b̄)

φZ(−y,−s) ≤ ρ, which contradicts (12). So, (11) holds and hence,

the conclusion (1) follows from (2) and(11). �
Whenever the assumption on the uncertainty set Z is strengthened to be symmetric and bounded,

Theorem 3.1 allows us to state the following result.

Corollary 3.2. Let the nominal problem (RP0) be feasible, and let the uncertainty set Z be symmetric. Then

ρ = min
(y,s)∈E(1̄,ā,b̄)

‖(y, s)‖

Proof. Since the uncertain set Z is symmetric and bounded, Lemma 2.1 gives φZ(z) = ‖z‖ for all z ∈ Z. Then,
(1) becomes

ρ = inf
(y,s)∈E(1̄,ā,b̄)

‖(y, s)‖. (18)

To verify (18) is attained, it suffices to show the epigraph set E(1̄, ā, b̄) is closed as the norm ‖ · ‖ is coercive
on any closed set. Indeed, let (yk, sk) ∈ E(1̄, ā, b̄) with (yk, sk)→ (y, s). We only need to show (y, s) ∈ E(1̄, ā, b̄).

Indeed, by the Carathédory Theorem, there exists jl ∈ J, l = 1, · · · ,n+2, λ jl
k ≥ 0 with

n+2∑
l=1
λ jl

k = 1, u jl
k ∈ dom (1̄∗jl )

and ε jl
k ≥ 0, such that

(yk, sk) =

n+2∑
l=1

λ jl
k

(
u jl

k + ā jl , 1̄∗jl (u
jl
k ) + ε jl

k + b̄ jl
)
.

Then, we get that

sk =

n+2∑
l=1

λ jl
k

(
1̄∗jl

(u jl
k ) + ε jl

k + b̄ jl
)

≥

n+2∑
l=1

λ jl
k

(
1̄∗jl

(u jl
k ) + b̄ jl

)
≥

n+2∑
l=1

λ jl
k

(
〈y jl

k − ā jl , x〉 − 1 jl (x) + b̄ jl
)
,∀x ∈ Rn, (19)

where the last inequality follows from the definition of the conjugate function. Noting that λ jl
k ≥ 0 and

n+2∑
l=1
λ jl

k = 1, without loss of generality, we can assume that λ jl
k → λ jl as k → ∞. Clearly,

n+2∑
l=1
λ jl = 1. Letting

k→∞ in (19), we have

s −
n+2∑
l=1

λ jl b̄ jl ≥ 〈y −
n+2∑
l=1

λ jl ā jl , x〉 −
n+2∑
l=1

λ jl1 jl (x),∀x ∈ Rn. (20)

Hence, (20) implies that (y −
n+2∑
l=1
λ jl ā jl , s −

n+2∑
l=1
λ jl b̄ jl ) ∈ epi (

n+2∑
l=1
λ jl1 jl )

∗. As each 1̄ jl is a real-valued convex

function, we have epi (
n+2∑
l=1
λ jl1 jl )

∗ =
n+2∑
l=1
λ jl epi1∗jl . Thus, (y, s) ∈ E (1̄, ā, b̄) and the proof is complete. �
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Remark 3.3. (i) Whenever the uncertainty set Z becomes the Euclidean unit closed ball Bn+1, i.e., Z = Bn+1,
Goberna et al. [17] first have given the formula for the radius of robust feasibility of an uncertain convex
program. Since the uncertainty set Z considered in this paper is a convex compact set, the ellipsoid and ball
uncertainty sets are the special cases of the set Z. So, Theorem 3.1 extend the corresponding ones of [17].

(ii) If for any j ∈ J, the constraint function 1̄ j is identical to zero , i.e., 1̄ j(x) ≡ 0, then corresponding
epigraph set E(1̄, ā, b̄) = conv{(ā j, b̄ j) : j ∈ J}+R+{(0, 1)}. In this case, Chuong and Jeyakumar [18] have estab-
lished an exact formula for radius of robust feasibility of uncertain linear program as: ρ = inf

(y,s)∈−E(1̄,ā,b̄)
φZ(y, s).

Hence, Theorem 1 and Corollary 3.2 extend the main results of [18] from linear program to convex case.
(iii) Whenever Z = Bn+1 and 1̄ j(x) ≡ 0 for all j ∈ J, Goberna et al. [10, 16] have given the radius of robust

feasibility of uncertain linear ( semi-infinite) program: ρ = d
(
0n,E(1̄, ā, b̄)

)
. Thus, Theorem 3.1 also extends

the corresponding ones of [10, 16].

In order to make reader to understand Remark 3.3, we give the following example.

Example 3.4. Let the uncertainty set Z be defined by

Z = {(a, b) ∈ R2 :
a2

2
+

b2

4
≤ 1}.

Let f̄ : R→ R be a given convex function, 1̄ j : R→ R, j = 1, 2 be given by 1̄1(x) = x2
− 1 and 1̄2(x) = 2x4

− 1,
and ā j = b̄ j ≡ 0, j = 1, 2. We can easily see that: (i) Z is an ellipsoidal ball and φZ = ‖ · ‖; (ii) 1̄1 and 1̄2 are
convex functions. We now consider the following robust convex program with ellipsoidal uncertainty:

(UP) min
x∈R

f̄ (x)

s.t. (x2
− 1) + a1x − b1 ≤ 0, ∀(a1, b1) ∈ αZ,

(2x4
− 1) + a2x − b2 ≤ 0, ∀(a2, b2) ∈ αZ.

Then, from direct calculation it follows that 1̄∗1(y) =
y2

4 +1 and 1̄∗2(y) =
3y

4
3

8 +1. So, epi 1̄∗1 = epi 1̄∗2 = R×[1,+∞),
and hence E(1̄, ā, b̄) = conv

{
epi 1̄∗1

⋃
epi 1̄∗2

}
= R × [1,+∞). Applying Corollary 3.2, we get that

ρ = min
(y,s)∈E(1̄,ā,b̄)

‖(y, s)‖ = min
(y,s)∈R×[1,∞)

√
y2 + s2 = 1.

However, we can not employ the main results of [10, 16–18] to establish the estimates for the radius of
robust feasibility of problem (UP). The main reasons are the uncertainty set Z is not ball and the constraint
functions 1 j for all j ∈ J are not linear. Thus, Theorem 1 and Corollary 3.2 extend the corresponding ones of
[10, 16–18].

Now, we establish the necessary and sufficient condition for the radius of robust feasibility for (UP) to
be positive.

Theorem 3.5. Let the nominal problem (RP0) be feasible. Consider the radius of robust feasibility for (RPα) defined
as in Definition 2.3. Then, it holds that

sup
(x,δ)∈Rn×R

{δ : 1̄ j(x) + ā>j x − b̄>j + δ ≤ 0,∀ j ∈ J} > 0⇐⇒ ρ > 0.

Proof. [=⇒] Assume that sup
(x,δ)∈Rn×R

{δ : 1̄ j(x) + ā>j x − b̄>j + δ ≤ 0,∀ j ∈ J} > 0. Let h̄ j(x) := 1̄ j(x) + ā>j x − b̄>j for

any x ∈ Rn and j ∈ J. Then, there exist x0 ∈ Rn and δ0 > 0 such that

h̄ j(x0) + δ0 ≤ 0,∀ j ∈ J. (21)
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To show ρ > 0, we proceed by the method of contradiction and suppose that ρ = 0. Then, for any k ∈ N,
there exists (yk, sk) ∈ E(1̄, ā, b̄) such that

φZ(−yk,−sk) <
1
k
.

By the definition of φZ, there exist tk > 0 such that

(−yk,−sk) ∈ tkZ and tk < φZ(−yk,−sk) ≤
1
k
.

Hence, there exists zk ∈ Z such that (−yk,−sk) = tkzk. Then, we have

(−yk,−sk) =
1
k

(ktkzk + (1 − ktk)0n+1) ∈
1
k

Z,

because Z is convex and 0n+1 ∈ Z. Thus, there exists ẑk ∈ Z such that

(−yk,−sk) =
1
k

ẑk. (22)

Noting that Z is compact, without loss of generality, we can assume that ẑk → ẑ. So, letting k → ∞ in (22),
we have (−yk,−sk)→ 0n+1, and hence (yk, sk)→ 0n+1.

From the proof of Theorem 3.1, we observe that E(1̄, ā, b̄) is closed. Granting this, (yk, sk) ∈ E(1̄, ā, b̄) and
(yk, sk)→ 0n+1 imply that 0n+1 ∈ E(1̄, ā, b̄). Then, by the definition of E(1̄, ā, b̄) and the Carathédory Theorem,

there exist λl ≥ 0 with
n+2∑
l=1
λl = 1, jl ∈ J, u jl ∈ dom (1̄ jl )

∗ and ε jl ≥ 0, l = 1, · · · ,n + 2, such that

0n+1 =

n+2∑
l=1

λl

(
u jl + ā jl , 1̄

∗

jl
(u jl ) + ε jl + b̄ jl

)
.

Noting that
n+2∑
l=1
λl = 1 and δ0 > 0, we get that

(0n,−δ0) =

n+2∑
l=1

λl

(
u jl + ā jl , 1̄

∗

jl
(u jl ) + ε jl + b̄ jl − δ0

)
.

Then, we have that

(0n,−1) =

n+2∑
l=1

λl

δ0

(
(u jl , 1̄

∗

jl
(u jl ) + ε jl ) + (ā jl , b̄ jl − δ0)

)
∈ cone

⋃
j∈J

{epi 1̄∗j + (ā j, b̄ j) + (0n,−δ0)}


= cone

⋃
j∈J

{epi h̄∗j + (0n,−δ0)}


= cone

⋃
j∈J

{epi (h̄ j + δ0)∗}

 .
Thus, it together with Lemma 2.4 implies that

{x ∈ Rn : h̄ j(x) + δ0 ≤ 0, j ∈ J} = ∅,

which contradicts (21).
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[⇐=] Let ρ > 0 and set X(δ) := {x ∈ Rn : h̄ j(x)+δ ≤ 0,∀ j ∈ J}, where δ > 0 and h̄ j(x) = 1̄ j(x)+ ā>j x− b̄ j, j ∈ J.

To finish the proof, it suffices to show that there exists δ̂ > 0 such that X(δ̂) , ∅.
Arguing by contradiction, we suppose that X(δ) = ∅ for all δ > 0. Then, Lemma 2.4 implies that

(0n,−1) ∈ cl cone

⋃
i∈J

epi (h̄ j + δ)∗


= cl cone

⋃
j∈J

{epi 1̄∗j + (ā j, b̄ j) + (0,−δ)}


⊂ cl cone

⋃
j∈J

{epi 1̄∗j + (ā j, b̄ j) + δBn+1}

 .
Applying Lemma 2.5 to 1̄ j, j ∈ J, for any ε > 0, we have

(0n,−1) ∈ cone

⋃
j∈J

{epi 1̄∗j + (ā j, b̄ j) + (δ + ε)Bn+1}

 .
Then, by the Carathédory Theorem, there exists λl ≥ 0, jl ∈ J, u jl ∈ dom (1̄ jl )

∗, r jl ≥ 0, (w jl , t jl ) ∈ Bn+1,
l = 1, · · · ,n + 2 such that

(0n,−1) =

n+2∑
l=1

λl

(
(u jl + ā jl , 1̄

∗

jl
(u jl ) + r jl + b̄ jl ) + (δ + ε)(w jl , t jl )

)
. (23)

Clearly,
n+2∑
l=1
λl , 0. Letting λ̃l := λl

n+2∑
l=1
λl

≥ 0, l = 1, · · · ,n + 2, we get that
n+2∑
l=1
λ̃l = 1. Dividing by

n+2∑
l=1
λl , 0 on

both sides of (23) and rearranging terms, it follows that

(δ + ε)
n+2∑
l=1

λ̃l(−w jl ,−t jl ) =

n+2∑
l=1

λ̃l(u jl + ā jl , 1̄
∗

jl
(u jl ) + r jl + b̄ jl ) +

1
n+2∑
l=1
λl

(0n, 1).

Let (w∗, t∗) :=
n+2∑
l=1
λ̃l(−w jl ,−t jl ) ∈ Bn+1. Then, it together with the fact: (0n, 1) is a recession direction of

E(1̄, ā, b̄), implies that

(δ + ε)(−w∗,−t∗) ∈ E(1̄, ā, b̄). (24)

Keeping in mind the arbitrariness of δ and ε, we take δ→ 0 and ε→ 0 in (24), and then get that 0n+1 ∈ E(1̄, ā, b̄)
as E(1̄, ā, b̄) is closed set. Therefore, we have that

ρ = inf
(y,s)∈E(1̄,ā,b̄)

φZ(y, s) ≤ φZ(0n+1) = 0, (25)

where the last equality holds as inasmuch 0n+1 ∈ Z. Therefore, (25) contradicts our assumption ρ > 0 and
hence, the proof is complete. �

Remark 3.6. In the special case of 1̄ j(x) ≡ 0 for all j ∈ J, the proof of Theorem 3.5 leads to Proposition 2.1
[18], which presents the necessary and sufficient condition for the radius of robust feasibility for uncertain
linear program with a convex and compact uncertainty. So, Theorem 3.5 extends Proposition 2.1 [18] from
the linear program to convex case.

From the proof of Theorem 3.5, we can immediately obtain the following conclusion.
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Corollary 3.7. Let the nominal problem (PU0) be feasible. Then, it holds that

0n+1 ∈ E (1̄)⇐⇒ ρ = 0.

The following example is given to illustrate Corollary 3.7.

Example 3.8. Let Z and f̄ be given as in Example 3.4. Let 1̄ j : R → R, j = 1, 2 be given by 1̄1(x) = x2

and 1̄2(x) = 2x4. Let ā j = b̄ j ≡ 0, j = 1, 2.. Consider the following robust convex program with ellipsoidal
uncertainty:

(UP) min
x∈R

f̄ (x)

s.t. x2 + a1x − b1 ≤ 0, ∀(a1, b1) ∈ αZ,
2x4 + a2x − b2 ≤ 0, ∀(a2, b2) ∈ αZ.

Then, from direct calculation it follows that 1̄∗1(y) =
y2

4 and 1̄∗2(y) =
3y

4
3

8 . So, 02 ∈ E(1̄, ā, b̄) = conv
{
epi 1̄∗1

⋃
epi 1̄∗2

}
=

R ×R+ and ρ = min
(y,s)∈R×[0,∞)

√
y2 + s2 = 0. Thus, Corollary 3.7 is applicable.
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