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Abstract. Schuster introduced the notion of radial Blaschke-Minkowski homomorphism and considered
its Busemann-Petty problem. In this paper, we further study the Busemann-Petty problem for the radial
Blaschke-Minkowski homomorphisms and give the affirmative and negative forms of Busemann-Petty
problem for the i-th radial Blaschke-Minkowski homomorphisms.

1. Introduction

The setting for this paper is Euclidean n-space Rn. Let Sn−1 denote the unit sphere in Rn. For the
n-dimensional volume of body K, we write V(K).

If K is a compact star shaped (about the origin) set inRn, then its radial function, ρK = ρ(K, ·) : Rn
\{0} →

[0,∞), is defined by (see [5])

ρ(K, x) = max{λ ≥ 0 : λx ∈ K}, x ∈ Rn
\{0}.

If ρ(K, ·) is positive and continuous, K will be called a star body. The set of star bodies (about the origin) in
Rn will be denoted by Sn

o , for the set of all origin-symmetric star bodies we write Sn
os.

Intersection bodies were first appeared in a paper by Busemann (see [2]) and were explicitly defined
and named by Lutwak (see [19]). In 1988, Lutwak defined the notion of intersection bodies as follows: For
K ∈ Sn

o , the intersection body, IK, of K is a star body whose radial function in the direction u ∈ Sn−1 is equal
to the (n − 1)-dimensional volume of the section of K by u⊥, the hyperplane orthogonal to u, i.e. for all
u ∈ Sn−1,

ρ(IK,u) = Vn−1(K ∩ u⊥).

Further, Lutwak ([19]) showed the following Busemann-Petty problem by intersection bodies:
Problem 1.1 (Busemann-Petty problem). For K,L ∈ Sn

o , is there the implication

IK ⊆ IL⇒ V(K) ≤ V(L)?
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For the Problem 1.1, Lutwak ([19]) gave an affirmative answer if K is restricted to the class of intersection
bodies and two negative answers if K is not origin-symmetric or L is not an intersection body.
Remark 1.1 If K,L ∈ Sn

os, then Problem 1.1 is called the symmetric Busemann-Petty problem. Gardner ([4])
and Zhang ([28]) showed that the symmetric Busemann-Petty problem has an affirmative answer for n ≤ 4
and a negative answer for n ≥ 5.

Intersection bodies have been becoming the centered notion in the dual Brunn-Minkowski theory (see
e.g. [4–14, 19, 24–27]). Based on the properties of intersection bodies, Schuster ([20]) introduced the radial
Blaschke-Minkowski homomorphism which is a more general intersection operator as follows:
Definition 1.A. A map Ψ : Sn

o → S
n
o is called a radial Blaschke-Minkowski homomorphism if it satisfies the

following conditions:
(1) Ψ is continuous;
(2) For all K,L ∈ Sn

o , Ψ(K+̃n−1L) = ΨK+̃ΨL, i.e. ΨK is radial Blaschke-Minkowski sum;
(3) Ψ(ϑK) = ϑΨK for all K ∈ Sn

o and all ϑ ∈ SO(n).
Here +̃n−1 and +̃ denote Ln−1 and L1 radial Minkowski addition, respectively; and SO(n) is the group of
rotations in n dimension,

Meanwhile, Schuster ([20]) showed that the radial Blaschke-Minkowski homomorphism satisfies the
geometric inequalities such as Aleksandrov-Fenchel, Minkowski and Brunn-Minkowski type inequalities.
In particular, Schuster ([20]) proved the following fact:
Theorem 1.A. A map Ψ : Sn

o → S
n
o is a radial Blaschke-Minkowski homomorphism if and only if there is a

non-negative measure µ ∈ M(Sn−1, ê) such that for K ∈ Sn
o , ρ(ΨK, ·) is the convolution of ρ(K, ·)n−1 and µ, i.e.,

ρ(ΨK, ·) = ρ(K, ·)n−1
∗ µ. (1.1)

Here ê denotes the pole point of Sn−1 andM(Sn−1, ê) denotes the signed finite Borel measure space on Sn−1

(see [20]).
According to (1.1), Schuster ([20]) defined the mixed radial Blaschke-Minkowski homomorphisms as

follows:
Definition 1.B. Let Ψ : Sn

o → S
n
o be a radial Blaschke-Minkowski homomorphism with non-negative generating

measure µ ∈ M(Sn−1, ê), defined a mixed operator Ψ : Sn
o × · · · × S

n
o → S

n
o by

ρ(Ψ(K1, · · · ,Kn−1), ·) = ρ(K1, ·) · · ·ρ(Kn−1, ·) ∗ µ. (1.2)

The body Ψ(K1, · · · ,Kn−1) is called the mixed radial Blaschke-Minkowski homomorphism of K1, · · · ,Kn−1 ∈ S
n
o .

If K1 = · · · = Kn−i−1 = K, Kn−i = · · · = Kn−1 = L, then write

Ψi(K,L) = Ψ(K, · · · ,K︸   ︷︷   ︸
n−i−1

,L, · · · ,L︸   ︷︷   ︸
i

) (i = 0, 1, · · · ,n − 2),

which is called the mixed radial Blaschke-Minkowski homomorphism of K and L. If L = B (B denotes
the unit ball centered at the origin in Rn), we call ΨiK = Ψi(K,B) the i-th radial Blaschke-Minkowski
homomorphism of K. Obviously, by (1.2) and notice ρ(B, ·) = 1, we know that for i = 0, 1, · · · ,n − 2,
ρ(ΨiK, ·) = ρ(K, ·)n−i−1

∗ µ.
If we let i be real, then (1.1) can be extended to the following definition.

Definition 1.1. For K ∈ Sn
o , 0 ≤ i < n − 1, the i-th radial Blaschke-Minkowski homomorphism, ΨiK, of K is given

by
ρ(ΨiK, ·) = ρ(K, ·)n−i−1

∗ µ, (1.3)

where µ ∈ M(Sn−1, ê).
From (1.3), we have that for c > 0,

Ψi(cK) = cn−i−1ΨiK. (1.4)

In 2008, Schuster ([21]) considered the following Busemann-Petty problem for the radial Blaschke-
Minkowski homomorphisms.
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Problem 1.2. Let Ψ : Sn
o → S

n
o be a radial Blaschke-Minkowski homomorphism. For K,L ∈ Sn

o , is there the
implication

ΨK ⊆ ΨL⇒ V(K) ≤ V(L)?

Obviously, Problem 1.2 is a more general Busemann-Petty problem than Problem 1.1. For the Problem
1.2, Schuster ([21]) gave the following affirmative and negative answers, respectively.
Theorem 1.B. Let Ψ : Sn

o → S
n
o be a radial Blaschke-Minkowski homomorphism. If K ∈ ΨSn

o and L ∈ Sn
o , then

ΨK ⊆ ΨL⇒ V(K) ≤ V(L),

and V(K) = V(L) if and only if K = L. Here ΨSn
o denotes the range of Ψ.

Theorem 1.C. Suppose that Sn
os ⊆ S

n
o (Ψ), L ∈ Sn

os, ρ(L, ·) ∈ Hn and ρ(L, ·) > 0 (i.e., L is polynomial). If L < ΨSn
o ,

then there exists K ∈ Sn
os, such that

ΨK ⊂ ΨL.

But
V(K) > V(L).

HereHn denotes the space of all finite sums of spherical harmonic of dimension n.
In 2011, Wang, Liu and He ([22]) extended the radial Blaschke-Minkowski homomorphisms to Lp space.

In recent years, a lot of important results for the radial Blaschke-Minkowski homomorphisms and their Lp
analogies were obtained (see e.g. [1, 3, 15–17, 21–23, 29–33]).

The main goal of this paper is to study the Busemann-Petty problem for the i-th radial Blaschke-
Minkowski homomorphisms. First, we give an affirmative answer of the Busemann-Petty problem for the
i-th radial Blaschke-Minkowski homomorphisms.
Theorem 1.1. Let K,L ∈ Sn

o , 0 ≤ i < n − 1 and Ψi be the i-th radial Blaschke-Minkowski homomorphism. If
K ∈ ΨiS

n
o , then

ΨiK ⊆ ΨiL⇒ W̃i(K) ≤ W̃i(L).

And W̃i(K) = W̃i(L) if and only if K = L. Here W̃i(K) denotes the dual quermassintegrals of K ∈ Sn
o .

Obviously, the case i = 0 of Theorem 1.1 yields Theorem 1.B.
Next, the following negative forms of the Busemann-Petty problem for the i-th radial Blaschke-Minkowski

homomorphisms are given:
Theorem 1.2. Suppose thatSn

os ⊆ S
n
o (Ψi) (0 ≤ i < n−1), L ∈ Sn

os, ρ(L, ·) ∈ Hn and ρ(L, ·) > 0 (i.e., L is polynomial).
If L < ΨiS

n
o , then there exists K ∈ Sn

os such that

ΨiK ⊂ ΨiL.

But
W̃i(K) > W̃i(L).

Here Sn
o (Ψi) denotes the injective set of Ψi.

Clearly, taking i = 0 in Theorem 1.2, we immediately get Theorem 1.C.
Theorem 1.3. Let K,L ∈ Sn

o , 0 ≤ i < n − 1 and Ψi be an even i-th radial Blaschke-Minkowski homomorphism. If
K < Sn

os, then there exists L ∈ Sn
o , such that

ΨiK ⊂ ΨiL.

But
W̃i(K) > W̃i(L).

Let i = 0 in Theorem 1.3, we get a new negative form of the Busemann-Petty problem for the radial
Blaschke-Minkowski homomorphisms.
Corollary 1.1. Let K,L ∈ Sn

o and Ψ be an even radial Blaschke-Minkowski homomorphism. If K < Sn
os, then there

exists L ∈ Sn
o , such that

ΨK ⊂ ΨL.
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But
V(K) > V(L).

The proofs of Theorems 1.1-1.3 are completed in Section 3.

2. Background Materials

2.1. i-th radial Blaschke combinations and general i-th radial Blaschke bodies
For K,L ∈ Sn

o , λ, µ ≥ 0 (not both 0), the radial Minkowski combination, λK+̃µL ∈ Sn
o , of K and L is

defined by (see [5])
ρ(λK+̃µL, ·) = λρ(K, ·) + µρ(L, ·).

For K,L ∈ Sn
o , λ, µ ≥ 0 (not both 0), the radial Blaschke combination, λ · K+̂µ · L ∈ Sn

o , of K and L is
defined by (see [5])

ρ(λ · K+̂µ · L, ·)n−1 = λρ(K, ·)n−1 + µρ(L, ·)n−1.

From the definitions of above two combinations, we easily see λ · K+̂µ · L = λK+̃n−1µL.
Now, in order to prove our results, we will extend the radial Blaschke combinations to the following

i-th radial Blaschke combinations.
For K,L ∈ Sn

o , 0 ≤ i < n−1 and λ, µ ≥ 0 (not both 0), the i-th radial Blaschke combination, λ ·K+̂iµ ·L ∈ Sn
o ,

of K and L is defined by
ρ(λ · K+̂iµ · L, ·)n−i−1 = λρ(K, ·)n−i−1 + µρ(L, ·)n−i−1. (2.1)

Taking i = 0 in (2.1), then λ · K+̂0µ · L is the radial Blaschke combination λ · K+̂µ · L.
If for τ ∈ [−1, 1], let

λ = f1(τ) =
(1 + τ)2

2(1 + τ2)
, µ = f2(τ) =

(1 − τ)2

2(1 + τ2)
(2.2)

and L = −K in (2.1), then we write
∇̂
τ
i K = f1(τ) · K+̂i f2(τ) · (−K), (2.3)

and called ∇̂τi K the general i-th radial Blaschke body of K. From (2.2) and (2.3), we easily see that ∇̂1
i K = K,

∇̂
−1
i K = −K and

∇̂
0
i K =

1
2
· K+̂i

1
2
· (−K). (2.4)

For the general i-th radial Blaschke bodies, by (2.2) we know that f1(τ) + f2(τ) = 1. Hence, if K ∈ Sn
os,

then ∇̂τi K ∈ Sn
os. If K < Sn

os, then we have the following fact.
Theorem 2.1. For K,L ∈ Sn

o , 0 ≤ i < n − 1. If K < Sn
os, then for τ ∈ [−1, 1],

∇̂
τ
i K ∈ Sn

os ⇔ τ = 0. (2.5)

Proof. If τ = 0, by (2.4) we immediately get ∇̂τi K ∈ Sn
os.

Conversely, since ρM(−u) = ρ−M(u) for any M ∈ Sn
o and u ∈ Sn−1, thus if ∇̂τi K ∈ Sn

os, i.e., ∇̂τi K = −∇̂τi K,
then for all u ∈ Sn−1,

ρn−i−1
∇̂
τ
i K

(u) = ρn−i−1
−∇̂

τ
i K

(u) = ρn−i−1
∇̂
τ
i K

(−u),

by (2.3) we have
ρn−i−1

f1(τ)·K+̂i f2(τ)·(−K)
(u) = ρn−i−1

f1(τ)·K+̂i f2(τ)·(−K)
(−u).

This together with (2.1) yields

f1(τ)ρn−i−1
K (u) + f2(τ)ρn−i−1

−K (u) = f1(τ)ρn−i−1
K (−u) + f2(τ)ρn−i−1

−K (−u),
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i.e.,
f1(τ)ρn−i−1

K (u) + f2(τ)ρn−i−1
−K (u) = f1(τ)ρn−i−1

−K (u) + f2(τ)ρn−i−1
K (u),

thus
[ f1(τ) − f2(τ)][ρn−i−1

K (u) − ρn−i−1
−K (u)] = 0.

Since K < Sn
os implies ρn−i−1

K (u) − ρn−i−1
−K (u) , 0, thus we obtain

f1(τ) − f2(τ) = 0.

This and (2.2) give τ = 0. �

2.2. Dual mixed quermassintegrals

In 1975, Lutwak ([18]) introduced the dual mixed volumes as follows: For K1, · · · ,Kn ∈ S
n
o , the dual

mixed volume Ṽ(K1, · · · ,Kn) is defined by

Ṽ(K1,K2, · · · ,Kn) =
1
n

∫
Sn−1

ρK1 (u)ρK2 (u) · · ·ρKn (u)du. (2.6)

If K1 = · · · = Kn−i−1 = K, Kn−i = · · · = Kn−1 = B and Kn = L in (2.6), then we write W̃i(K,L) =

Ṽ(K, · · · ,K︸   ︷︷   ︸
n−i−1

,B, · · · ,B︸   ︷︷   ︸
i

,L) (i = 0, 1, · · · ,n− 2). If let i be real, then W̃i(K,L) is called the dual mixed quermassin-

tegrals whose representation is that for K,L ∈ Sn
o and i ∈ R,

W̃i(K,L) =
1
n

∫
Sn−1

ρn−i−1
K (u)ρL(u)du. (2.7)

If we let K = L in (2.7), then it just is the dual quermassintegrals, W̃i(K), of K ∈ Sn
o denoted by

W̃i(K) = W̃i(K,K) =
1
n

∫
Sn−1

ρn−i
K (u)du. (2.8)

Further let i = 0 in (2.8), then we have the following polar coordinate formula for the volume of a body
K:

V(K) = W̃0(K) =
1
n

∫
Sn−1

ρn
K(u)du.

For the above dual mixed quermassintegrals, the corresponding the Minkowski inequality is stated that
(see [20]): If K,L ∈ Sn

o and 0 ≤ i < n − 1, then

W̃i(K,L) ≤ W̃i(K)
n−i−1

n−i W̃i(L)
1

n−i , (2.9)

with equality if and only if K and L are dilatate.

3. Busemann-Petty Problem for the i-th Radial Blaschke-Minkowski Homomorphisms

This section is mainly devoted to prove Theorems 1.1, 1.2 and 1.3. We begin by proving the following
lemma.
Lemma 3.1. If M,N ∈ Sn

o , 0 ≤ i, j < n − 1, then

W̃ j(M,ΨiN) = W̃i(N,Ψ jM). (3.1)
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Proof. According to (1.3) and (2.7), we obtain that if 0 ≤ i, j < n − 1, then

W̃ j(M,ΨiN) =
1
n

∫
Sn−1

ρn− j−1
M (u)ρΨiN(u)du

=
1
n

∫
Sn−1

ρn− j−1
M (u)ρn−i−1

N (u) ∗ µdu

=
1
n

∫
Sn−1

ρn−i−1
N (u)ρn− j−1

M (u) ∗ µdu

=
1
n

∫
Sn−1

ρn−i−1
N (u)ρΨ jM(u)du

= W̃i(N,Ψ jM). �

Proof of Theorem 1.1. Since ΨiK ⊆ ΨiL (0 ≤ i < n − 1), thus using (2.7) we know for any M ∈ Sn
o and

0 ≤ j < n − 1,
W̃ j(M,ΨiK) ≤ W̃ j(M,ΨiL).

This together with (3.1) yields
W̃i(K,Ψ jM) ≤ W̃i(L,Ψ jM).

Because of K ∈ ΨiS
n
o , taking Ψ jM = K, then by (2.8) and inequality (2.9) we obtain

W̃i(K) ≤ W̃i(L,K) ≤ W̃i(L)
n−i−1

n−i W̃i(K)
1

n−i ,

i.e.,
W̃i(K) ≤ W̃i(L).

According to the equality condition of inequality (2.9), we see that W̃i(K) = W̃i(L) if and only if K and L
are dilatate. From this, let K = cL (c > 0) and together with W̃i(K) = W̃i(L), we obtain c = 1. Therefore,
W̃i(K) = W̃i(L) if and only if K = L in Theorem 1.1. �

Proof of Theorem 1.2. Let µ ∈ M(Sn−1, ê) denote the generating measure of Ψi. Since L ∈ Sn
os and

ρ(L, ·) ∈ Hn, it follows from Schuster’s conclusion (see [21], the proof of Theorem 4.4) that there exists an
even function f ∈ Hn, such that

ρ(L, ·) = f ∗ µ. (3.2)

Here the function f must be negative, otherwise, there exists L0 ∈ S
n
o such that ρ(L0, ·)n−i−1 = f . This together

(1.3) with (3.2) yields
ρ(ΨiL0, ·) = ρ(L0, ·)n−i−1

∗ µ = f ∗ µ = ρ(L, ·),

i.e., L = ΨiL0. This and L < ΨiS
n
o are contradictory.

From this, we can find a non-negative, even function G ∈ Hn and an even function H ∈ Hn, such that

G = H ∗ µ. (3.3)

Because of L ∈ Sn
os and ρ(L, ·) > 0, hence there exists ε > 0 and K ∈ Sn

os, such that

ρ(K, ·)n−i−1 = ρ(L, ·)n−i−1
− εH,

thus
ρ(K, ·)n−i−1

∗ µ = ρ(L, ·)n−i−1
∗ µ − εH ∗ µ.

Therefore, by (1.3) and (3.3) we have

ρ(ΨiK, ·) = ρ(ΨiL, ·) − εG.
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This together G ≥ 0 with ε > 0 gives
ΨiK ⊂ ΨiL.

But by (2.7), (2.8), (3.2) and (1.3), we obtain

W̃i(L) − W̃i(K,L) =
1
n

∫
Sn−1

ρn−i
L (u)du −

1
n

∫
Sn−1

ρn−i−1
K (u)ρL(u)du

=
1
n

∫
Sn−1

[ρn−i−1
L (u) − ρn−i−1

K (u)]ρL(u)du

=
1
n

∫
Sn−1

[ρn−i−1
L (u) − ρn−i−1

K (u)]( f ∗ µ)du

=
1
n

∫
Sn−1

[(ρn−i−1
L (u) ∗ µ) − (ρn−i−1

K (u) ∗ µ)] f du

=
1
n

∫
Sn−1

[ρΨiL(u) − ρΨiK(u)] f du. (3.4)

Notice that ΨiK ⊂ ΨiL and f < 0, then (3.4) gives

W̃i(L) − W̃i(K,L) < 0.

Hence, using Minkowski inequality (2.9) we have

W̃i(L) < W̃i(K,L) ≤ W̃i(K)
n−i−1

n−i W̃i(L)
1

n−i ,

this and 0 ≤ i < n − 1 yield
W̃i(K) > W̃i(L). �

The proof of Theorem 1.3 needs the following lemmas.
Lemma 3.2. If K ∈ Sn

o , 0 ≤ i < n − 1 and τ ∈ [−1, 1], then

W̃i(∇̂τi K) ≤ W̃i(K), (3.5)

with equality for τ ∈ (−1, 1) if and only if K is origin-symmetric. For τ = ±1, (3.5) becomes an equality.
Proof. According to (2.1) and (2.7), we have for any Q ∈ Sn

o ,

W̃i(λ · K+̂iµ · L,Q) =
1
n

∫
Sn−1

ρn−i−1
λ·K+̂iµ·L

(u)ρQ(u)du

=
λ
n

∫
Sn−1

ρn−i−1
K (u)ρQ(u)du +

µ

n

∫
Sn−1

ρn−i−1
L (u)ρQ(u)du

= λW̃i(K,Q) + µW̃i(L,Q).

Using inequality (2.9) we obtain

W̃i(λ · K+̂iµ · L,Q) ≤ [λW̃i(K)
n−i−1

n−i + µW̃i(L)
n−i−1

n−i ]W̃i(Q)
1

n−i

Let Q = λ · K+̂iµ · L in above inequality and together with (2.8), then

W̃i(λ · K+̂iµ · L)
n−i−1

n−i ≤ λW̃i(K)
n−i−1

n−i + µW̃i(L)
n−i−1

n−i . (3.6)

And the equality condition of inequality (2.9) implies that equality holds in (3.6) for λ, µ > 0 if and only if
K and L are dilatate (if λ = 0 or µ = 0, then (3.6) becomes an equality).
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From (3.6), (2.3) and (2.2), and together f1(τ) + f2(τ) = 1 with W̃i(K) = W̃i(−K), we get that

W̃i(∇̂τi K) ≤ W̃i(K),

this is just inequality (3.5).
Since f1(τ), f2(τ) > 0 with τ ∈ (−1, 1), from the equality condition of (3.6), we know that equality holds

in (3.5) for τ ∈ (−1, 1) if and only if K and −K are dilatate, that is K is origin-symmetric.
If τ = ±1, then by ∇̂±1

i K = ±K we see (3.5) becomes an equality. �
Lemma 3.3. Let Ψi (0 ≤ i < n − 1) be an even i-th radial Blaschke-Minkowski homomorphism. If K ∈ Sn

o and
τ ∈ [−1, 1], then

Ψi(∇̂τi K) = ΨiK. (3.7)

Proof. Since Ψi (0 ≤ i < n − 1) is an even i-th radial Blaschke-Minkowski homomorphism, thus for any
K ∈ Sn

o , Ψi(−K) = ΨiK.
From this, according to (1.3), (2.1) and (2.3), we have

ρ(Ψi(∇̂τi K), ·) = ρ(∇̂τi K, ·)n−i−1
∗ µ

= [ f1(τ)ρ(K, ·)n−i−1 + f2(τ)ρ(−K, ·)n−i−1] ∗ µ

= f1(τ)ρ(K, ·)n−i−1
∗ µ + f2(τ)ρ(−K, ·)n−i−1

∗ µ

= f1(τ)ρ(ΨiK, ·) + f2(τ)ρ(Ψi(−K), ·)

= f1(τ)ρ(ΨiK, ·) + f2(τ)ρ(ΨiK, ·) = ρ(ΨiK, ·).

This gives (3.7). �
Proof of Theorem 1.3. Since K < Sn

os, thus by Lemma 3.2 we know that for τ ∈ (−1, 1),

W̃i(∇̂τi K) < W̃i(K).

Choose ε > 0 such that
W̃i((1 + ε)∇̂τi K) < W̃i(K).

From this, let L = (1 + ε)∇̂τi K, then L ∈ Sn
o (Theorem 2.1 gives that for τ = 0, L ∈ Sn

os; for τ ∈ (−1, 1) and τ , 0,
L ∈ Sn

o\S
n
os) and W̃i(L) < W̃i(K).

But by (1.4) and (3.7) we obtain

ΨiL = Ψi((1 + ε)∇̂τi K) = (1 + ε)n−i−1Ψi(∇̂τi K) = (1 + ε)n−i−1ΨiK ⊃ ΨiK. �
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