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Abstract. Schuster introduced the notion of radial Blaschke-Minkowski homomorphism and considered
its Busemann-Petty problem. In this paper, we further study the Busemann-Petty problem for the radial
Blaschke-Minkowski homomorphisms and give the affirmative and negative forms of Busemann-Petty
problem for the i-th radial Blaschke-Minkowski homomorphisms.

1. Introduction

The setting for this paper is Euclidean n-space R". Let S"! denote the unit sphere in R". For the
n-dimensional volume of body K, we write V(K).

If K is a compact star shaped (about the origin) set in IR”, then its radial function, px = p(K, -) : R"\{0} —
[0, 00), is defined by (see [5])

p(K, x) =max{A 20: Ax € K}, x e R"\{0}.

If p(K, -) is positive and continuous, K will be called a star body. The set of star bodies (about the origin) in
R" will be denoted by S}, for the set of all origin-symmetric star bodies we write S}.

Intersection bodies were first appeared in a paper by Busemann (see [2]) and were explicitly defined
and named by Lutwak (see [19]). In 1988, Lutwak defined the notion of intersection bodies as follows: For
K € 8", the intersection body, IK, of K is a star body whose radial function in the direction u € S"~! is equal
to the (n — 1)-dimensional volume of the section of K by u*, the hyperplane orthogonal to u, i.e. for all
ues1,

p(IK, u) = V(K Nut).

Further, Lutwak ([19]) showed the following Busemann-Petty problem by intersection bodies:
Problem 1.1 (Busemann-Petty problem). For K,L € S}, is there the implication

IK CIL = V(K) < V(L)?
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For the Problem 1.1, Lutwak ([19]) gave an affirmative answer if K is restricted to the class of intersection
bodies and two negative answers if K is not origin-symmetric or L is not an intersection body.

Remark 1.1 If K, L € S, then Problem 1.1 is called the symmetric Busemann-Petty problem. Gardner ([4])
and Zhang ([28]) showed that the symmetric Busemann-Petty problem has an affirmative answer for n < 4
and a negative answer for n > 5.

Intersection bodies have been becoming the centered notion in the dual Brunn-Minkowski theory (see
e.g. [4-14, 19, 24-27]). Based on the properties of intersection bodies, Schuster ([20]) introduced the radial
Blaschke-Minkowski homomorphism which is a more general intersection operator as follows:

Definition 1.A. A map ¥V : S — S} is called a radial Blaschke-Minkowski homomorphism if it satisfies the
following conditions:

(1) WV is continuous;

(2) Forall K,L € 8", W(K+,-1L) = WK+WL, i.e. WK is radial Blaschke-Minkowski sum;

(3) W(SK) = SWK forall K € 8! and all § € SO(n).

Here +,_1 and + denote L,_; and L; radial Minkowski addition, respectively; and SO(n) is the group of
rotations in n dimension,

Meanwhile, Schuster ([20]) showed that the radial Blaschke-Minkowski homomorphism satisfies the
geometric inequalities such as Aleksandrov-Fenchel, Minkowski and Brunn-Minkowski type inequalities.
In particular, Schuster ([20]) proved the following fact:

Theorem 1.A. A map ¥V : S — 8} is a radial Blaschke-Minkowski homomorphism if and only if there is a
non-negative measure u € M(S"1,e) such that for K € S", p(VK, -) is the convolution of p(K,-)" ' and yu, i.e.,

p(\yKr ) = p(Kr ')n—l * U (11)

Here e denotes the pole point of S"~! and M(S5""!,¢) denotes the signed finite Borel measure space on 5"
(see [20]).

According to (1.1), Schuster ([20]) defined the mixed radial Blaschke-Minkowski homomorphisms as
follows:
Definition 1.B. Let W : S} — S be a radial Blaschke-Minkowski homomorphism with non-negative generating
measure p € M(S"L,e), defined a mixed operator W : S" X --- x 8" — 8" by

p(\y(Kll e /Kn—l)/ ) = P(Kl/ ) e p(Kn—1/ ) * {u (12)
The body W(Ky, -+, Ky—1) is called the mixed radial Blaschke-Minkowski homomorphism of Ky, -+ , Ky—1 € S}.
If Kl == K,,,_,‘_l = K, Kn—i == Kn—l = L, then write

V(K L) =W¥(K---,KL,---,L) i=0,1,--- ,n—-2),
———— N
n—i—1 i

which is called the mixed radial Blaschke-Minkowski homomorphism of K and L. If L = B (B denotes
the unit ball centered at the origin in IR”), we call ;K = W;(K, B) the i-th radial Blaschke-Minkowski
homomorphism of K. Obviously, by (1.2) and notice p(B,) = 1, we know that for i = 0,1,---,n — 2,
p(WiK,-) = p(K, )"+ .
If we let i be real, then (1.1) can be extended to the following definition.
Definition 1.1. For K € 8}, 0 <i < n — 1, the i-th radial Blaschke-Minkowski homomorphism, WK, of K is given
by
(WK, ) = p(K, )" sy, (1.3)
where u € M(S"1,e).
From (1.3), we have that for ¢ > 0,
W;(cK) = "Wk (1.4)

In 2008, Schuster ([21]) considered the following Busemann-Petty problem for the radial Blaschke-
Minkowski homomorphisms.
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Problem 1.2. Let ¥V : S — S} be a radial Blaschke-Minkowski homomorphism. For K,L € SI, is there the
implication
WK C WL = V(K) < V(L)?

Obviously, Problem 1.2 is a more general Busemann-Petty problem than Problem 1.1. For the Problem
1.2, Schuster ([21]) gave the following affirmative and negative answers, respectively.
Theorem 1.B. Let ¥V : S — 8! be a radial Blaschke-Minkowski homomorphism. If K € WS} and L € S}, then

WK C WL = V(K) < V(L),

and V(K) = V(L) if and only if K = L. Here WS/ denotes the range of V.
Theorem 1.C. Suppose that S, € S}(V), L € SI,, p(L,-) € H" and p(L,-) > 0 (i.e., L is polynomial). If L ¢ WS},
then there exists K € SZ,, such that

WK c WL.

But
V(K) > V(L).

Here H" denotes the space of all finite sums of spherical harmonic of dimension 7.

In 2011, Wang, Liu and He ([22]) extended the radial Blaschke-Minkowski homomorphisms to L, space.
In recent years, a lot of important results for the radial Blaschke-Minkowski homomorphisms and their L,
analogies were obtained (see e.g. [1, 3, 15-17, 21-23, 29-33]).

The main goal of this paper is to study the Busemann-Petty problem for the i-th radial Blaschke-
Minkowski homomorphisms. First, we give an affirmative answer of the Busemann-Petty problem for the
i-th radial Blaschke-Minkowski homomorphisms.

Theorem 1.1. Let K,L € S}, 0 < i < n—1 and V; be the i-th radial Blaschke-Minkowski homomorphism. If
K e W;S%, then
WK C WL = Wi(K) < Wi(L).

And Wi(K) = Wi(L) if and only if K = L. Here Wi(K) denotes the dual quermassintegrals of K € SY.
Obviously, the case i = 0 of Theorem 1.1 yields Theorem 1.B.
Next, the following negative forms of the Busemann-Petty problem for the i-th radial Blaschke-Minkowski
homomorphisms are given:
Theorem 1.2. Suppose that Sl\, € S}(W;) (0 <i<n-1),Le Sk, p(L,-) € H"and p(L,-) > 0 (i.e., L is polynomial).
IfL ¢ V;S}, then there exists K € Sl such that

W, K c W,L.

But _ _
Wi(K) > Wi(L).
Here S} (WV;) denotes the injective set of \V;.
Clearly, taking i = 0 in Theorem 1.2, we immediately get Theorem 1.C.
Theorem 1.3. Let K,.L € S}, 0 <i < n—1and \V; be an even i-th radial Blaschke-Minkowski homomorphism. If
K ¢ 8¢, then there exists L € SI!, such that
W, K c VL.

But _ _
Wi(K) > Wi(L).

Let i = 0 in Theorem 1.3, we get a new negative form of the Busemann-Petty problem for the radial
Blaschke-Minkowski homomorphisms.
Corollary 1.1. Let K,L € S} and \V be an even radial Blaschke-Minkowski homomorphism. If K ¢ Si., then there
exists L € S, such that
WK c WL.
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But
V(K) > V(L).

The proofs of Theorems 1.1-1.3 are completed in Section 3.

2. Background Materials

2.1. i-th radial Blaschke combinations and general i-th radial Blaschke bodies

For K,.L € 8}, A, > 0 (not both 0), the radial Minkowski combination, /\KI[JL € 8", of Kand L is
defined by (see [5]) _
p(AK+uL, ) = Ap(K,-) + pup(L, ).

For K,L € 8, A, u = 0 (not both 0), the radial Blaschke combination, A - Kiy -L e8! of Kand L is
defined by (see [5])
p(A - K- L, )" = Ap(K, )"t + pp(L, )"

From the definitions of above two combinations, we easily see A - Kfi-\y L = AK¥,1 uL.
Now, in order to prove our results, we will extend the radial Blaschke combinations to the following
i-th radial Blaschke combinations.
ForK,.L € S),0<i<n-1and A, u > 0 (notboth 0), the i-th radial Blaschke combination, /\‘K:Fi‘ll'L S
of K and L is defined by
p(A - KFip- L)1 = Ap(K, )" + pp(L, )= 2.1)

Taking i = 0 in (2.1), then A - K+ou - L is the radial Blaschke combination A - K+ - L.
If for t € [-1,1], let

1 2 1-1)?
A= A0 = 3T, = A0 = s @2)
and L = —K in (2.1), then we write _
ViK = fi(t) - KFio(x) - (K), 23)

and called ’V\fK the general i-th radial Blaschke body of K. From (2.2) and (2.3), we easily see that ’V\}K =K,

—

V'K = -K and

= 1 1
VK = 5 Kiz (=K). (2.4)

For the general i-th radial Blaschke bodies, by (2.2) we know that fi(7) + fo(t) = 1. Hence, if K € S},
then VIK € Sj.. If K ¢ S, then we have the following fact.
Theorem 2.1. For K,L € S}, 0<i<n—1 IfK ¢ S., then for t € [-1,1],

0s’/

ViKeS! &t=0. (2.5)

Proof. If T = 0, by (2.4) we immediately get ’V\ZK e Sk,
Conversely, since ppy(—u) = p-m(u) for any M € S} and u € St thus if ’V\fK e S, ie, ’V\ZK = —’V\I.TK,
then for all u € §™1,

Pl ) = p" ) = p T (),

by (2.3) we have
n—i—1 _ n-i-1 _
Pri 0™ = Pl ey
This together with (2.1) yields

A@PETHw) + fa@)p W) = AP (=u) + fa(0)p T (—u),
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ie.,
A@PET W) + LOPT W) = A" W) + HOpi T ),
thus
[A(D) = L@IlpE ™ @) - p" )] = 0.
Since K ¢ Sp, implies p%~" (1) — p";7 (1) # 0, thus we obtain

K
fi(r) = fo(7) = 0.
This and (2.2) give T = 0. m|

2.2. Dual mixed quermassintegrals

In 1975, Lutwak ([18]) introduced the dual mixed volumes as follows: For Kj,---,K, € S, the dual
mixed volume V(Kjy,-- -, K,) is defined by

VK Ko K = [ o picto--- e (o 26)

IfKy =---=K,;.1 =K, K,;, =+ =K,-1 = Band Ky = Lin (2.6), then we write V~V,-(K,L) =

V(K, - ,K,B,---,B,L)(i=0,1,--- ,n—2). If let i be real, then W;(K, L) is called the dual mixed quermassin-
—_———— ——
n—i—1 i
tegrals whose representation is that for K,L € S and i € R,

Wi(K, L) = % fs KT wpu(u)du, 2.7)

1

If we let K = L in (2.7), then it just is the dual quermassintegrals, Wi(K), of K € §} denoted by

— — 1 ‘
Wi(K) = Wi(K,K) = - f px (w)du. (2.8)
gn-1
Further let i = 0 in (2.8), then we have the following polar coordinate formula for the volume of a body
K:
— 1
V) = W0 = 1 [

sn

p(w)du.
-1

For the above dual mixed quermassintegrals, the corresponding the Minkowski inequality is stated that
(see [20]): If KL e Sl and 0 <i<n—1, then
1

Wi(K, L) < Wi(K)'77 Wi(L)7, (2.9)

with equality if and only if K and L are dilatate.

3. Busemann-Petty Problem for the i-th Radial Blaschke-Minkowski Homomorphisms

This section is mainly devoted to prove Theorems 1.1, 1.2 and 1.3. We begin by proving the following
lemma.
Lemma3.1. fM,Ne€ S}, 0<i,j<n—1,then

W(M, W;N) = Wy(N, ¥;M). (3.1)
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Proof. According to (1.3) and (2.7), we obtain thatif 0 <i7,j < n — 1, then

_ 1 e
W;i(M,W;N) = ” j;_l P’ Y w)pwn (u)du

1 n—j= n—i-
- ﬁf Phe (PR () » pudu
Sn-1

== | o e ) x pudu
sn—l

1 .
== f pr ) pwpa(u)du
n gn-1

= Wi(N, ¥;M). o

Proof of Theorem 1.1. Since W;K C W;L (0 < i < n — 1), thus using (2.7) we know for any M € S} and
0<j<n-1,

W(M, W;K) < W;(M, W,L).
This together with (3.1) yields
Wi(K, W;M) < Wi(L, ¥;M).
Because of K € W;S}, taking W;M = K, then by (2.8) and inequality (2.9) we obtain

n

Wi(K) < Wi(L, K) < Wi(L)'* Wi(K)™,

ie.,
Wi(K) < Wi(L).
According to the equality condition of inequality (2.9), we see that Wi(K) = Wi(L) if and only if K and L
are dilatate. From this, let K = cL (¢ > 0) and together with V~Vi(K) = W,-(L), we obtain ¢ = 1. Therefore,
Wi(K) = I/~Vi(L) if and only if K = L in Theorem 1.1. O
Proof of Theorem 1.2. Let u € M(S"!,e) denote the generating measure of W;. Since L € S and

p(L,) € H", it follows from Schuster’s conclusion (see [21], the proof of Theorem 4.4) that there exists an
even function f € H", such that

p(L,) = f*p. (3.2)

Here the function f must be negative, otherwise, there exists Ly € S" such that p(Lo, )"~ = f. This together
(1.3) with (3.2) yields

p(‘yiLO/ ) = p(LO/ ')”_i_l * ‘Ll = f * [J = P(L/ ')/
ie, L =W;Lo. Thisand L ¢ WV;S} are contradictory.
From this, we can find a non-negative, even function G € H" and an even function H € H", such that

G=Hxp. (3.3)

Because of L € S}, and p(L, -) > 0, hence there exists ¢ > 0 and K € S}, such that

P(K, ')n—i—l — P(L/ _)n—i—l _ SH,

thus ' 4
p(K, )" e = p(L, )" e - eH x .
Therefore, by (1.3) and (3.3) we have

p(WiK, ) = p(WiL, ") — ¢G.
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This together G > 0 with ¢ > 0 gives
W,K c W,L.

But by (2.7), (2.8), (3.2) and (1.3), we obtain

_ _ 1 . 1 4
=W n = [ o= e wp o

g

1 i .
T fs [~ () = Pl )] pr(w)du
1

T fsﬂ_l[pf”(u) — P T @)I(f * p)du

n

= [T = G <l

n
1
=+ [ tpws = pustwl i 64)
Gn-1
Notice that W;K ¢ W;L and f < 0, then (3.4) gives
Wi(L) — Wi(K, L) < 0.
Hence, using Minkowski inequality (2.9) we have

n=i-1

Wi(L) < Wi(K, L) < Wi(K) "= Wi(L)7

~

thisand 0 < i <n —1 yield
Wi(K) > Wi(L). O

The proof of Theorem 1.3 needs the following lemmas.
Lemma3.2. IfKeS),0<i<n—1andte[-1,1], then

Wi(VIK) < Wi(K), (35)

with equality for T € (=1,1) if and only if K is origin-symmetric. For T = £1, (3.5) becomes an equality.
Proof. According to (2.1) and (2.7), we have for any Q € S,

_ 1 .
WK 1,Q) =5 [ i, (potid

A ) .
=2 [ wpaan+ £ [ o wpgtia
n 5”71 n Srz—l

= AWi(K, Q) + uWi(L, Q).
Using inequality (2.9) we obtain

n

Wi(A - K- L, Q) < [AW(K) 57 + uWi(L) 57 JWi(Q)7

Let Q = A - K+;u - L in above inequality and together with (2.8), then

n—i-1

WiA - KFip - L)55 < AWK)'5 + uWi(L) 5 (3.6)

And the equality condition of inequality (2.9) implies that equality holds in (3.6) for A, u > 0 if and only if
Kand L are dilatate (if A = 0 or u = 0, then (3.6) becomes an equality).
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From (3.6), (2.3) and (2.2), and together f;(7) + fa(7) = 1 with W;(K) = W;(~K), we get that
Wi(VIK) < Wi(K),

this is just inequality (3.5).

Since fi(7), f2(t) > 0 with 7 € (=1, 1), from the equality condition of (3.6), we know that equality holds
in (3.5) for T € (-1,1) if and only if K and —K are dilatate, that is K is origin-symmetric.

If T = +1, then by ’V\lﬂK = +K we see (3.5) becomes an equality. ]
Lemma 3.3. Let W; (0 < i < n—1) be an even i-th radial Blaschke-Minkowski homomorphism. If K € S} and
T € [-1,1], then _

Wi(ViK) = WiK. (3.7)

Proof. Since W; (0 <i < n — 1) is an even i-th radial Blaschke-Minkowski homomorphism, thus for any
K e Sg, \I—’i(—K) = W;K.
From this, according to (1.3), (2.1) and (2.3), we have

p(Wi(V7K),-) = p(VIK, )"t s«

= [A@pK, )"+ L(Op(=K, )" xp
= A(D)PpK, )" x p+ fo(D)p(=K, )T w
= ADP(YiK,) + H(Dp(Wi(-K), )

= Ai(DPp(VK, ") + fo(T)p(PiK,-) = p(ViK, ).

This gives (3.7). O
Proof of Theorem 1.3. Since K ¢ S}, thus by Lemma 3.2 we know that for v € (-1, 1),

Wi(VK) < Wi(K).

Choose ¢ > 0 such that _ . _
Wi((1 + €)ViK) < Wi(K).

From this, let L = (1+ e)’V\}K, then L € S} (Theorem 2.1 gives thatfort =0,L € Sj); fort € (-1,1)and 7 # 0,
L e SI\SL) and W;i(L) < Wi(K).
But by (1.4) and (3.7) we obtain

WL = Wi(1+&)VIK) = (1 + &) "W(VIK) = (1 + &)" " WK > W,K. o
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