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Abstract. This paper is concerned with a class of exponential dispersion distributions. We particularly
focused on the mixture models, which represent an extension of the Gaussian distribution. It should be
noted that the parameters estimation of mixture distributions is an important task in statistical processing.
In order to estimate the parameters vector, we proposed a formulation of the Expectation-Maximization
algorithm (EM) under exponential dispersion mixture distributions. Also, we developed a hybrid algorithm
called Expectation-Maximization and Method of moments algorithm (EMM). Under mild regularity, several
convergence results of the EMM algorithm were obtained. Through simulation studies, the robustness of
the EMM was proved and the strong consistency of the EMM sequence appeared when the data set size
and the number of iterations tend to infinity.

1. Introduction

Analyzing and interpreting statistical data and preparing them for application is an important step in
order to have the best approximation of the parameters in different fields, such as finance, medicine, and
insurance [14, 15].
In 1977, Dempster, Laird, and Rubin derived several convergence properties of the Maximum Likelihood
from incomplete data via the EM algorithm in a general context [1]. Dempster’s results were applicable
to many practical problems, such as the exponential dispersion models mixture which has been exten-
sively developed in the field of statistics and classification literature in particular in image segmentation
[9, 8, 15, 2, 11, 22]. This mixture was a convex combination of two or more probability density functions.
So, by combining the properties of the individual probability density functions, the mixture models were
able to approximate any arbitrary distribution. Consequently, finite mixture models constitute a powerful
and flexible tool for modeling complex data [11]. In our work, we introduced a finite mixture of exponential
dispersion distributions [3, 4] which represent a generalization of the natural exponential family which
mixture has been developed in [22]. The exponential dispersion distributions include several well-known
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families of distributions as special cases, giving a convenient general framework like the exponential family
and the Tweedie distributions. This finite mixture represents a natural extension of the finite Gaussian
mixture of distributions, with a special emphasis on the reproductive and additive cases and their use of
both continuous and discrete data. In fact, we considerd the basic examples of exponential dispersion mod-
els such as the closed Normal, Gamma, Poisson, Inverse Gaussian, Laplace and the Tweedie exponential
dispersion models closed under a scale transformation. Indeed, the exponential dispersion models have
proved to be very successful in terms of increasing the modeling flexibility while remaining within a well
understood inferential framework. A good treatment of this theory and application can be found in [3, 4]. It
is well known that the exponential dispersion models constitute the major tools of the parametric modeling
theory. Hence, in order to estimate the mixture of exponential dispersion distributions, we proposed a new
algorithm called the Expectation and Method of moments-Maximization algorithm (EMM). This algorithm
can be obtained by combining the EM algorithm [1, 13, 21] and the method of moments [16]. The exponen-
tial dispersion model is parameterized by the mean parameter µ and the dispersion parameter λ. For the
parameters estimation, it employs the EM traditional mixture, but equipped with a method-of-moments
procedure to estimate the unknown dispersion parameter. Furthermore, this combination was achieved
because some of the exponential dispersion models (like Laplace exponential dispersion model) have a
closed form where the maximum likelihood estimation of the dispersion parameters do not exist [3, 4, 17].
In fact, the Laplace exponential dispersion distribution is a convolution family given by

f (x;µ, λ) = c(x, λ)e
λ
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For a suitable function, c is given in Table 1.
These models are very useful in several applications. Indeed, they can be used in modeling and analyzing
real world data.
The proposed model has the following advantages: the simplicity and efficiency of its computation using
the EMM algorithm. The latter constitutes an iterative approach which components are the standard tool for
maximum likelihood estimation and the moment estimation in a probability distribution. Therefore, it can
easily be extended to the finite mixture of exponential dispersion models. So, it can become a very popular
computational method in statistics. The implementation of the E-step and the MM-step is easy for many
statistical problems, thanks to the complete likelihood function form. However, the main drawbacks of the
EMM algorithm are its slow convergence and the dependence of the solution on both the stopping criterion
and the initial values used. Hence, studying the asymptotic properties of the EMM sequence represents
the major issue of this work. We proved that the propose estimators of a finite mixture of exponential
dispersion models are asymptotically consistent. The finite sample property of these estimators is proved.
By using a set of simulation studies of Tweedie exponential dispersion model, we evaluated the finite
sample performance by varying the sample size. From the simulated data, we estimated the mixture
models parameters. As a result, the EMM sequence estimators are asymptotically convergent and this
has been proved by computing the mean squared error MSE. So, we are able to support our theoretical
results regarding consistency of the EMM algorithm. The remaining of this paper was organized as follows.
Section 2 reviewed some properties of the Exponential Dispersion Models (EDMs). Section 3 introduced
a finite mixture of Exponential Dispersion Models and described the proposed EMM algorithm. The
asymptotic properties of the different EMM sequences were studied in section 4. Section 5 was devoted to
the conclusion.

2. Properties of the Exponential Dispersion Models

The EDMs constitute some statistical models in which the probability distributions are characterized
by a special form [3, 4]. In fact, this class of models represents a generalization of the Natural Exponential
Families (NEFs) which play an important role in the statistical theory as a result of its special structure that
allows making deductions dealing with appropriate statistical inference.
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The EDMs represent a large class of models, characterized by a high number of important mathematical
properties [5, 3, 4].
Let ν be a σ- finite positive measure on (R,B(R)). We denote by

Lν(θ) =

∫
R

eθyν(dy) (1)

the Laplace transform of ν, whose effective domain and cumulant function are, respectively, given by
D(ν) = int{θ ∈ R; Lν(θ) < +∞}, and Cν(θ) = log(Lν(θ)).
We denote byM(R) the set of σ - finite positive measures, such that D(ν) is not empty and ν is not a Dirac
measure.
For all measures ν ∈ M(R), the NEF [4, 12, 18] generated by ν is defined by

F = F(ν) = {P(θ, ν)(dy) = eθy−Cν(θ)ν(dy);θ ∈ D(ν)}. (2)

Let us notice that θ −→ Cν(θ) is strictly convex, infinitely differentiable, and its differential is given by
C
′

ν(θ) =
∫
R

yP(θ, ν)(dy). The open interval MF = C
′

ν(D(ν)) is called the mean domain of F. We state that

C
′

ν : D(ν) −→ MF
θ 7−→ C

′

ν(θ) = µ

defines a bijection. So, we denote its inverse function by ψν, and µ −→ VF(µ) = [ψ
′

ν(µ)]−1
= C

′′

ν (ψν(µ))
represents the variance function of the NEF F [4, 12, 18].
We obtain a new parametrization called the mean parametrization [18]. So, the NEF is given by F =
{P(µ,F) = P(ψν(µ), ν), µ ∈MF}. Note that the variance functionVF characterizes the NEF F [10].
We define the Jørgensen set of ν by

Λ(ν) = {λ > 0,∃νλ ∈ M(R) ; Lνλ (θ) = (Lν(θ))λ ∀θ ∈ D(ν) = D(νλ)}. (3)

Hence, the measure ν is infinitely divisible, if Λ(ν) =]0,+∞[.
For a fixed λ ∈ Λ(ν), we equivalently say that

Fλ = F(νλ) = {P(µ,Fλ) = eψν(
µ
λ )y−λCν(ψ( µλ ))νλ(dy);µ ∈ λMF} (4)

is the NEF generated by νλ which verifies

VFλ (µ) = λVF(
µ

λ
) ∀ µ ∈MFλ = λMF. (5)

In what follows, we consider F = F(ν) as a natural exponential family, and we denote byC = Cν, ψ = ψν,V =
VF.
Let Y be a random variable with distribution P(θ, νλ) and θ = ψν(

µ
λ ).

Then, the expectation and the variance of Y are, respectively, given by

E(Y) = λC′(θ), and Var(Y) = λC′′(θ) = λV
(µ
λ

)
. (6)

These models draw their richness from a dispersion parameter σ2 = 1
λ which is equal to 1 in the case of

NEF.
Consequently, the EDM constitutes a useful generalization of the NEF, and it is a generated form given by
ED(ν) = {P(µ,Fλ), µ ∈ λMF, λ ∈ ∧(ν)}.
For both theoretical and practical reasons, the Gaussian distribution is probably the most important dis-
tribution in statistics for example in modeling applications, such as linear and non-linear regressions. So,
Jørgensen [4] proposes the reproductive EDMs as an extension of the Gaussian distribution given by

f (x) =
1

σ
√

2π
e
−1
2σ2 (x−µ)2

, x ∈ R (7)
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indeed Jørgensen [4] defines a dispersion model by extending the Euclidean distance (x − µ)2 to a general
discrepancy function d(x;µ)2 between the observation x and the mean µ. So, many commonly used
parametric distributions, such as those in Table 1, Table 2 and Table 3 below, are included as special cases
of this extension. From more on, we used the reproductive EDMs.
According to Jørgensen (1997), we considered the following transformation [4]. If Y ∼ P(µ,Fλ), where
µ = E(Y) = λC′(θ) is the expectation and λ is the dispersion parameter. Then, X = Y

λ follows the
reproductive distribution defined by

P∗(µ, νλ)(dx) = eλ[ψ( µλ )x−C(ψ( µλ ))]ν∗λ(dx) (8)

and is characterized by its expectation and its variance function given by

E(X) = C′(θ) =
µ

λ
, and Var(X) =

V
(
µ
λ

)
λ

, (9)

where µ ∈ λMF, λ ∈ ∧(ν), and ν∗λ denotes the image measure of νλ by the map y −→ y
λ = x.

Let us assume that there exist a σ finite measure ζ and a positive function c(x, λ), such that ν∗λ(dx) =
c(x, λ)ζ(dx). Then,

P∗(µ, νλ)(dx) = eλ[ψ( µλ )x−C(ψ( µλ ))]c(x, λ)ζ(dx), (10)

where ζ denotes the Lebesgue measure, if P∗ is a continuous probability, and it is the counting measure, if
P∗ is a discrete probability. Moreover, if P∗ is the sum of discrete and continuous measures, then ζ is the
sum of a Lebesgue measure and a counting measure.
Some examples of absolutely continuous EDMs [4, 5] are summarized in the following Table.

Gaussian Gamma Inverse Gaussian Laplace

c(x, λ)
√
λ
√

2π
e
−λx2

2 λλxλ−1

Γ(λ)

√
λ
√

2π
x
−3
2 e

−λ
2x λeλx

Γ(λ)2

∫ +∞

λx
e−2ttλ−1(t − λx)λ−1dt

D(ν) R (−∞, 0) (−∞, 0) ] − 1, 1[
C(θ) θ2

2 − log(−θ) −
√
−2θ − log(1 − θ2)

ψ(µ) µ −1
µ −

1
2µ2

[
√

(1+µ2)−1]
µ

V(µ) 1 µ2 µ3 [
√

(1+µ2)−1]

µ2
√

(1+µ2)

Table 1: Examples of absolutely continuous EDMs.

The Stable and the Tweedie Compound Poisson EDMs are presented in Table 2 below.

Stable, α ∈ ]0, 1[ Tweedie Compound Poisson, p ∈]1, 2[

c(x, λ) 1
πx

∑
∞

k=1
Γ(1+αk)λkkk( −1

λx )
k! sin(−αkπ) 1

x

∑
∞

k=1
λkkk( −1

λx )
Γ(−αk)k!

D(ν) (−∞, 0) (−∞, 0)

C(θ) α−1
α ( θ

α−1 )α 1
2−p [θ(1 − p)]

2−p
1−p

ψ(µ) (α − 1)µ
1
α−1 µ1−p 1

1−p

V(µ) µ
α−2
α−1 µp

Table 2: The Stable (α) and the Tweedie Compound Poisson (p) EDMs.
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Finally, in the last following Table, we presented the Cosinus Hyperbolic EDM and some discrete EDMs.

Binomial Ne1ativeBinomial Poisson CosinusHyperbolic

c(x, λ) λ

(
λ
λx

)
λ

(
λ + λx − 1

λx

)
λλx

x! λ2λ−2 |Γ( (λ+iλy)
2 )|2

Γ(λ)Γ( λ2 )2

D(ν) R R− R (− π2 ,
π
2 )

C(θ) log(1 + eθ) − log(1 − eθ) eθ − log(cos(θ))
ψ(µ) log( µ

1−µ ) log( µ
1+µ ) log(µ) arctan(µ)

V(µ) µ(1 − µ) µ(1 + µ) µ 1 + µ2

Table 3: The Cosinus Hyperbolic EDM and some discrete EDMs.

We now consider the estimation of the vector parameters (µ, λ) of the exponential dispersion distribu-
tion. So, if (x1, x2, ..., xN) are independent and identically distributed observations from the distribution
considered here, then the maximum likelihood estimate for µ is given by

µ̂ =
1
N

N∑
i=1

xi. (11)

In general case, the maximum likelihood estimate of λ = 1
σ2 doesn’t exist and it is estimated by the Pearson

estimator (see [3, 4]). In the last part of this work, we focused particulary on the mixture of exponential
dispersion distributions.

3. A Finite mixture of Exponential Dispersion Models

In the following, we showed the generalization of the EDMs for a finite mixture [9, 8, 15, 2, 11, 20, 21, 23].
In this section, we introduced the finite mixture of EDMs, especially the finite mixture of distributions.
Let µ ∈MF, λ ∈ Λ(ν), and let X be a random variable with a probability distribution P∗(µ, νλ). This random
variable has a probability density function, with respect to ζ, which is given by

f (x;µ, λ) = c(x, λ)eλ[ψ( µλ )x−C(ψ( µλ ))]. (12)

We say that a density f is a mixture of K components of exponential dispersion distributions f1, f2, ..., fK, if

f (x) =

K∑
k=1

πk fk
(
x;µk, λk

)
, (13)

where πk represents the mixing weights, 0 < πk < 1,
∑K

k=1 πk = 1 and fk(.;µk, λk) denotes the exponential
dispersions density function with parameters µk and λk.
Let Θ = (µ1, . . . , µK, π1, . . . , πK, λ1, ..., λK) be the parameter vector of the mixture models. So, the mixture
density of the exponential dispersion distributions is given by

f (x) =

K∑
k=1

πkc(x, λk)e
λk

[
ψ(

µk
λk

)x−C(ψ(
µk
λk

))
]
. (14)

Now, we are interested in estimating the vector parameter Θ of the mixture models. To resolve this problem,
we proposed an iterative algorithm. This new algorithm was obtained by combining the EM algorithm
[1, 13] and the method of moments [16].
The proposed, so called EMM algorithm, consists of the following two steps: Expectation and Method of
moments-Maximization.
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The issue of using a combined maximum-likelihood and moment estimator could first be considered for a
single distribution and then can easily be extended to the finite mixture case.
So, we applied the EM algorithm in order to estimate the parameter vector

β =
(
π1, . . . , πK, µ1, . . . , µK

)
, (15)

and we proposed to estimate the unknown dispersion parameter λk by using the method of moments.
In the statistical world, there exist some statistical dispersion models for which their density function

has a special form, and the maximum likelihood of the dispersion parameter λk cannot be found as a mix-
ture of Laplace EDMs (See Figure 1). So, to resolve this problem, we resorted to use the method of moments.

From the Laplace exponential dispersion density(see Figure 1) the maximum is not achieved.
So, a modification of the M step of the EM algorithm was proposed to estimate the dispersion parameter λ.
This modification can lead to a new algorithm: Expectation and Method of moments-Maximization (EMM)
which constitutes the solution.

Figure 1: Curve of the Laplace exponential dispersion density distribution with respect to λ.

It is impossible to determine the maximum likelihood of the dispersion parameter associated with a mixture
of Laplace EDMs.
In fact, the conditional expectation of the complete-data log-likelihood Q given the observed data X and
a parameterizations Θ(l) (the parameter vector in the lth iteration) associated with the mixture of Laplace
exponential dispersion distributions found in the Expectation step of the EM algorithm [1]. It is a multimodal
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function with respect to the dispersion parameter λ, it has more than one global optima (see Figure 2).
Consequently, the estimator of the dispersion parameter does not exist. So, the maximum likelihood
estimator is undefined.

Figure 2: Illustration of the Q conditional expectation of Laplace exponential dispersion distribution with
respect to λ.

3.1. Parameters estimation
Let (X1, ...,XN) be N independent random variables with the same density function f (i.i.d) given by

(14), and let (x1, ..., xN) be N associated observations.
The incomplete likelihood function l of (x1, ..., xN) is given by

l(x1, x2, . . . , xN; Θ) =

N∏
i=1

f (xi) =

N∏
i=1

 K∑
k=1

πkc(xi, λk)e
λk

[
ψ(

µk
λk

)xi−C(ψ(
µk
λk

))
] . (16)

Since, we need to use the logarithm in order to turn multiplication into addition, then the log-likelihood L
is

L(x1, x2, . . . , xN; Θ) = log l(x1, x2, . . . , xN; Θ) =

N∑
i=1

log

 K∑
k=1

πk fk(xi;λk, µk)

 . (17)

A mixture model is a convex combination of K distributions. It has a complex distribution of an observed
variable Xi given by (13). Therefore, maximizing the incomplete likelihood function over Θ is a difficult
task. So, in order to estimate the parameter vector Θ, for each observed data point Xi we associate a discrete
random vector Zi = (Zi1, ...,ZiK) following a multivariate Bernoulli distribution with vector parameters
(π1, ..., πK). That is

P(Zi = zi) =

K∏
k=1

πzik
k , (18)

where zi = (zi1, ..., ziK) ∈ {0, 1}K, and
K∑

k=1

zik = 1. The random variables (Zi)1≤i≤N are called latent variables or

missing values which indicate which component Xi is drawn from. Furthermore, if Zik = 1 this means that
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the observation Xi exists in the class k.
Note that

E(Xi|Zik = 1) =
µk

λk
and Var(Xi|Zik = 1) =

V(µk

λk
)

λk
. (19)

The maximum likelihood function from complete data lc is given by

lc(x1, . . . , xN, z1, . . . , zN; Θ) =

N∏
i=1

P (Zi = zi)
K∏

k=1

f zik
k

(
xi;λk, µk

)
=

N∏
i=1

 K∏
k=1

(
πk fk(xi;λk, µk)

)zik

 .
In addition, the log-likelihood function Lc from complete data is written as

Lc(x1, x2, . . . , xN, z1, z2, . . . , zN; Θ) =

N∑
i=1

K∑
k=1

zik log(πk) +

N∑
i=1

log

 K∑
k=1

πk fk
(
xi;λk, µk

)
=

N∑
i=1

K∑
k=1

zik log
(
πk fk

(
xi;λk, µk

))
,

where
∑K

k=1 zik = 1. The EMM algorithm is an iterative approach for finding estimators for models with
latent variables. It consists of two steps: the expectation step (E), which computes the expectation of
the log-likelihood evaluated using the current estimate for the parameters, and the Method of moments-
Maximization step (MM), which computes the parameters maximizing the expected log-likelihood found
at the E step and estimate the dispersion parameter by using the Method of moments.
The Expectation step computes the conditional expectation of the complete data log likelihood [14, 1] for
Z1, ...,ZN given X1 = x1, ...,XN = xN in the lth iteration.

Q(Θ||Θ(l)) = E
(
Lc (X1 = x1, ...,XN = xN,Z1, ...,ZN; Θ) |Θ(l),X1 = x1, ...,XN = xN

)
=

N∑
i=1

K∑
k=1

τik
(l) log

(
πk fk(xi;λk, µk)

)
,

where

τ(l)
ik = E

(
Zik|Θ

(l),X1 = x1, ...,XN = xN

)
= E

(
Zik|Θ

(l),Xi = xi

)
=

π(l)
k fk(xi;λ

(l)
k , µ

(l)
k )

K∑
k=1

π(l)
k fk(xi;λ

(l)
k , µ

(l)
k )

,

with i = 1, . . . ,N, k = 1, . . . ,K and Θ(l) = Θ(l)(X1, ...,XN).
So, the conditional expectation of the complete-data log likelihood Q associated with the mixture of expo-
nential dispersion distributions [14, 1] is given by

Q(Θ||Θ(l)) =

N∑
i=1

K∑
k=1

τ(l)
ik

[
log(πk) + log c(xi, λk) + λkxiψ(

µk

λk
) − λkC(ψ(

µk

λk
))
]
. (20)

The MM step (Method of moments-Maximization) consists in estimating both the dispersion parameter
λ = (λ1, ..., λK) using the method of moments, and the vector parameter β = (µ1, . . . , µK, π1, . . . , πK) using
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the maximum likelihood method.
Hence, by maximizing the concave function β −→ Q(β||β(l)), we obtain the estimated vector parameter
β(l+1) = Argmax

β
Q(β||β(l)) in the (l + 1)th iteration, such as

Q(β(l+1)
||β(l)) ≥ Q(β(l)

||β(l)). (21)

In the (l + 1)th iteration of the EM algorithm, it follows that the updated estimate β(l+1) for β is obtained by
solving

∂Q(β||β(l))
∂β

= 0. (22)

According to Dempster, Laird, and Rubin [1] and by applying Jensen’s inequality, the Incomplete-likelihood
function was not decreased after each EM iteration.
In the last part of this section, we consider two cases of the EMM algorithm where the dispersion parameter
λ is known and unknown.

3.1.1. Known dispersion parameter
Theorem 3.1. Suppose that λ1, ..., λK are known. Then, in the (l + 1)th iteration, the EM results are

π(l+1)
k =

1
N

N∑
i=1

τ(l)
ik , (23)

and

µk
(l+1) = λk

N∑
i=1

τ(l)
ik xi

N∑
i=1

τ(l)
ik

. (24)

Proof:
Let us recall that the conditional expectation of the complete data log-likelihood is defined by

Q(β||β(l)) =

N∑
i=1

K∑
k=1

τ(l)
ik log

(
πk fk

(
xi;λk, µk

))
=

N∑
i=1

 K∑
k=2

τ(l)
ik log

(
πk fk

(
xi;λk, µk

))
+ τ(l)

i1 log

1 −
K∑

k=2

πk

 f1
(
xi;λ1, µ1

) ) .
We calculate the first derivative function of Q, with respect to πk, which is given by

∂Q(β||β(l))
∂πk

=

N∑
i=1

τ(l)
ik

1
πk
−

N∑
i=1

τ(l)
i1

f1
(
xi;λ1, µ1

)1 − K∑
k=2

πk

 f1
(
xi;λ1, µ1

)

=

N∑
i=1

τ(l)
ik

1
πk
−

N∑
i=1


τ(l)

i1

1 −
K∑

k=2

πk


.
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By making it equal to zero, we obtain

πk

π1
=

N∑
i=1

τ(l)
ik

N∑
i=1

τ(l)
i1

. (25)

Furthermore, we have

K∑
k=1

(
πk

π1

)
=

K∑
k=1



N∑
i=1

τ(l)
ik

N∑
i=1

τ(l)
i1


.

As,
∑K

k=1 πk = 1 and
∑K

k=1 τ
(l)
ik = 1 we obtain

1
π1

=

∑N
i=1

∑K
k=1 τ

(l)
ik∑N

i=1 τ
(l)
i1

.

Consequently, we have

π1 =
1
N

N∑
i=1

τ(l)
i1 .

By replacing it in equation (25), and in the (l + 1)th iteration, we get

π(l+1)
k =

1
N

N∑
i=1

τ(l)
ik . (26)

π(l+1)
k represents the maximum likelihood estimator of the mixing proportion πk.

Since ψ is a bijective function, then (µ1, ..., µK) −→
(
ψ

(
µ1

λ1

)
, ..., ψ

(
µK

λK

))
= (t1, ..., tK) is bijective. So, a new

parametrization by (tk, λk, πk) of the conditional expectation of the complete-data log-likelihood Q is ob-
tained. Hence,

Argmax
µ=(µ1,...,µK)∈MK

Fλ

Q(β||β(l)) = Argmax
µ=(µ1,...,µK)∈MK

Fλ

 N∑
i=1

K∑
k=1

τ(l)
ik λk{xiψ(

µk

λk
) − C(ψ(

µk

λk
))}


= Argmax

t=(t1,...,tK)∈D(ν)K

 N∑
i=1

K∑
k=1

τ(l)
ik λk{xitk − C(tk)}

 .
Therefore, we calculate the Hessian matrix of

(t1, ..., tK) −→
N∑

i=1

K∑
k=1

τ(l)
ik λk{xitk − C(tk)} = H(t1, ..., tk)

which is a diagonal matrix. So, ∀k = 1, ...,K we get

∂H(t1, ..., tK)
∂tk

=

N∑
i=1

τ(l)
ik λk{xi − C

′

(tk)}.
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Therefore,
∂2H(t1, ..., tK)

∂2tk
= −

N∑
i=1

τ(l)
ik λkC

′′

(tk) and
∂2H(t1, ..., tK)

∂tk∂t j
= 0.

So, we deduce that the Hessian matrix is given by

H
′′

(t1, ..., tK) = dia1

− N∑
i=1

λ1τ
(l)
i1C

′′

(t1), ...,−
N∑

i=1

λKτ
(l)
iKC

′′

(tK)

 ,
where diag denotes the diagonal matrix.
Since C is strictly convex on D(ν) then, H is strictly concave on (D(ν))K. So, the maximum of Q is achieved

when
∂H(t1, ..., tK)

∂tk
= 0, ∀k = 1, ...,K.

∂Q(Θ||Θ(l))
∂tk

=

N∑
i=1

τ(l)
ik

[
λkxi − λkC

′

(tk)
]

=

N∑
i=1

τ(l)
ik λk

[
xi − C

′

(tk)
]

= 0.

This means that
N∑

i=1

τ(l)
ik xi =

N∑
i=1

τ(l)
ikC

′

(tk).

By using equation (9) we obtain ∀k = 1, ....,K, C′ (tk) =
µk

λk
.

Hence,
N∑

i=1

τ(l)
ik xi =

N∑
i=1

τ(l)
ik

µk

λk
.

Therefore, in the (l + 1)th iteration, the estimator of the mean parameter µk is given by

µk
(l+1) = λk

N∑
i=1

τ(l)
ik xi

N∑
i=1

τ(l)
ik

. (27)

3.1.2. Unknown dispersion parameter

The method of moments [16] is an estimation method of population parameters, using the law of large
numbers. We introduced this technique in order to approximate the unknown parameter λk. Since the
conditional variance of X1, given Z1k = 1, is defined by

Var(X1|Z1k) =
V

(
µk

λk

)
λk

(28)

then, by applying the method of moments, we get

λk =
V

(
µk

λk

)
S(l+1)

k

, (29)
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where

Sk
(l+1) =

N∑
i=1

τ(l)
ik

xi −
µ(l)

k

λ(l)
k


2

N∑
i=1

τ(l)
ik

(30)

denotes the empirical variance data in the (l + 1)th iteration.

We will prove that the empirical variance Sk
(l) converges in probability to Var(X1/Z1k) =

V
(
µk
λk

)
λk

as data size
N tends to infinity.
So, the estimator of λk in the (l + 1)th iteration is given by

λk
(l+1) =

V


N∑

i=1

τ(l)
ik xi

N∑
i=1

τ(l)
ik


S(l+1)

k

, (31)

and will converge, as N tends to infinity, to λk.
Maximization of Qwith unknown dispersion parameter was proved in the following Theorem.

Theorem 3.2. Suppose that λ1, ..., λK are unknown. Let λ(l+1)
k the estimator of λk in the (l + 1)th iteration is given

by equation (3.29). Then, in the (l + 1)th iteration, we have

π(l+1)
k =

1
N

N∑
i=1

τ(l)
ik , (32)

and

µk
(l+1) = λk

(l+1)

N∑
i=1

τ(l)
ik xi

N∑
i=1

τ(l)
ik

. (33)

We now considered a description of the EMM algorithm with unknown dispersion parameter which
combines the EM algorithm and the method of moments.

Algorithm 3.3. The EMM algorithm
1: begin
2: Initialisation: Θ(0) =

(
λk

(0), µk
(0), πk

(0)
)

3: Sk
(0)
←−

N∑
i=1

τ(0)
ik

xi −
µ(0)

k

λ(0)
k


2

N∑
i=1

τ(0)
ik



M. Zitouni et al. / Filomat 32:19 (2018), 6575–6598 6587

λk
(1)
←−

V



N∑
i=1

τ(0)
ik xi

N∑
i=1

τ(0)
ik


S(0)

k

4: µk
(1)
←− λk

(1)

N∑
i=1

τ(0)
ik xi

N∑
i=1

τ(0)
ik

5: πk
(1)
←−

1
N

N∑
i=1

τik
(0)

6: Θ(1)
←−

(
λk

(1), µk
(1), πk

(1)
)

7: Iteration (l+1) :
8: Expectation:

9: τ(l)
ik ←−

π(l)
k fk(xi;λ

(l)
k ,µ

(l)
k )

K∑
k=1

π(l)
k fk(xi;λ

(l)
k , µ

(l)
k )

10: Method of moments-Maximization:

11: Sk
(l+1)
←−

N∑
i=1

τ(l)
ik

xi −
µ(l)

k

λ(l)
k


2

N∑
i=1

τ(l)
ik

12: λk
(l+1)
←−

V



N∑
i=1

τ(l)
ik xi

N∑
i=1

τ(l)
ik


S(l+1)

k

13: µk
(l+1)
←− λk

(l+1)

N∑
i=1

τ(l)
ik xi

N∑
i=1

τ(l)
ik

14: πk
(l+1)
←−

1
N

N∑
i=1

τik
(l)

15: Θ(l+1)
←− {λk

(l+1), µk
(l+1), πk

(l+1)
}

16: If ||Θ(l+1)
−Θ(l)

|| < ε is not satisfied return to step 2.
17: end

3.2. Example

Now, let us consider an estimation example of the dispersion parameters Tweedie models [3, 4] with
variance functionV(µ) = µp and 1 < p < 2. The estimators of the parameters (µ, λ, π) in the (l + 1)th iteration
are, respectively, given by
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the mean estimator

µk
(l+1) = λk

(l+1)

N∑
i=1

τ(l)
ik xi

N∑
i=1

τ(l)
ik

, (34)

the dispersion parameter estimator

λk
(l+1) =


(
µk

(l+1)
)p

Sk
(l+1)


1

p+1

, and (35)

the mixing weight estimator

πk
(l+1) =

1
N

N∑
i=1

τ(l)
ik . (36)

In order to illustrate the EMM algorithm performances, we considered an example of mixture with 3
components of Tweedie distributions (see Figure 3) with true parameters µ = [µ1, µ2, µ3], λ = [λ1, λ2, λ3]
and π = [π1, π2, π3] (see Table 4). We simulated a sample with different sizes N = 10000, 15000, 20000, 30000
from a mixture of 3 components of Tweedie distributions.

Note that the histograms have the form of the mixture of 3 components Tweedie distributions. We
generated n = 10000 samples of size N = 10000 observations (x1

(i), x2
(i), ..., xN

(i)), 1 ≤ i ≤ n from a mixture
of 3 components Tweedie distributions and we, then, computed the estimated parameters using the EMM
algorithm.
In order, to prove the consistency of the EMM sequence and to further test the accuracy of the proposed
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Figure 3: Histograms of mixture of 3 components of Tweedie distributions with p = 1.7

algorithm, we calculated the mean squared error between the estimated parameter θ̂ and the true value of
the parameter

θ
(
i.e. MSE(θ, θ̂) = 1

n
∑n

i=1

(
θ̂i − θ

)2
)

we then computed the mean squared error between the estimated den-

sity f̂ and the true density f(
MSE( f , f̂ ) = 1

nN
∑n

i=1
∑N

j=1

(
f̂
(
x j

(i)
)
− f

(
x j

(i)
))2)

which are reported in Table 4 below.

True parameters Estimated parameters MSE(θ, θ̂) MSE( f , f̂ )
µ = [0.1 0.39 0.5] [0.1002 0.3931 0.5011] [0.00231 0.00323 0.003432]
λ = [1 4 6] [1.0041 4.00207 6.1032] [0.00202 0.00133 0.00426] 0.0063

π = [0.29 0.31 0.4] [0.2871 0.3011 0.410] [0.01101 0.00150 0.01210]

Table 4: Estimated parameters by EMM algorithm and the MSE values.

For different true values of parameters vector Θ and for a small sample size N = 10000, Table 4 shows
that the MSE values for the EMM approach are clearly low. We notice that the latter gives good practical
results.

In the second experiment, we proved the performance of the EMM algorithm by the curve of the true
and the estimated mixture density distributions of Tweedie EDMs with p = 1.7. These are very close, the
estimated density f̂ converges to the true density f (see Figure 4).
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Figure 4: Curve of the true and the estimated mixture density of 3 Tweedie EDMs.

When comparing the true and the estimated parameters of a Tweedie mixture with p = 1.7, we con-
cluded from the MSE that there exists a tiny variation between the true and the estimated parameters.
From these results and the curve of the true and the estimated mixture density distributions of Tweedie
EDMs with p = 1.7, we suggested performing the EMM algorithm for the exponential dispersion mixture
densities.
Another experiment is to evaluate the algorithm convergence with respect to the sample size N. So, several
simulations are created using samples with different sizes N varying from 100 to 10000.

N 100 200 500 1000 2000 5000 10000
MSE 0.12369 0.02208 0.01002 0.009514 0.0078 0.0071 0.00631

Table 5: The MSE values with respect to the sample size N.

From the Table 5, it is clearly seen that the proposed algorithm EMM converges. Therefore, we observe
a rapid decrease of the MSE values when the sample size N is greater than 500.

4. Asymptotic properties

In this section, we studied the asymptotic properties [9, 14, 19, 21, 7, 23] of the maximum likelihood
estimators of πk and µk determined by the EM algorithm [1] and the estimator of the dispersion parameter
λk using the method of moments [16] for the mixture model of exponential distributions, with fixed number
K of components.
The EMM algorithm is the combination of the EM algorithm (based on the method of maximum likelihood)
and the method of moments. However, it does not have the same properties of the EM algorithm [1, 6] .
Using the moment estimates here makes little difference. Indeed, in our work there is no guarantee that the
incomplete likelihood increases after each EMM iteration with the unknown dispersion parameter. In this
section, we provided a proof of the EMM sequence consistency [17, 1, 16].
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This consistency is a condition which ensures that, for large data set size N tends to infinity, the estimators
will converge to the true parameters. In what follows, we denote by π = (π1, π2, ..., πK), λ = (λ1, ..., λK) and
µ = (µ1, µ2, ..., µK).

Theorem 4.1. Suppose that Θ(l+1) = Θ(l+1)(X1, ...,XN) = (π(l+1), µ(l+1), λ(l+1)) is the EMM sequence.
Then, in probability we have

lim
N→+∞

µ(l+1) = µ. (37)

lim
N→+∞

π(l+1) = π. (38)

lim
N→+∞

λ(l+1) = λ. (39)

The proof of Theorem 4.1 necessitates the following technical lemmas.

Lemma 4.2. Let (WN)N≥1 be a sequence of i-i-d random variables in the space of square integrable functions L2 with
a common mean µ, and let (VN)N≥1 be a sequence of random variables. Then,

E(WN |VN) −→
N→+∞

µ, in L2 (40)

where WN = 1
N

∑N
i=1 Wi.

Proof of Lemma 4.2:
Let us denote σ2 = Var(Wi) < +∞.
Since (WN)N≥1 are i-i-d, then

Var(WN) =
σ2

N
−→

N→+∞
0.

It is well known that
σ2

N
= Var(WN) = E

(
Var(WN |VN)

)
+ Var

(
E(WN |VN)

)
.

Then, we have

0 ≤ Var
(
E(WN |VN)

)
≤
σ2

N
.

This implies that
Var

(
E(WN |VN)

)
−→

N→+∞
0.

Hence,
E(WN |VN) −→

N→+∞
E(W1) = µ, in L2

which completes this proof.

Proof of Theorem 4.1:
Let FN

(l) = σ(Θ(l)(X1, ...,XN), (X1, ...,XN)) be a σ-algebra .
1) We will prove that lim

N→+∞
π(l+1)

k = πk, in probability.

Recall that

π(l+1)
k =

1
N

N∑
i=1

τ(l)
ik .

Mention that
τ(l)

ik = E
(
Zik|FN

(l)
)
.
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By applying Lemma 4.2, we obtain

π(l+1)
k =

1
N

N∑
i=1

τ(l)
ik = E

 1
N

N∑
i=1

Zik|FN
(l)

 −→N→+∞
E(Z1k) = πk, in L2.

Therefore,
lim

N→+∞
π(l+1)

k = πk, in probability.

2) We will prove that lim
N→+∞

µ(l+1)
k = µk, in probability.

Recall that, the mean estimator in the (l + 1)th iteration is given by

µk
(l+1) = λk

(l+1)

N∑
i=1

τ(l)
ik Xi

N∑
i=1

τ(l)
ik

= λ(l+1)
k

1
N

N∑
i=1

τ(l)
ik Xi

1
N

N∑
i=1

τ(l)
ik

,

and we have

E(Z1kX1) = E(Z1kX1|Z1k = 1)P(Z1k = 1) + E(Z1kX1|Z1k = 0)P(Z1k = 0)

= E(Z1kX1|Z1k = 1)P(Z1k = 1) + 0 =
µk

λk
πk. (41)

Let us note that
1
N

N∑
i=1

τ(l)
ik Xi = E

 1
N

N∑
i=1

ZikXi|FN
(l)

 .
Then, according to Lemma 4.2, we have

lim
N→+∞

E

 1
N

N∑
i=1

ZikXi|FN
(l)

 =
µk

λk
πk, in probability

which implies that

lim
N→+∞

µ(l+1)
k

λ(l+1)
k

= lim
N→+∞

1
N

N∑
i=1

τ(l)
ik Xi

1
N

N∑
i=1

τ(l)
ik

=
µkπk

λkπk
=
µk

λk
, in probability.

3) We will now prove that lim
N→+∞

λk
(l+1) = λk, in probability.

We see that, λk
(l+1) is the solution of the equation λk

(l+1) =
V

(
µk

(l+1)

λk
(l+1)

)
Sk

(l+1)
.

Observe that

E(Z1kX2
1) = E(Z1kX2

1|Z1k = 1)P(Z1k = 1) + E(Z1kX2
1|Z1k = 0)P(Z1k = 0)

= (Var(X1|Z1k = 1) + (E(X1|Z1k = 1))2)πk = (
1
λk
V(
µk

λk
) +

µk
2

λk
2 )πk. (42)



M. Zitouni et al. / Filomat 32:19 (2018), 6575–6598 6593

After some calculations, we have

lim
N→+∞

1
N

N∑
i=1

τ(l)
ik

(
Xi −

µk
(l)

λk
(l)

)2

= lim
N→+∞

E(
1
N

N∑
i=1

Zik(Xi −
µ(l)

k

λ(l)
k

)2
|FN

(l))

= lim
N→+∞

E(
1
N

N∑
i=1

ZikX2
i |FN

(l))

− lim
N→+∞

2(
µ(l)

k

λ(l)
k

)E(
1
N

N∑
i=1

ZikXi|FN
(l))

+ lim
N→+∞

(
µk

(l)

λk
(l)

)2E(
1
N

N∑
i=1

Zik|FN
(l))

= E(X1
2Z1k) − 2

µk
2

λk
2πk +

µk
2

λk
2πk

=
1
λk
V(
µk

λk
)πk.

Consequently, we obtain

lim
N→+∞

S(l+1)
k =

1
λk
V(
µk

λk
).

As

lim
N→+∞

µk
(l+1)

λk
(l+1)

=
µk

λk
, in probability,

and sinceV is continuous on MF, then we have

lim
N→+∞

V

(
µk

(l+1)

λk
(l+1)

)
= V

(µk

λk

)
, in probability.

Hence,

lim
N→+∞

λ(l+1)
k = lim

N→+∞

V
(
µk

(l+1)

λk
(l+1)

)
S(l+1)

k

=
V(µk

λk
)

1
λk
V(µk

λk
)

= λk.

We conclude that, for large data, the estimator of the dispersion parameter converges in probability to the
true parameter λk. Which completes this proof.

Theorem 4.3. Suppose that, almost surely, we have

lim
l→+∞

λ(l) = λ̂, (43)

lim
l→+∞

µ(l) = µ̂ (44)

and

lim
l→+∞

π(l) = π̂. (45)

Then, (π̂k,
µ̂k

λ̂k
) is the maximum likelihood estimator of (πk,

µk

λk
), k = 1, ...,K and λ̂k is the estimator of λk by the method

of moments.
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Proof:
Note that, the mapping

(µ1, ..., µK) −→ (
µ1

λ1
, ...,

µK

λK
) = (t1, ..., tK) = t

is bijective. Hence, we obtain a new parametrization by (t, λ, π) of the mixture model. Then, the density
mixture is given by

f (x) =

K∑
k=1

πkc(x, λk)eλk[ψ(tk)x−C(ψ(tk))]. (46)

Let X1,X2, ....,XN be a sample with mixture density f (x) given by (46). So, the log-likelihood with Θ = (t, λ, π)
is given by

L(X1,X2, . . . ,XN; Θ) =

N∑
i=1

log
( K∑

k=1

π(l)
k fk(Xi; tk, λk)

)
.

Note that, tk −→ ψ(tk)x − C(ψ(tk)) is a strictly concave function. Then, the mixture density f is also strictly
concave with respect to t = (t1, ...tk).
Observe that, a-s

lim
l→+∞

λ(l) = λ̂

and
lim

l→+∞
µ(l) = µ̂.

Therefore, t(l)
k =

µ(l)
k

λ(l)
k

converges to t̂k =
µ̂k

λ̂k
as the iteration l tends to +∞.

As ψ is a continuous function, we obtain

lim
l→+∞

ψ(t(l)
k ) = ψ(t̂k).

Now we show that,
∂L(X1,X2, . . . ,XN; t̂k)

∂tk
= 0,

gives that the maximum likelihood estimator for tk is t̂k.
Indeed, we have for k ∈ {1, ...,K},

∂L(X1,X2, . . . ,XN; t(l))
∂tk

=

N∑
i=1

π(l)
k c(Xi, λ

(l)
k )

[V(t(l)
k )]
−1[
λ(l)

k Xi − λ
(l)
k t(l)

k

]
eλ

(l)
k [ψ(t(l)

k )Xi−C(ψ(t(l)
k ))]∑K

k=1 π
(l)
k fk(Xi; t(l)

k , λ
(l)
k )

=

N∑
i=1

τ(l)
ik [V(t(l)

k )]
−1
λ(l)

k [Xi − t(l)
k ],

by letting l −→ +∞, we obtain

lim
l→+∞

τ(l)
ik = lim

l→+∞

π(l)
k fk(Xi;λ

(l)
k , t

(l)
k )

K∑
k=1

π(l)
k f j(Xi;λ

(l)
k , t

(l)
k )

=
π̂k fk(Xi; λ̂k, t̂k)

K∑
k=1

π̂k fk(Xi; λ̂k, t̂k)



M. Zitouni et al. / Filomat 32:19 (2018), 6575–6598 6595

because fk is a continuous function.

By using, τ̂ik =
π̂k fk(Xi; λ̂k, t̂k)

K∑
k=1

π̂k fk(Xi; λ̂k, t̂k)

, and computing the first derivative of L with respect to tk, we obtain,

∂L(X1,X2, . . . ,XN; t̂)
∂tk

=

N∑
i=1

τ̂ikλ̂k[V(t̂k)]
−1

[Xi − t̂k]

=

N∑
i=1

τ̂ikλ̂k[V(t̂k)]
−1

Xi −

N∑
i=1

τ̂ikλ̂k[V(t̂k)]
−1

t̂k

= 0.

This result implies that, t̂k =
µ̂k

λ̂k
is the maximum likelihood estimator

of tk =
µk

λk
, ∀k ∈ {1, ...,K}.

2) Now, we consider the log-likelihood function with Θ = (µ, λ, π) which is given by

L(X1,X2, . . . ,XN; Θ) =

N∑
i=1

log( f (Xi)) =

N∑
i=1

log

 K∑
k=1

πk fk(Xi;λk, µk)

 ,
where the component density fk is given by

fk(x;λk, µk) = c(x, λk)eλk[ψ(
µk
λk

)x−C(ψ(
µk
λk

))].

Clearly, the mixture density f is a concave function with respect to the mixing weight. On the other
hand, observe that

lim
l→+∞

πk
(l) = lim

l→+∞

∑N
i=1 τ

(l)
ik

N
= π̂k.

Now, we show for k ∈ {1, ...,K},
∂L(X1,X2, . . . ,XN; π̂)

∂πk
= 0

gives that the maximum likelihood estimator for πk is π̂k.
Recall that, the posterior probabilities are given by

τ(l)
ik =

π(l)
k fk(Xi;λ

(l)
k , µ

(l)
k )

K∑
k=1

π(l)
k fk(Xi;λ

(l)
k , µ

(l)
k )

by letting l −→ +∞, we obtain

∂L(X1,X2, . . . ,XN; π̂)
∂πk

=

N∑
i=1

τ̂ik
1
π̂k
−N = 0.

From this result, it follows that π̂k is the maximum likelihood estimator of πk, ∀k ∈ {1, ...,K}.
3) By hypothesis, lim

l→+∞
λk

(l) = λ̂k, a-s

where

λk
(l+1) =

V
(∑N

i=1 τ
(l)
ik Xi∑N

i=1 τ
(l)
ik

)
S(l+1)

k

,
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and by letting l −→ +∞, we obtain

Sk
(l+1) =

N∑
i=1

τ(l)
ik

Xi −
µ(l)

k

λ(l)
k


2

N∑
i=1

τ(l)
ik

−→
l→+∞

Ŝk =

N∑
i=1

τ̂ik

Xi −
µ̂k

λ̂k

2

N∑
i=1

τ̂ik

,

and

V



N∑
i=1

τ(l)
ik Xi

N∑
i=1

τ(l)
ik


−→

l→+∞
V



N∑
i=1

τ̂ikXi

N∑
i=1

τ̂ik


= V(

µ̂k

λ̂k

).

Then, λk
(l+1) converges to λ̂k =

V( µ̂k

λ̂k
)

Ŝk

as l −→ +∞, which is the estimator of λk by the method of moments

[16], which completes this proof.

Theorem 4.4. Suppose that

Θ(l)(X1, ...,XN) = (µ(l), π(l), λ(l)) a−s
−→

l→+∞
Θ̂(X1, ...,XN) = (µ̂, π̂, λ̂). (47)

Then,

Θ̂(X1, ...,XN) = (µ̂, π̂, λ̂) −→
N→+∞

Θ(X1, ...,XN) = (µ, π, λ), in probability. (48)

Proof:
Note that

lim
l→+∞

τ(l)
ik = lim

l→+∞

π(l)
k fk(Xi;λ

(l)
k , µ

(l)
k )

K∑
k=1

π(l)
k fk(Xi;λ

(l)
k , µ

(l)
k )

=
π̂k fk(Xi; λ̂k, µ̂k)

K∑
k=1

π̂k fk(Xi; λ̂k, µ̂k)

= τ̂ik

because fk is a continuous distribution.

1) First we will prove that, lim
N→+∞

π̂k =
1
N

N∑
i=1

τ̂ik = πk, in probability.

Mention that
τ̂ik = E

(
Zik|F̂N

)
where, F̂N = σ(Θ̂(X1, ...,XN), (X1, ...,XN)) be a σ- algebra.
By applying Lemma 4.2, we obtain

E

 1
N

N∑
i=1

Zik|F̂N

 −→N→+∞
E(Z1k) = πk, in L2.

Therefore,
lim

N→+∞
π̂k = πk, in probability.
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2) In the second part of this proof, we will show that lim
N→+∞

µ̂k = µk, in probability .

On the other hand, we have
1
N

N∑
i=1

τ̂ikXi = E

 1
N

N∑
i=1

ZikXi|F̂N

 .
Then, according to Lemma 4.2 and equation (41) we have

lim
N→+∞

E

 1
N

N∑
i=1

ZikXi|F̂N

 = E(Z1kX1) =
µk

λk
πk, in probability.

This implies that,

lim
N→+∞

µ̂k

λ̂k

= lim
N→+∞

1
N

N∑
i=1

τ̂ikXi

1
N

N∑
i=1

τ̂ik

=
µkπk

λkπk
=
µk

λk
, in probability.

3) We will now prove that lim
N→+∞

λ̂k = λk, in probability.

We see that, λ̂k is the solution of the equation λ̂k =
V

(
µ̂k

λ̂k

)
Ŝk

.

And

lim
N→+∞

λ̂k = lim
N→+∞

V( µ̂k

λ̂k
)

Ŝk

,

according to equation (42) and by using the fact that

lim
N→+∞

1
N

N∑
i=1

τ̂ik

Xi −
µ̂k

λ̂k

2

= lim
N→+∞

E(
1
N

N∑
i=1

Zik(Xi −
µ̂k

λ̂k

)2
|F̂N)

= lim
N→+∞

E(
1
N

N∑
i=1

ZikX2
i |F̂N) − lim

N→+∞
2(
µ̂k

λ̂k

)E(
1
N

N∑
i=1

ZikXi|F̂N)

+ lim
N→+∞

(
µ̂k

λ̂k

)2E(
1
N

N∑
i=1

Zik|F̂N)

= E(X1
2Z1k) − 2

µk
2

λk
2πk +

µk
2

λk
2πk

=
1
λk
V(
µk

λk
)πk,

we obtain
lim

N→+∞
Ŝk =

1
λk
V(
µk

λk
).

Since

lim
N→+∞

µ̂k

λ̂k

=
µk

λk
, in probability

and sinceV is continuous on MF, then we have

lim
N→+∞

V

 µ̂k

λ̂k

 = V
(µk

λk

)
, in probability.
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Consequently,

lim
N→+∞

λ̂k = lim
N→+∞

V
(
µ̂k

λ̂k

)
Ŝk

=
V

(
µk

λk

)
1
λk
V

(
µk

λk

) = λk,

which completes this proof.

5. Conclusion

In this paper, we tried to answer two major issues raised in the introduction. First, we proposed an
iterative algorithm called the EMM algorithm in order to estimate the parameters of the finite mixture of
exponential dispersion distributions. The EMM algorithm is the combination of the EM algorithm (based
on the method of maximum likelihood) and the method of moments. The proposed algorithm determines
the estimators of the mixing weight π, the mean µ, and the dispersion parameter λ. Second, we presented
the asymptotic properties of the EMM sequence when the data set of size N tends to infinity, and the
number of iterations l tends to infinity. These results suggest that the mixture of exponential dispersion
distributions is proved to be an efficient solution for an estimation framework. In a future work, we propose
to use the EDM in an unsupervised image segmentation.
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