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Abstract. The Wiener-type invariants of a simple connected graph G = (V(G),E(G)) can be expressed in
terms of the quantities W f =

∑
{u,v}⊆V(G) f (dG(u, v)) for various choices of the function f (x), where dG(u, v) is

the distance between vertices u and v in G. In this paper, we mainly give some sufficient conditions for
a connected graph to be k-connected, β-deficient, k-hamiltonian, k-edge-hamiltonian, k-path-coverable or
satisfy α(G) ≤ k.

1. Introduction

Throughout this paper, we only consider graphs which are simple, undirected and finite. We refer
the reader to [3] for terminologies and notations not defined here. Let G denote a graph with vertex
set V(G) = {v1, v2, . . . , vn} and edge set E(G). Let di = dvi = dG(vi) denote the degree of vi. Denote by
(d1, d2, . . . , dn) the degree sequence of the graph G, where d1 ≤ d2 ≤ · · · ≤ dn. Let G and H be two disjoint
graphs. The disjoint union of G and H, denoted by G + H, is the graph with vertex set V(G) ∪ V(H) and
edge set E(G) ∪ E(H). The disjoint union of k graphs G is denoted by kG. The join of G and H, denoted by
G ∨ H, is the graph obtained from disjoint union of G and H by adding edges joining every vertex of G to
every vertex of H. The complement G of G is the graph on V(G) with edge set [V]2

\ E(G).
In theoretical chemistry, molecular structure descriptors, also called topological indices, are used for

modeling physico-chemical, pharmacologic, toxicologic, biological and other properties of chemical com-
pounds. For vi, v j ∈ V(G), let dG(vi, v j) denote the distance between vi and v j. The Wiener index W(G) of a
connected graph G is defined by

W(G) =
∑

{u,v}⊆V(G)

dG(u, v).

In 1947, the Wiener index was introduced by Wiener [29], who used it for modeling the shape of organic
molecules and for calculating several of their physico-chemical properties. More details on vertex distances
and Wiener index can be found in [8, 9, 16, 28, 29].

In 1993, for the characterization of molecular graphs, Ivanciuc et al. [14] and Plavšić et al. [26]
independently introduced the Harary index H(G) of a graph G. It has been named in honor of Professor

2010 Mathematics Subject Classification. Primary 05C50; Secondary 05C40, 05C07
Keywords. Wiener-type index, degree sequence, graph properties.
Received: 05 January 2016; Accepted: 24 October 2017
Communicated by Paola Bonacini
Corresponding author: Ligong Wang
Research supported by the National Natural Science Foundation of China (No. 11171273).
Email addresses: qnzhoumath@163.com (Qiannan Zhou), lgwangmath@163.com (Ligong Wang), luyong.gougou@163.com (Yong Lu)



Q.N. Zhou, L.G. Wang, Y. Lu / Filomat 32:2 (2018), 489–502 490

Frank Harary on the occasion of his 70th birthday. The definition of Harary index is as follows:

H(G) =
∑

{u,v}⊆V(G)

1
dG(u, v)

.

More details on Harary index can be found in [6, 25, 30, 32, 34].
Some generalizations and modifications of the Wiener index were proposed. Many of these Wiener-type

invariants can be expressed in terms of the quantities

W f = W f (G) =
∑

{u,v}⊆V(G)

f (dG(u, v)),

for various choices of the function f (x). We know that when f (x) = x, Wx is the Wiener index; when f (x) = 1
x ,

W 1
x

is the Harary index; when f (x) = x2+x
2 , W x2+x

2
is called the hyper-Wiener index [27], which is denoted by

WW; when f (x) = xλ, where λ , 0 is a real number, Wxλ is called the modified Wiener index [11], which is
denoted by Wλ. More details on Wiener-type invariants can be found in [7, 12, 15].

In recent years, some sufficient conditions in terms of Wiener index and Harary index are given for a
graph to be Hamiltonian, traceable or have other graph properties. More details can be found in [10, 13, 21–
24, 31, 33]. In 2016, Kuang et al. [18] gave some sufficient conditions on Wiener-type invariants for a graph
to be Hamiltonian or traceable, for a connected bipartite graph to be Hamiltonian which included some
previous results.

In this paper, we mainly give some sufficient conditions in terms of Wiener-type invariants for some
graph properties. In Section 2, we will give some graph notations and useful lemmas. In Section 3, we
will present some sufficient conditions for a connected graph to be k-connected, β-deficient, k-hamiltonian,
k-edge-hamiltonian and k-path-coverable, respectively, in terms of Wiener-type index.

2. Some definitions and lemmas

First, we give some notations of graphs used in this paper.
A connected graph G is called to be k-connected (or k-vertex connected) if it has more than k vertices and

remains connected whenever fewer than k vertices are removed.
The deficiency def(G) of a graph G is the number of vertices unmatched under a maximum matching in

G. In particular, G has a 1-factor if and only if def(G)=0. If def(G)≤ β, then we call G β-deficient.
A cycle is called a Hamilton cycle if it contains every vertex of a graph. The graph is said to be Hamiltonian

if it has a Hamilton cycle. A graph is k-hamiltonian if for all |X| ≤ k, the subgraph induced by V(G)\X is
Hamiltonian. Thus 0-hamilotnian is the same as Hamiltonian.

A graph G is k-edge-hamiltonian if any collection of vertex-disjoint paths with at most k edges altogether
belong to a Hamilton cycle in G.

A path is called a Hamilton path if it contains every vertex of a graph. The graph is said to be traceable if it
has a Hamilton path. More generally, G is k-path-coverable if V(G) can be covered by k or fewer vertex-disjoint
paths. In particular, 1-path-coverable is the same as traceable.

A subset S of V(G) is called an independent set of G if no two vertices of S are adjacent in G. The number
of vertices in a maximum independent set of G is called the independence number of G and is denoted by
α(G).

An integer sequence π = (d1 ≤ d2 ≤ · · · ≤ dn) is called graphical if there exists a graph G having π as
its vertex degree sequence, in that case, G is called a realization of π. If P is a graph property, such as
hamiltonian or k-connected, we call a graphical sequence π forcibly P if every realization of π has property
P. Historically, the vertex degrees of a graph have been used to provide sufficient conditions for the graph
to have certain properties, such as hamiltonicity or k-connectedness.

Next, we give some useful lemmas.
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Lemma 2.1. ([2]) Let G be a graph of order n ≥ 4 with degree sequence π = (d1 ≤ d2 ≤ · · · ≤ dn). If

di ≤ i + k − 2⇒ dn−k+1 ≥ n − i, f or 1 ≤ i ≤
1
2

(n − k + 1),

then π is forcibly k-connected.

Lemma 2.2. ([19]) Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence and let 0 ≤ β ≤ n with n ≡ β(mod 2). If

di+1 ≤ i − β⇒ dn+β−i ≥ n − i − 1, f or 1 ≤ i ≤
1
2

(n + β − 2),

then π is forcibly β-deficient.

Lemma 2.3. ([4]) Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence and 0 ≤ k ≤ n − 3. If

di ≤ i + k⇒ dn−i−k ≥ n − i, f or 1 ≤ i <
1
2

(n − k),

then π is forcibly k-hamiltonian.

Lemma 2.4. ([17]) Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence and 0 ≤ k ≤ n − 3. If

di−k ≤ i⇒ dn−i ≥ n − i + k, f or k + 1 ≤ i <
1
2

(n + k),

then π is forcibly k-edge-hamiltonian.

Lemma 2.5. ([5, 20]) Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence and k ≥ 1. If

di+k ≤ i⇒ dn−i ≥ n − i − k, f or 1 ≤ i <
1
2

(n − k),

then π is forcibly k-path-coverable.

Lemma 2.6. ([1]) Let π = (d1 ≤ d2 ≤ · · · ≤ dn) be a graphical sequence and k ≥ 1. If

dk+1 ≥ n − k,

then π is forcibly α(G) ≤ k.

3. Main Results

Theorem 3.1. Let G be a connected graph of order n ≥ k + 1. If

W f (G) ≤
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n − k[ f (2) − f (1)],

for a monotonically increasing function f (x) on x ∈ [1,n − 1], or

W f (G) ≥
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n + k[ f (1) − f (2)],

for a monotonically decreasing function f (x) on x ∈ [1,n − 1], then G is k-connected unless G = Kk−1 ∨ (K1 + Kn−k).
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Proof. Assume that G is not k-connected and has degree sequence (d1, d2, . . . , dn), where d1 ≤ d2 ≤ · · · ≤ dn.

By Lemma 2.1, there is an integer 1 ≤ i ≤
n − k + 1

2
such that di ≤ i + k − 2 and dn−k+1 ≤ n − i − 1. Obviously,

1 ≤ k ≤ n − 1. Note that G is connected. If f (x) is a monotonically increasing function for x ∈ [1,n − 1], then

W f (G) =
1
2

n∑
s=1

n∑
t=1

f (dG(vs, vt))

≥
1
2

n∑
s=1

[ f (1)ds + f (2)(n − 1 − ds)]

=
1
2

n∑
s=1

[(n − 1) f (2) − ( f (2) − f (1))ds]

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2

n∑
s=1

ds

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(

i∑
s=1

ds +

n−k+1∑
s=i+1

ds +

n∑
s=n−k+2

ds)

≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
[i(i + k − 2) + (n − k − i + 1)(n − i − 1) + (k − 1)(n − 1)]

=
1
2

n(n − 1) f (2) − [ f (2) − f (1)][
n2
− 3n
2

− (i − 1)(n − i − k) + k]

=
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n − k[ f (2) − f (1)] + [ f (2) − f (1)](i − 1)(n − i − k).

Similarly, if f (x) is a monotonically decreasing function for x ∈ [1,n − 1], then

W f (G) ≤
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n + k[ f (1) − f (2)] − [ f (1) − f (2)](i − 1)(n − i − k).

If f (x) is a monotonically increasing function on [1,n − 1], by the condition of Theorem 3.1, we have
(i − 1)(n − i − k) ≤ 0. Then we discuss the following two cases.

Case 1. Assume that (i−1)(n−i−k) = 0. In this case, we get W f (G) =
f (1)
2

n2+[ f (2)−
3
2

f (1)]n−k[ f (2)− f (1)].
So all the inequalities in the above arguments should be equalities. Thus, we have (a) the diameter of G is
no more than two; (b) d1 = · · · = di = i + k − 2, di+1 = · · · = dn−k+1 = n − i − 1 and dn−k+2 = · · · = dn = n − 1;
and (c) i = 1 or n = i + k.

If i = 1, then d1 = k − 1, d2 = · · · = dn−k+1 = n − 2, dn−k+2 = · · · = dn = n − 1. It implies that

G = Kk−1 ∨ (K1 + Kn−k), which is not k-connected as stated in [1]. If n = i + k, since i ≤
n − k + 1

2
and n ≥ k + 1,

then n = k + 1. Thus 1 ≤ i ≤ n−k+1
2 = 1, then i = 1. This case is the same as we discussed above.

Case 2. We assume i ≥ 2 and n− i− k < 0. Note that i ≤ n−k+1
2 , hence 0 ≤ i− 1 ≤ n− i− k, a contradiction.

If f (x) is a monotonically decreasing function on [1,n − 1], we can prove the result by a similar method.
The proof is complete.

From Theorem 3.1, the previous work (see Theorem 3.1 in [10]) is a direct corollary when f (x) = x, 1
x .

Moreover, when f (x) = x2+x
2 , xλ in Theorem 3.1, we have the following corollaries.

Corollary 3.2. Let G be a connected graph of order n ≥ k + 1. If its hyper-Wiener index

WW(G) ≤
1
2

n2 +
3
2

n − 2k,
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then G is k-connected unless G = Kk−1 ∨ (K1 + Kn−k).

Corollary 3.3. Let G be a connected graph of order n ≥ k + 1. If its modified Wiener index

Wλ(G) ≤
1
2

n2 + (2λ −
3
2

)n − k(2λ − 1),

for λ > 0, or

Wλ(G) ≥
1
2

n2 + (2λ −
3
2

)n + k(1 − 2λ),

for λ < 0, then G is k-connected unless G = Kk−1 ∨ (K1 + Kn−k).

Theorem 3.4. Let G be a connected graph of order n ≥ 10 with n ≡ β (mod 2) and 0 ≤ β ≤ n. If

W f (G) ≤
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n + (2β − 5)[ f (2) − f (1)],

for a monotonically increasing function f (x) on x ∈ [1,n − 1], or

W f (G) ≥
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n − (2β − 5)[ f (1) − f (2)],

for a monotonically decreasing function f (x) on x ∈ [1,n−1], then G is β-deficient unless G ∈ {K1∨(2K1 +Kn−3),K4∨

6K1}.

Proof. Suppose that G is not β-deficient and has degree sequence (d1, d2, . . . , dn), where d1 ≤ d2 ≤ · · · ≤ dn.
By Lemma 2.2, there is an integer 1 ≤ i ≤ 1

2 (n + β − 2) such that di+1 ≤ i − β and dn+β−i ≤ n − i − 2. Note that
G is connected. If f (x) is a monotonically increasing function for x ∈ [1,n − 1], as the proof of Theorem 3.1,
then we have

W f (G) ≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2

n∑
s=1

ds

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(

i+1∑
s=1

ds +

n+β−i∑
s=i+2

ds +

n∑
s=n+β−i+1

ds)

≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
[(i + 1)(i − β) + (n + β − 2i − 1)(n − i − 2) + (i − β)(n − 1)]

=
1
2

n(n − 1) f (2) − [ f (2) − f (1)][
n2
− 5n + 10

2
− (i − 1)(n −

3
2

i + β − 4) − 2β]

=
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n + (2β − 5)[ f (2) − f (1)] + [ f (2) − f (1)](i − 1)(n −
3
2

i + β − 4).

Similarly, if f (x) is a monotonically decreasing function for x ∈ [1,n − 1], then

W f (G) ≤
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n − (2β − 5)[ f (1) − f (2)] − [ f (1) − f (2)](i − 1)(n −
3
2

i + β − 4).

If f (x) is a monotonically increasing function on [1,n − 1], by the condition of Theorem 3.4, we have
(i − 1)(n − 3

2 i + β − 4) ≤ 0. Then we discuss the following two cases.

Case 1. Assume (i − 1)(n −
3
2

i + β − 4) = 0. In this case, we get W f (G) =
f (1)
2

n2 + [2 f (2) −
5
2

f (1)]n +

(2β − 5)[ f (2) − f (1)]. So all the inequalities in the above arguments should be equalities. Thus, we have
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(a) the diameter of G is no more than two; (b) d1 = · · · = di+1 = i − β, di+2 = · · · = dn+β−i = n − i − 2 and

dn+β−i+1 = · · · = dn = n − 1; and (c) i = 1 or n =
3
2

i − β + 4.

If i = 1, then d1 = d2 = 1−β, so β = 0, otherwise v1 and v2 are two isolated vertices and G is disconnected.
Then d1 = d2 = 1, d3 = · · · = dn−1 = n − 3, dn = n − 1. It implies that G = K1 ∨ (2K1 + Kn−3), which is not

β-deficient as stated in [1]. If n =
3
2

i − β + 4, since i ≤
1
2

(n + β − 2), n ≥ 10, then n = 10, β = 0 and i = 4. The
corresponding graphic sequences is (4, 4, 4, 4, 4, 4, 9, 9, 9, 9), which implies G = K4 ∨ 6K1.

Case 2. We assume i ≥ 2 and n−
3
2

i+β−4 < 0. Since i ≤
1
2

(n+β−2) and n ≥ 10, n−
3
2

i+β−4 ≥
n
4

+
β

4
−

5
2
≥ 0,

a contradiction.
If f (x) is a monotonically decreasing function on [1,n − 1], we can prove the result by a similar method.
The proof is complete.

From Theorem 3.4, the previous work (see Theorem 3.2 in [10]) is a direct corollary when f (x) = x,
1
x

.

Moreover, when f (x) =
x2 + x

2
, xλ in Theorem 3.4, we have the following corollaries.

Corollary 3.5. Let G be a connected graph of order n ≥ 10 with n ≡ β(mod 2) and 0 ≤ β ≤ n. If its hyper-Wiener
index

WW(G) ≤
1
2

n2 +
7
2

n + 4β − 10,

then G is β-deficient unless G ∈ {K1 ∨ (2K1 + Kn−3),K4 ∨ 6K1}.

Corollary 3.6. Let G be a connected graph of order n ≥ 10 with n ≡ β(mod 2) and 0 ≤ β ≤ n. If its modified Wiener
index

Wλ(G) ≤
1
2

n2 + (2λ+1
−

5
2

)n + (2β − 5)(2λ − 1),

for λ > 0, or

Wλ(G) ≥
1
2

n2 + (2λ+1
−

5
2

)n − (2β − 5)(1 − 2λ),

for λ < 0, then G is β-deficient unless G ∈ {K1 ∨ (2K1 + Kn−3),K4 ∨ 6K1}.

Theorem 3.7. Let G be a connected graph of order n ≥ 3 and 0 ≤ k ≤ n − 3. If

W f (G) ≤
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n − (k + 2)[ f (2) − f (1)],

for a monotonically increasing function f (x) on x ∈ [1,n − 1], or

W f (G) ≥
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n + (k + 2)[ f (1) − f (2)],

for a monotonically decreasing function f (x) on x ∈ [1,n − 1], then G is k-hamiltonian unless G ∈ {Kk+1 ∨ (K1 +
Kn−k−2), 3K1 ∨ Kk+2 (n = k + 5)}.

Proof. Suppose that G is not k-hamiltonian and has degree sequence (d1, d2, . . . , dn), where d1 ≤ d2 ≤ · · · ≤ dn.
By Lemma 2.3, there exists an integer k, such that di ≤ i + k and dn−i−k ≤ n − i − 1. Note that G is connected.
If f (x) is a monotonically increasing function for x ∈ [1,n − 1], as the proof of Theorem 3.1, then we have
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W f (G) ≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2

n∑
s=1

ds

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(

i∑
s=1

ds +

n−i−k∑
s=i+1

ds +

n∑
s=n−i−k+1

ds)

≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
[i(i + k) + (n − 2i − k)(n − i − 1) + (i + k)(n − 1)]

=
1
2

n(n − 1) f (2) − [ f (2) − f (1)][
n2
− 3n
2

− (i − 1)(n −
3
2

i − k − 2) + k + 2]

=
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n − (k + 2)[ f (2) − f (1)] + [ f (2) − f (1)](i − 1)(n −
3
2

i − k − 2).

Similarly, if f (x) is a monotonically decreasing function for x ∈ [1,n − 1], then

W f (G) ≤
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n + (k + 2)[ f (1) − f (2)] − [ f (1) − f (2)](i − 1)(n −
3
2

i − k − 2).

If f (x) is a monotonically increasing function on [1,n − 1], by the condition of Theorem 3.7, we have

(i − 1)(n −
3
2

i − k − 2) ≤ 0. Then we discuss the following two cases.

Case 1. Assume that (i − 1)(n −
3
2

i − k − 2) = 0. In this case, we get W f (G) =
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n −
(k + 2)[ f (2) − f (1)]. So all the inequalities in the above arguments should be equalities. Thus, we have
(a) the diameter of G is no more than two; (b) d1 = · · · = di = i + k, di+1 = · · · = dn−i−k = n − i − 1 and
dn−i−k+1 = · · · = dn = n − 1; and (c) i = 1 or n = 3

2 i + k + 2.
Subcase 1.1. If i = 1, then d1 = k + 1, d2 = · · · = dn−k−1 = n − 2, dn−k = · · · = dn = n − 1. It implies that

G = Kk+1 ∨ (K1 + Kn−k−2).

Subcase 1.2. If n =
3
2

i + k + 2, since i < 1
2 (n − k), then n < k + 8, i.e., n ≤ k + 7. Note that n ≥ k + 3.

Then n = k + 5, i = 2. Thus d1 = d2 = k + 2, d3 = n − 3 = k + 2, d4 = · · · = dn = n − 1 = k + 4, which implies
G = Kk+2 ∨ 3K1.

Case 2. We assume i ≥ 2 and n−
3
2

i−k−2 < 0. Since i <
1
2

(n−k), then n−
3
2

i−k−2 > n−
3
2
·
1
2

(n−k)−k−2 =

n
4
−

k
4
− 2. When n ≤ k + 7, if n = k + 3 or n = k + 4, then i = 1, a contradiction. If n = k + 5, i = 2, then the

case has been discussed in Subcase 1.2. If n = k + 6, i = 2, then n − 3
2 i − k − 2 = k + 6 − 3 − k − 2 = 1 > 0, a

contradiction. If n = k+7, i = 2, then n− 3
2 i−k−2 = k+7−3−k−2 = 2 > 0, a contradiction. If n = k+7, i = 3,

then n− 3
2 i−k−2 = k+7− 9

2 −k−2 = 1
2 > 0, a contradiction. When n ≥ k+8, then n−

3
2

i−k−2 >
n
4
−

k
4
−2 ≥ 0,

a contradiction.
If f (x) is a monotonically decreasing function on [1,n − 1], we can prove the result by a similar method.
The proof is complete.

By Theorem 3.7, when f (x) = x,
1
x
,

x2 + x
2

, xλ, we have the following corollaries.

Corollary 3.8. Let G be a connected graph of order n ≥ 3 and 0 ≤ k ≤ n − 3. If its Wiener index

W(G) ≤
1
2

n2 +
1
2

n − k − 2,

then G is k-hamiltonian unless G ∈ {Kk+1 ∨ (K1 + Kn−k−2), 3K1 ∨ Kk+2 (n = k + 5)}.
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Corollary 3.9. Let G be a connected graph of order n ≥ 3 and 0 ≤ k ≤ n − 3. If its Harary index

H(G) ≥
1
2

n2
− n +

1
2

(k + 2),

then G is k-hamiltonian unless G ∈ {Kk+1 ∨ (K1 + Kn−k−2), 3K1 ∨ Kk+2 (n = k + 5)}.

Corollary 3.10. Let G be a connected graph of order n ≥ 3 and 0 ≤ k ≤ n − 3. If its hyper-Wiener index

WW(G) ≤
1
2

n2 +
3
2

n − 2(k + 2),

then G is k-hamiltonian unless G ∈ {Kk+1 ∨ (K1 + Kn−k−2), 3K1 ∨ Kk+2 (n = k + 5)}.

Corollary 3.11. Let G be a connected graph of order n ≥ 3 and 0 ≤ k ≤ n − 3. If its modified Wiener index

W f (G) ≤
1
2

n2 + (2λ −
3
2

)n − (2λ − 1)(k + 2),

for λ > 0, or

W f (G) ≥
1
2

n2 + (2λ −
3
2

)n + (1 − 2λ)(k + 2),

for λ < 0, then G is k-hamiltonian unless G ∈ {Kk+1 ∨ (K1 + Kn−k−2), 3K1 ∨ Kk+2 (n = k + 5)}.

Theorem 3.12. Let G be a connected graph of order n ≥ 8 and 0 ≤ k ≤ n − 3. If

W f (G) ≤
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n − (nk +
1
2

k2
−

5
2

k + 2)[ f (2) − f (1)],

for a monotonically increasing function f (x) on x ∈ [1,n − 1], or

W f (G) ≥
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n + (nk +
1
2

k2
−

5
2

k + 2)[ f (1) − f (2)],

for a monotonically decreasing function f (x) on x ∈ [1,n−1], then G is k-edge-hamiltonian unless G = K1∨(K1+Kn−2).

Proof. Suppose that G is not k-edge-hamiltonian and has degree sequence (d1, d2, . . . , dn), where d1 ≤ d2 ≤

· · · ≤ dn. By Lemma 2.4, there exists an integer k + 1 ≤ i < 1
2 (n + k), such that di−k ≤ i and dn−i ≤ n − i + k − 1.

Note that G is connected. If f (x) is a monotonically increasing function for x ∈ [1,n − 1], as the proof of
Theorem 3.1, we have

W f (G) ≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2

n∑
s=1

ds

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(

i−k∑
s=1

ds +

n−i∑
s=i−k+1

ds +

n∑
s=n−i+1

ds)

≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
[(i − k)i + (n − 2i + k)(n − i + k − 1) + i(n − 1)]

=
1
2

n(n − 1) f (2) − [ f (2) − f (1)][
n2
− 3n
2

− (i − 1)(n −
3
2

i + 2k − 2)

+ nk +
1
2

k2
−

5
2

k + 2]

=
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n − (nk +
1
2

k2
−

5
2

k + 2)[ f (2) − f (1)]

+ [ f (2) − f (1)](i − 1)(n −
3
2

i + 2k − 2).
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Similarly, if f (x) is a monotonically decreasing function for x ∈ [1,n − 1], then

W f (G) ≤
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n + (nk +
1
2

k2
−

5
2

k + 2)[ f (1) − f (2)]

− [ f (1) − f (2)](i − 1)(n −
3
2

i + 2k − 2).

If f (x) is a monotonically increasing function on [1,n − 1], by the condition of Theorem 3.12, we have

(i − 1)(n −
3
2

i + 2k − 2) ≤ 0. Then we discuss the following two cases.

Case 1. Assume that (i − 1)(n −
3
2

i + 2k − 2) = 0. In this case, we get W f (G) =
f (1)
2

n2 + [ f (2) −
3
2

f (1)]n −

(nk +
1
2

k2
−

5
2

k + 2)[ f (2) − f (1)]. So all the inequalities in the above arguments should be equalities. Thus
we have (a) the diameter of G is no more than two; (b) d1 = · · · = di−k = i, di−k+1 = · · · = dn−i = n − i + k − 1,

dn−i+1 = · · · = dn = n − 1; and (c) i = 1 or n =
3
2

i − 2k + 2.

Subcase 1.1. If i = 1, since k + 1 ≤ i, then k = 0. Hence d1 = 1, d2 = · · · = dn−1 = n − 2, dn = n − 1, which
implies G = K1 ∨ (K1 + Kn−2).

Subcase 1.2. If n =
3
2

i − 2k + 2, since i <
1
2

(n + k), then k + 3 ≤ n < −5k + 8. Hence k = 0, n = 5, i = 2,
which is a contradiction to n ≥ 8.

Case 2. We assume i ≥ 2 and n −
3
2

i + 2k − 2 < 0. Since i <
1
2

(n + k), n ≥ k + 3, n −
3
2

i + 2k − 2 >

n −
3
2
·

1
2

(n + k) + 2k − 2 =
n
4

+
5
4

k − 2 ≥
6k − 5

4
. If k ≥ 1, then n −

3
2

i + 2k − 2 > 0, a contradiction. If k = 0,

then i < n
2 , n − 3

2 i − 2 > n − 3
2 ·

n
2 − 2 = n

4 − 2 ≥ 0, a contradiction. Combining with the discussion of Case 1,
we can get the conclusion.

If f (x) is a monotonically decreasing function on [1,n − 1], we can prove the result by a similar method.
The proof is complete.

By Theorem 3.12, when f (x) = x,
1
x
,

x2 + x
2

, xλ, we have the following corollaries.

Corollary 3.13. Let G be a connected graph of order n ≥ 8 and 0 ≤ k ≤ n − 3. If its Wiener index

W(G) ≤
1
2

n2 +
1
2

n − (nk +
1
2

k2
−

5
2

k + 2),

then G is k-edge-hamiltonian unless G = K1 ∨ (K1 + Kn−2).

Corollary 3.14. Let G be a connected graph of order n ≥ 8 and 0 ≤ k ≤ n − 3. If its Harary index

H(G) ≥
1
2

n2
− n +

1
2

(nk +
1
2

k2
−

5
2

k + 2),

then G is k-edge-hamiltonian unless G = K1 ∨ (K1 + Kn−2).

Corollary 3.15. Let G be a connected graph of order n ≥ 8 and 0 ≤ k ≤ n − 3. If its hyper-Wiener index

WW(G) ≤
1
2

n2 +
3
2

n − 2(nk +
1
2

k2
−

5
2

k + 2),

then G is k-edge-hamiltonian unless G = K1 ∨ (K1 + Kn−2).



Q.N. Zhou, L.G. Wang, Y. Lu / Filomat 32:2 (2018), 489–502 498

Corollary 3.16. Let G be a connected graph of order n ≥ 8 and 0 ≤ k ≤ n − 3. If its modified Wiener index

W f (G) ≤
1
2

n2 + (2λ −
3
2

)n − (2λ − 1)(nk +
1
2

k2
−

5
2

k + 2),

for λ > 0, or

W f (G) ≥
1
2

n2 + (2λ −
3
2

)n + (1 − 2λ)(nk +
1
2

k2
−

5
2

k + 2),

for λ < 0, then G is k-edge-hamiltonian unless G = K1 ∨ (K1 + Kn−2).

Theorem 3.17. Let G be a connected graph of order n ≥ 4, k ≥ 1.

(1) If f (x) is a monotonically increasing function f (x) on x ∈ [1,n − 1], then we have the following results.

(i) For k = n − 3 or k <
n − 2

5
and n − k − 1 is odd, or k <

n − 5
5

and n − k − 1 is even, if W f (G) ≤

f (1)
2

(n2
−n)−

f (2) − f (1)
2

(k2
−2nk−2n+5k+4), then G is k-path-coverable unless G = K1∨(Kk+1+Kn−k−2).

(ii) For
n − 2

5
≤ k ≤ n−4 and n−k−1 is odd, if W f (G) ≤

f (2) + 3 f (1)
8

n2 +
f (2) − 3 f (1)

4
n+

f (2) − f (1)
2

[
1
4

k2 +

1
2

nk +
1
2

k − 2], then G is k-path-coverable unless G = K n−k−2
2
∨ (K n+k−2

2
+ K2).

(iii) For
n − 5

5
≤ k ≤ n−3 and n−k−1 is even, if W f (G) ≤

f (2) + 3 f (1)
8

n2
−

f (1)
2

n+
f (2) − f (1)

8
[k2 +2nk−1],

then G is k-path-coverable unless G = K n−k−1
2
∨ (K n+k−1

2
+ K1).

(2) If f (x) is a monotonically decreasing function f (x) on x ∈ [1,n − 1], then we have the following results.

(i) For k = n − 3 or k <
n − 2

5
and n − k − 1 is odd, or k <

n − 5
5

and n − k − 1 is even, if W f (G) ≥

f (1)
2

(n2
−n)−

f (2) − f (1)
2

(k2
−2nk−2n+5k+4), then G is k-path-coverable unless G = K1∨(Kk+1+Kn−k−2).

(ii) For
n − 2

5
≤ k ≤ n−4 and n−k−1 is odd, if W f (G) ≥

f (2) + 3 f (1)
8

n2 +
f (2) − 3 f (1)

4
n+

f (2) − f (1)
2

[
1
4

k2 +

1
2

nk +
1
2

k − 2], then G is k-path-coverable unless G = K n−k−2
2
∨ (K n+k−2

2
+ K2).

(iii) For
n − 5

5
≤ k ≤ n−3 and n−k−1 is even, if W f (G) ≥

f (2) + 3 f (1)
8

n2
−

f (1)
2

n+
f (2) − f (1)

8
[k2 +2nk−1],

then G is k-path-coverable unless G = K n−k−1
2
∨ (K n+k−1

2
+ K1).

Proof. By refining the technique of Feng et al. [10], we have the following proof. Assume that G is not
k-path-coverable and has degree sequence (d1, d2, . . . , dn), where d1 ≤ d2 ≤ · · · ≤ dn. By Lemma 2.5, there is
an integer 1 ≤ i ≤ 1

2 (n − k − 1) such that di+k ≤ i and dn−i ≤ n − i − k − 1. Note that G is connected. If f (x) is a
monotonically increasing function for x ∈ [1,n − 1], as in the proof of Theorem 3.1, we have

W f (G) ≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2

n∑
s=1

ds

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(

i+k∑
s=1

ds +

n−i∑
s=i+k+1

dn−i +

n∑
s=n−i+1

ds)

≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
[(i + k)i + (n − 2i − k)(n − i − k − 1) + i(n − 1)]

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(n − k)(n − k − 1) −

f (2) − f (1)
2

[3i2 − (2n − 4k − 1)i].
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Similarly, if f (x) is a monotonically decreasing function for x ∈ [1,n − 1], then

W f (G) ≤
1
2

n(n − 1) f (2) +
f (1) − f (2)

2
(n − k)(n − k − 1) +

f (1) − f (2)
2

[3i2 − (2n − 4k − 1)i].

If f (x) is a monotonically increasing function on [1,n − 1], then we have the following discussion.
Suppose 1(x) = 3x2

− (2n − 4k − 1)x with 1 ≤ x ≤ 1
2 (n − k − 1). Since n − k ≥ 2i + 1 ≥ 3, 1 ≤ k ≤ n − 3.

Because x is an integer, then we have to consider n − k − 1 is odd or even.

Case 1. If n − k − 1 is odd, then 1 ≤ x ≤
1
2

(n − k − 2). So, 1(1) = −2n + 4k + 4, 1( 1
2 (n − k − 2)) =

(−
1
4

n +
5
4

k − 1)(n − k − 2), 1( 1
2 (n − k − 2)) − 1(1) = −

1
4

(n − k − 4)(n − 5k − 2). Then we consider the following
three subcases.

Subcase 1.1. If k = n− 3, then n− k− 4 = −1 < 0, n− 5k− 2 = −4n + 13 < 0. Hence 1(
1
2

(n− k− 2)) < 1(1),
1max(x) = 1(1). Thus,

W f (G) ≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(n − k)(n − k − 1) −

f (2) − f (1)
2

(4 + 4k − 2n)

=
f (1)
2

(n2
− n) −

f (2) − f (1)
2

(k2
− 2nk − 2n + 5k + 4).

So we get the result. If W f (G) =
f (1)
2

(n2
− n) −

f (2) − f (1)
2

(k2
− 2nk − 2n + 5k + 4), then i = 1, and hence

d1 = · · · = dk+1 = 1, dk+2 = · · · = dn−1 = n − k − 2, dn = n − 1, which implies G = K1 ∨ (Kk+1 + Kn−k−2).

Subcase 1.2. If
n − 2

5
≤ k ≤ n − 4, then n − k − 4 > 0, n − 5k − 2 < 0. Hence 1(

1
2

(n − k − 2)) > 1(1),

1max(x) = 1(
1
2

(n − k − 2)). Thus,

W f (G) =
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(n − k)(n − k − 1)

−
f (2) − f (1)

2
(−

1
4

n +
5
4

k − 1)(n − k − 2)

=
f (2) + 3 f (1)

8
n2 +

f (2) − 3 f (1)
4

n +
f (2) − f (1)

2
[
1
4

k2 +
1
2

nk +
1
2

k − 2].

So we get the result. If W f (G) =
f (2) + 3 f (1)

8
n2 +

f (2) − 3 f (1)
4

n +
f (2) − f (1)

2
[
1
4

k2 +
1
2

nk +
1
2

k − 2], then

i =
1
2

(n − k − 2), and hence d1 = d2 = · · · = d n+k−2
2

= n−k−2
2 , d n+k

2
= d n+k+2

2
= n−k

2 , d n+k+4
2

= · · · = dn = n − 1, which

implies G = K n−k−2
2
∨ (K n+k−2

2
+ K2).

Subcase 1.3. If k < n−2
5 , then n− k − 4 > 0, n− 5k − 2 > 0. Then 1(

1
2

(n− k − 2)) < 1(1), 1max(x) = 1(1). This
case is the same as proved in Subcase 1.1. We omit the details.

Case 2. If n − k − 1 is even, then 1 ≤ x ≤
1
2

(n − k − 1). So f (1) = −2n + 4k + 4, f ( 1
2 (n − k − 1)) =

−
1
4

(n − k − 1)(n − 5k + 1), f ( 1
2 (n − k − 1)) − f (1) = − 1

4 (n − k − 3)(n − 5k − 5). Then we consider the following
two subcases.
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Subcase 2.1. If
n − 5

5
≤ k ≤ n − 3, then n − k − 3 > 0, n − 5k − 5 < 0. Hence 1(

1
2

(n − k − 1)) > 1(1),

1max(x) = 1(
n − k − 1

2
). Thus,

W f (G) =
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(n − k)(n − k − 1)

−
f (2) − f (1)

2
[−

1
4

(n − k − 1)(n − 5k + 1)]

=
f (2) + 3 f (1)

8
n2
−

f (1)
2

n +
f (2) − f (1)

8
[k2 + 2nk − 1].

So we get the result. If W f (G) =
f (2) + 3 f (1)

8
n2
−

f (1)
2

n+
f (2) − f (1)

8
[k2 +2nk−1], then i =

1
2

(n−k−1), and

hence d1 = d2 = · · · = d n+k−1
2

= n−k−1
2 , d n+k+1

2
= n−k−1

2 , d n+k+3
2

= · · · = dn = n − 1. Thus, G = K n−k−1
2
∨ (K n+k−1

2
+ K1).

Subcase 2.2. If k <
n − 5

5
, then n− k− 3 > 0, n− 5k− 5 > 0. Hence 1(

1
2

(n− k− 1)) < 1(1), 1max = 1(1). This
case is the same as proved in Subcase 1.1. We omit the details.

If f (x) is a monotonically decreasing function on [1,n − 1], we can prove the result by a similar method.
The proof is complete.

From Theorem 3.17, the previous work (see Theorem 3.4 in [10]) is a direct corollary when f (x) = x,
1
x

.

Moreover, when f (x) =
x2 + x

2
, xλ in Theorem 3.17, we have the following corollaries.

Corollary 3.18. Let G be a connected graph of order n ≥ 4, k ≥ 1.

(1) For k = n − 3 or k < n−2
5 and n − k − 1 is odd, or k < n−5

5 and n − k − 1 is even, if its hyper-Wiener index
WW(G) ≤ 1

2 (n2
− n) − (k2

− 2nk − 2n + 5k + 4), then G is k-path-coverable unless G = K1 ∨ (Kk+1 + Kn−k−2).

(2) For n−2
5 ≤ k ≤ n− 4 and n− k− 1 is odd, if its hyper-Wiener index WW(G) ≤ 3

4 n2 + 1
4 k2 + 1

2 nk + 1
2 k− 2, then G

is k-path-coverable unless G = K n−k−2
2
∨ (K n+k−2

2
+ K2).

(3) For n−5
5 ≤ k ≤ n− 3 and n− k− 1 is even, if its hyper-Wiener index WW(G) ≤ 3

4 n2
−

1
2 n + 1

4 [k2 + 2nk− 1], then
G is k-path-coverable unless G = K n−k−1

2
∨ (K n+k−1

2
+ K1).

Corollary 3.19. Let G be a connected graph of order n ≥ 4, k ≥ 1.

(1) If λ > 0, then we have the following results.

(i) For k = n− 3 or k < n−2
5 and n− k − 1 is odd, or k < n−5

5 and n− k − 1 is even, if its modified Wiener index
Wλ(G) ≤ 1

2 (n2
−n)− 2λ−1

2 (k2
−2nk−2n+5k+4), then G is k-path-coverable unless G = K1∨(Kk+1 +Kn−k−2).

(ii) For n−2
5 ≤ k ≤ n−4 and n− k−1 is odd, if its modified Wiener index Wλ(G) ≤ 2λ+3

8 n2 + 2λ−3
4 n + 2λ−1

2 ( 1
4 k2 +

1
2 nk + 1

2 k − 2), then G is k-path-coverable unless G = K n−k−2
2
∨ (K n+k−2

2
+ K2).

(iii) For n−5
5 ≤ k ≤ n−3 and n−k−1 is even, if its modified Wiener index Wλ(G) ≤ 2λ+3

8 n2
−

1
2 n+ 2λ−1

8 (k2+2nk−1),
then G is k-path-coverable unless G = K n−k−1

2
∨ (K n+k−1

2
+ K1).

(2) If λ < 0, then we have the following results.

(i) For k = n− 3 or k < n−2
5 and n− k − 1 is odd, or k < n−5

5 and n− k − 1 is even, if its modified Wiener index
Wλ(G) ≥ 1

2 (n2
−n)− 2λ−1

2 (k2
−2nk−2n+5k+4), then G is k-path-coverable unless G = K1∨(Kk+1 +Kn−k−2).
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(ii) For n−2
5 ≤ k ≤ n−4 and n− k−1 is odd, if its modified Wiener index Wλ(G) ≥ 2λ+3

8 n2 + 2λ−3
4 n + 2λ−1

2 ( 1
4 k2 +

1
2 nk + 1

2 k − 2), then G is k-path-coverable unless G = K n−k−2
2
∨ (K n+k−2

2
+ K2).

(iii) For n−5
5 ≤ k ≤ n−3 and n−k−1 is even, if its modified Wiener index Wλ(G) ≥ 2λ+3

8 n2
−

1
2 n+ 2λ−1

8 (k2+2nk−1),
then G is k-path-coverable unless G = K n−k−1

2
∨ (K n+k−1

2
+ K1).

Theorem 3.20. Let G be a connected graph of order n and α(G) be its independent number. If

W f (G) ≤
f (1)
2

(n2
− n) +

f (2) − f (1)
2

(k2 + k),

for a monotonically increasing function f (x) on x ∈ [1,n − 1], or

W f (G) ≥
f (1)
2

(n2
− n) −

f (1) − f (2)
2

(k2 + k),

for a monotonically decreasing function f (x) on x ∈ [1,n − 1], then G satisfies α(G) ≤ k unless G = Kk+1 ∨ Kn−k−1.

Proof. Suppose that G does not satisfy α(G) ≤ k and has degree sequence (d1, d2, . . . , dn), where d1 ≤ d2 ≤

· · · ≤ dn. By Lemma 2.6, we have dk+1 ≤ n − k − 1. Note that G is connected. If f (x) is a monotonically
increasing function for x ∈ [1,n − 1], as the proof of Theorem 3.1, we have

W f (G) ≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2

n∑
s=1

ds

=
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
(

k+1∑
s=1

ds +

n∑
s=k+2

ds)

≥
1
2

n(n − 1) f (2) −
f (2) − f (1)

2
[(k + 1)(n − k − 1) + (n − k − 1)(n − 1)]

=
f (1)
2

(n2
− n) +

f (2) − f (1)
2

(k2 + k).

Similarly, if f (x) is a monotonically decreasing function for x ∈ [1,n − 1], then

W f (G) ≤
f (1)
2

(n2
− n) −

f (1) − f (2)
2

(k2 + k).

If f (x) is a monotonically increasing function on [1,n − 1], we can get a contradiction. If W f (G) =
f (1)
2 (n2

− n) +
f (2)− f (1)

2 (k2 + k), then all the inequalities in the above arguments should be equalities. Thus, we
have (a) the diameter of G is no more than two; (b) d1 = · · · = dk+1 = n − k − 1, dk+2 = · · · = dn = n − 1. It
implies that G = Kk+1 ∨ Kn−k−1, which does not satisfy α(G) ≤ k.

If f (x) is a monotonically decreasing function on [1,n − 1], we can prove the result by a similar method.
The proof is complete.

From Theorem 3.20, the previous work (see Theorem 3.6 in [10]) is a direct corollary when f (x) = x,
1
x

.

Moreover, when f (x) =
x2 + x

2
, xλ in Theorem 3.20, we have the following corollaries.

Corollary 3.21. Let G be a connected graph of order n, α(G) be its independent number. If its hyper-Wiener index

WW(G) ≤
1
2

(n2
− n) + k2 + k,

then G satisfies α(G) ≤ k unless G = Kk+1 ∨ Kn−k−1.
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Corollary 3.22. Let G be a connected graph of order n, α(G) be its independent number. If its modified Wiener index

Wλ(G) ≤
1
2

(n2
− n) +

2λ − 1
2

(k2 + k),

for λ > 0, or

Wλ(G) ≥
1
2

(n2
− n) −

1 − 2λ

2
(k2 + k),

for λ < 0, then G satisfies α(G) ≤ k unless G = Kk+1 ∨ Kn−k−1.
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