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Wiener-type Invariants on Graph Properties
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Abstract. The Wiener-type invariants of a simple connected graph G = (V(G), E(G)) can be expressed in
terms of the quantities Wy = 3., ,,cv(q) f(dc(u, v)) for various choices of the function f(x), where dg(u, v) is
the distance between vertices u and v in G. In this paper, we mainly give some sufficient conditions for
a connected graph to be k-connected, S-deficient, k-hamiltonian, k-edge-hamiltonian, k-path-coverable or
satisfy a(G) < k.

1. Introduction

Throughout this paper, we only consider graphs which are simple, undirected and finite. We refer
the reader to [3] for terminologies and notations not defined here. Let G denote a graph with vertex
set V(G) = {v1,vy,...,v,} and edge set E(G). Let d; = d,, = dg(v;) denote the degree of v;. Denote by
(d1,d>,...,d,) the degree sequence of the graph G, where d; < dp, < --- < d,. Let G and H be two disjoint
graphs. The disjoint union of G and H, denoted by G + H, is the graph with vertex set V(G) U V(H) and
edge set E(G) U E(H). The disjoint union of k graphs G is denoted by kG. The join of G and H, denoted by
G V H, is the graph obtained from disjoint union of G and H by adding edges joining every vertex of G to
every vertex of H. The complement G of G is the graph on V(G) with edge set [V]* \ E(G).

In theoretical chemistry, molecular structure descriptors, also called topological indices, are used for
modeling physico-chemical, pharmacologic, toxicologic, biological and other properties of chemical com-
pounds. For v;,v; € V(G), let dg(v;, vj) denote the distance between v; and v;. The Wiener index W(G) of a
connected graph G is defined by

W(G) = Z do(u, ).
{uolcV(G)

In 1947, the Wiener index was introduced by Wiener [29], who used it for modeling the shape of organic
molecules and for calculating several of their physico-chemical properties. More details on vertex distances
and Wiener index can be found in [8, 9, 16, 28, 29].

In 1993, for the characterization of molecular graphs, Ivanciuc et al. [14] and Plavsi¢ et al. [26]
independently introduced the Harary index H(G) of a graph G. It has been named in honor of Professor
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Frank Harary on the occasion of his 70th birthday. The definition of Harary index is as follows:

1
dG (u/ U) .

H(G) =
{u,0}CV(G)

More details on Harary index can be found in [6, 25, 30, 32, 34].
Some generalizations and modifications of the Wiener index were proposed. Many of these Wiener-type
invariants can be expressed in terms of the quantities

Wr=WiG = Y fldclw,o),

{u,0}CV(G)

for various choices of the function f(x). We know that when f(x) = x, W, is the Wiener index; when f(x) = %,
W1 is the Harary index; when f(x) = Lz*", W ., is called the hyper-Wiener index [27], which is denoted by

2

WW; when f(x) = x*, where A # 0 is a real number, W,. is called the modified Wiener index [11], which is
denoted by W,. More details on Wiener-type invariants can be found in [7, 12, 15].

In recent years, some sufficient conditions in terms of Wiener index and Harary index are given for a
graph to be Hamiltonian, traceable or have other graph properties. More details can be found in [10, 13, 21—
24,31, 33]. In 2016, Kuang et al. [18] gave some sufficient conditions on Wiener-type invariants for a graph
to be Hamiltonian or traceable, for a connected bipartite graph to be Hamiltonian which included some
previous results.

In this paper, we mainly give some sufficient conditions in terms of Wiener-type invariants for some
graph properties. In Section 2, we will give some graph notations and useful lemmas. In Section 3, we
will present some sufficient conditions for a connected graph to be k-connected, f-deficient, k-hamiltonian,
k-edge-hamiltonian and k-path-coverable, respectively, in terms of Wiener-type index.

2. Some definitions and lemmas

First, we give some notations of graphs used in this paper.

A connected graph G is called to be k-connected (or k-vertex connected) if it has more than k vertices and
remains connected whenever fewer than k vertices are removed.

The deficiency def(G) of a graph G is the number of vertices unmatched under a maximum matching in
G. In particular, G has a 1-factor if and only if def(G)=0. If def(G)< 8, then we call G p-deficient.

A cycleis called a Hamilton cycle if it contains every vertex of a graph. The graph is said to be Hamiltonian
if it has a Hamilton cycle. A graph is k-hamiltonian if for all |X| < k, the subgraph induced by V(G)\X is
Hamiltonian. Thus 0-hamilotnian is the same as Hamiltonian.

A graph G is k-edge-hamiltonian if any collection of vertex-disjoint paths with at most k edges altogether
belong to a Hamilton cycle in G.

A path is called a Hamilton path if it contains every vertex of a graph. The graph is said to be traceable if it
has a Hamilton path. More generally, G is k-path-coverable if V(G) can be covered by k or fewer vertex-disjoint
paths. In particular, 1-path-coverable is the same as traceable.

A subset S of V(G) is called an independent set of G if no two vertices of S are adjacent in G. The number
of vertices in a maximum independent set of G is called the independence number of G and is denoted by
a(G).

An integer sequence 17 = (dy < dp < --- < d,) is called graphical if there exists a graph G having 7 as
its vertex degree sequence, in that case, G is called a realization of . If P is a graph property, such as
hamiltonian or k-connected, we call a graphical sequence 7 forcibly P if every realization of  has property
P. Historically, the vertex degrees of a graph have been used to provide sufficient conditions for the graph
to have certain properties, such as hamiltonicity or k-connectedness.

Next, we give some useful lemmas.
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Lemma 2.1. ([2]) Let G be a graph of order n > 4 with degree sequence m = (d1 < dp <--- < d,). If
1
di<i+k-2=dy 1 2n—i forl1 <i< E(n—k+1),

then Tt is forcibly k-connected.

Lemma 2.2. ([19]) Let m = (d1 < dy < --- < d,) be a graphical sequence and let 0 < § < n with n = (mod 2). If
dipi<i—-f=>dppizn—i-1,for1<i< %(n+ﬁ—2),

then Tt is forcibly B-deficient.

Lemma 2.3. ([4]) Let © = (d1 < dp < --- < d,) be a graphical sequence and 0 <k <n—3. If
. ) 1
di<i+k=d, i r=2n—iforl<i< E(n—k),

then T is forcibly k-hamiltonian.

Lemma 2.4. ([17]) Let m = (di < dp < --- < dy,) be a graphical sequence and 0 <k <n - 3. If
dig<i=dyi=n—i+k fork+1<i< %(n+k),

then Tt is forcibly k-edge-hamiltonian.
Lemma 2.5. ([5, 20]) Let 1 = (dy < dp < --- < dy) be a graphical sequence and k > 1. If
diw <i=dyi2n—i-k forl<i< %(n—k),
then Tt is forcibly k-path-coverable.
Lemma 2.6. ([1]) Let m = (di < dp < --- < d,) be a graphical sequence and k > 1. If
g1 > n—k,

then Tt is forcibly a(G) < k.

3. Main Results

Theorem 3.1. Let G be a connected graph of order n > k + 1. If

f()z

We(G) < +[f(2) - -f Ml =k f2) - fD],

for a monotonically increasing function f(x) on x € [1,n — 1], or

f()z

WG = L2 4 1£2) - 3 fOln + KF) - £,

for a monotonically decreasing function f(x) on x € [1,n — 1], then G is k-connected unless G = Ky_1 V (Ky + K;,—¢).
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Proof. Assume that G is not k-connected and has degree sequence (d1,d>, ...,d,), where d; < dp < --- < d,,.

-k+1
By Lemma 2.1, there is an integer 1 <i < L such thatd; <i+k—-2and d,_+1 <n—i-1. Obviously,
1 <k <n—1. Note that G is connected. If f(x) is a monotonically increasing function for x € [1,n — 1], then

=%ifﬁ%m@»

s=1 t=1
n

[f(Dds + f(2)(n =1 - dy)]

I\JIP—‘

s=1

=

[(n =1)f(2) = (f(2) = f(1))ds]

s=1

1 @) - () ¥
= (= 1)f(2) - T zds
n—k+1

= - nf - LS Q:d+§:d+ Y

s=i+1 s=n—k+2

I\)IP—‘

> %n(n—1)f(2)—f%[i(nk—zn(n—k—m1)(n—i—1)+(k—1)(n—1)]

D —i—k) +k

2
zlmn_nﬂm—Lﬂm—fan”

f( i + +[f(2) - f(l)]n —kf@) - fOI+ ) - fMDIG =D —i=k).

Similarly, if f(x) is a monotonically decreasing function for x € [1,n — 1], then

f()2

Wr(G) < +[f(2) - —f(l)]n +Ef) = f@] =) = f@IG = D)(n =i = k).

If f(x)is a monotomcally increasing function on [1,#n — 1], by the condition of Theorem 3.1, we have
(i—1)(n—1i-k) <0. Then we discuss the following two cases.

1
Case 1. Assume that (i—1)(n—i—k) = 0. In this case, we get W¢(G) = ¥n2+[f(2)— ;f(l)]n—k[f(Z)—f(l)].
So all the inequalities in the above arguments should be equalities. Thus, we have (a) the diameter of G is

no more than two; (b)dy = ---=di=i+k-2,djy1 = =dyynn=n-i—landd, o =---=d, =n-1;
and (c)i=lorn=i+k.
Ifi=1thend =k-1,dy = =dygy1 = n—-2,dygs2 = -+ = dy, = n—1. It implies that

+1
G = Ki-1 V (Ky + K,,_¢), which is not k-connected as stated in [1]. If n = i +k, since i < nT andn >k+1,

thenn =k+1. Thusl1 <i< "_Tk“ =1, then i = 1. This case is the same as we discussed above.
Case 2. We assumei >2and n—1i—k < 0. Note thati < ”’T"“, hence 0 <i—1 < n-i-k,acontradiction.
If f(x) is a monotonically decreasing function on [1,n — 1], we can prove the result by a similar method.
The proof is complete. [

From Theorem 3.1, the previous work (see Theorem 3.1 in [10]) is a direct corollary when f(x) = x, }—(
Moreover, when f(x) = i 5, x* in Theorem 3.1, we have the following corollaries.

Corollary 3.2. Let G be a connected graph of order n > k + 1. If its hyper-Wiener index

WW(G) < %nZ + gn -2k,
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then G is k-connected unless G = Ky_1 V (K1 + K,,_¢).
Corollary 3.3. Let G be a connected graph of order n > k + 1. If its modified Wiener index
Lo on_3 A
W(G) < S+ " - E)n -k2" -1),
for A >0, or

1
Wi(G) > En2 +(2' - g)n +k(1=2Y,
for A <0, then G is k-connected unless G = Ky_1 V (K1 + K;—¢).

Theorem 3.4. Let G be a connected graph of order n > 10 withn = f (mod 2) and 0 < p < n. If

w6 = L+ 2@ - 2 i + 28 - 5@ - £,

for a monotonically increasing function f(x) on x € [1,n — 1], or

w6 = L+ @) - 2 i - 8- 516 - @)

for a monotonically decreasing function f(x)on x € [1,n—1], then G is p-deficient unless G € {K; vV (2K; +K,—3), K4 V
6Ky}

Proof. Suppose that G is not p-deficient and has degree sequence (d1,d,...,d,), whered; < d, < --- < d,.

By Lemma 2.2, there is an integer 1 <7 < %(n +p —2)such that di;; <i-pandd,p; <n—i-2. Note that

G is connected. If f(x) is a monotonically increasing function for x € [1,n — 1], as the proof of Theorem 3.1,
then we have

2) - (1) &
W((G) > %n(n ~1)fQ) - w Z ds

i+1 n+p—i n

= %n(n—l)f(Z) (Zd + Y A+ Y d)
5=i+2 s=n+p—i+1
1 fQ-f®. . . . , ,
2 zn(n—l)f(Z) - —[(z+ DEi-p)+n+p-2i-1)n-i-2)+({@-p)(n-1)]
= Lnn - 1@ - (1@ - PO iy - i -y -2p)

f 2+ 24) ~ 2 I + @B - Q) - )]+ Q) ~ SN~ 1) - i+~ 4)

Similarly, if f(x) is a monotonically decreasing function for x € [1,n — 1], then

W@ < 02 + ) - 2 )1 - @8 - 1) ~ )1 - F) ~ @i~ 10~ 3i+ 5=,

If f(x) is a monotonically increasing function on [1,7n — 1], by the condition of Theorem 3.4, we have
i-1)(n- %i + B —4) < 0. Then we discuss the following two cases.

Case 1. Assume (i — 1)(n — gi + B —4) = 0. In this case, we get W¢(G) = f(2 ) 2 +[2f(2) - f(l)]n +
(28 = 5)[f(2) = f(1)]. So all the inequalities in the above arguments should be equalities. Thus, we have
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(a) the diameter of G is no more than two; (b) dy = -+- = diy1 =i =B, dipa = -+ = dpupj = n—i—2and
dn+ﬁ—i+1:-..:dn:n—l,'and(c)izlorn:;Z’_ﬁ+4.

Ifi=1,thend; =d, =1-p,s50p =0, otherwise v; and v, are two isolated vertices and G is disconnected.
Thendy =d, =1,d3 =---=d,1 =n-3,d, = n—1. It implies that G = Ky Vv (2K; + K;,—3), which is not

1
B-deficient as stated in [1]. If n = gi — B +4,sincei < E(n +p—-2),n>10,thenn =10, =0and i = 4. The
corresponding graphic sequences is (4,4,4,4,4,4,9,9,9,9), which implies G = K4 V 6Kj.

>0,

N O1

. 3. | 3.
Case 2. Weassumei > 2and n— §1+‘B—4 < 0. Sincei < §(n+ﬁ—2) andn > 10,n— §z+[3—4 > Z+ g -
a contradiction.
If f(x) is a monotonically decreasing function on [1,n — 1], we can prove the result by a similar method.

The proof is complete. [

From Theorem 3.4, the previous work (see Theorem 3.2 in [10]) is a direct corollary when f(x) = x,
2

KR

+Xx

Moreover, when f(x) = il , x" in Theorem 3.4, we have the following corollaries.

Corollary 3.5. Let G be a connected graph of order n > 10 with n = B(mod 2) and 0 < B < n. If its hyper-Wiener
index

1 7
WW(G) < En2 + S Ap - 10,
then G is p-deficient unless G € {K; V (2K; + Ky,—3), K4 V 6K1}.

Corollary 3.6. Let G be a connected graph of order n > 10 with n = f(mod 2) and 0 < B < n. If its modified Wiener
index

Wi(G) < %nz + (M - g)n +(28-5)2" - 1),
for A >0, or
Wi(G) > %nz + (M - g)n - (28 -5)(1-2%Y,

for A <0, then G is B-deficient unless G € {Ky V (2K; + K,—3), K4 V 6Ky}.

Theorem 3.7. Let G be a connected graph of ordern 2 3and 0 <k <n-3. If

wiG) < L 1 (5@ - 2 pm -k + 2170) - 1),

for a monotonically increasing function f(x) on x € [1,n — 1], or

W¢(G) 2 @nz +[f(2) - %f(l)]n +(k+2)[f(1) - f(2)],

for a monotonically decreasing function f(x) on x € [1,n — 1], then G is k-hamiltonian unless G € {Ki+1 V (K7 +
Ky—x-2),3K1 V Kisp (1 = k + 5)).

Proof. Suppose that G is not k-hamiltonian and has degree sequence (d1,ds, ..., d,), whered; <dy < --- < d,,.
By Lemma 2.3, there exists an integer k, such thatd; < i+ k and d,_;_x < n —i— 1. Note that G is connected.
If f(x) is a monotonically increasing function for x € [1,n — 1], as the proof of Theorem 3.1, then we have
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2) - f(1) ¢
Wf(G)Z%n(n—l)f(Z) f@ -/ f( ds
s=1
2)— (1) ¢
:%n(n—l)f(Z)—f—()zf()( d, + Zd+ Z d.)
s=1 s=i+1 s=n—i—k+1
z%n(n—l)f(Z)—w[i(nkn(n—zi—k)(n—i—1)+(i+k)(n—1)]

n? —3n

= Znln = DFQ) = [f@) ~ FON " = D= i~k =2) +k+2]

=M sir) - 2 rom - (k+2)[f(2)—f(1)]+[f(2)—f(1)](i—1)(n—%i—k—2)-

Similarly, if f(x) is a monotonically decreasing function for x € [1,n — 1], then

@, 3 . 3.
Wi(G) < —=n"+[f(2) = 5 fIn + (k + 2)[f D) = FOT - [f(1) = f@GE = 1(n = 51~k = 2).

If f(x) is a monotonically increasing function on [1,7n — 1], by the condition of Theorem 3.7, we have

i-1n- Ei —k —2) £ 0. Then we discuss the following two cases.

Case 1. Assume that (i — 1)(n — gi —k —2) = 0. In this case, we get W¢(G) = f(2 ) 24 +[f(2) - f(1)]n -
(k+2)[f(2) — f(1)]. So all the inequalities in the above arguments should be equalities. Thus, we have

(a) the diameter of G is no more than two; (b)dy = ---=d; =i+k, diy1 =+ =d,ix =n—-i—-1and
dpicgn =+--=dy=n—-1l;and (Q)i=1orn=3i+k+2.
Subcase 1.1. If i =1, thend; =k+1,dy = =dy 41 =n—-2,dyy = --- =d, = n—1. It implies that

G = Kk V (Ky + Ky g-2)

Subcase 1.2. If n = =i +k + 2, since i < %(n — k), thenn < k+8,ie.,n <k+7. Note that n > k + 3.

Thenn =k+5,i=2. Thusdy =dy =k+2,d3=n-3=k+2,dy=---=d, =n—1=k+4, which implies
G = Ko V 3Kj.
) 3. . .1 3. 31
Case 2. Weassumei > Zandn—zz—k—Z < 0. Sincei < —(n—k), thenn—zz—k—Z > n—z-i(n—k)—k—Z =
n k

1_1_2 Whenn <k+7,ifn=k+3orn=k+4,theni =1, acontradiction. If n = k+ 5, i = 2, then the

case has been discussed in Subcase 1.2. Ifn—k+61—2thenn——1 k-2=k+6-3-k-2=1>0,a

contradiction. Ifn—k+71—2thenn——1—k 2=k+7-3-k-2= 2>O a contradiction. If n = k+7,i = 3,

. . 3, k
thenn—%z—k—Z = k+7—%—k—2 = % > 0, a contradiction. Whenn > k+38, thenn—zz—k—Z > 2—1—2 >0,

a contradiction.
If f(x) is a monotonically decreasing function on [1,n — 1], we can prove the result by a similar method.
The proof is complete. [

By Theorem 3.7, when f(x) = x, ch xzj x*, we have the following corollaries.

Corollary 3.8. Let G be a connected graph of order n > 3 and 0 < k < n — 3. If its Wiener index
1, 1
< = “y—J—
W(G) < 271 + 2n k-2,

then G is k-hamiltonian unless G € {Ky41 V (K1 + K;;_x—2), 3Ky V Kiy2 (n = k + 5)}.
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Corollary 3.9. Let G be a connected graph of order n > 3 and 0 < k < n — 3. If its Harary index

1, 1
>yt — _
H(G)_zn n+2(k+2),
then G is k-hamiltonian unless G € {Ky1q1 V (K1 + K;;_x_2), 3Ky V Kiyo (n = k + 5)}.
Corollary 3.10. Let G be a connected graph of order n > 3 and 0 < k < n — 3. If its hyper-Wiener index

1
W(G) < =n* + §n —2(k+2),
2 2
then G is k-hamiltonian unless G € {Ky41 V (K1 + K;;_x—2), 3Ky V Kiy2 (n = k + 5)}.
Corollary 3.11. Let G be a connected graph of order n > 3 and 0 < k < n — 3. If its modified Wiener index

W(G) < %nz + (2" - g)n - -1k +2),
for A >0, or

We(G) > %nz + (2" - g)n +(1-2Y%k+2),
for A <0, then G is k-hamiltonian unless G € {Kiy1 V (Kj + Ky——2), 3K1 V Kiy2 (1 = k + 5)}.
Theorem 3.12. Let G be a connected graph of order n > 8and 0 <k <n—-3. If

1
W@ < L 1 (5@ - 2 pom - i+ 22 - S i) -

for a monotonically increasing function f(x) on x € [1,n — 1], or

1
W@ 2 L 1 (5@ - 2 pom+ ik + 22 - Sk 2170 - pe)

foramonotonically decreasing function f(x)on x € [1,n—1], then G is k-edge-hamiltonian unless G = K1 V(Kj+Kjy,—2).

Proof. Suppose that G is not k-edge-hamiltonian and has degree sequence (d1,d>, ...,d,), where dy < d, <
-- < d,. By Lemma 2.4, there exists an integer k + 1 <i < %(n +k),suchthatd;, y <iandd, ;<n-i+k-1.

Note that G is connected. If f(x) is a monotonically increasing function for x € [1,n — 1], as the proof of
Theorem 3.1, we have

1 2)— (1) &
WH(G) = 5n(n = 1f(2) - f@ - f( Zfds

S

i—k n—i

1)
=%n(n—1)f(2) f( () o+ Y A Z d;)
s=1 s=i—k+1 s=n—i+1
> %n(n—l)f(Z) f(Z f( —-ki+(n-2i+kn—-i+k—-1)+i(n—-1)]

n2 —3n

- %n(n ~1)f@) - [f@) - fFOIl
+nk + 1kz— §k+2]
f( )2,

—(i—1)(n—§i+2k—2)

+[f(2) - —f Dln — (nk + %kz - gk+ [f(2) - f(1)]
+ [f(z) - fDIGE - D(n - gi+2k— 2).
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Similarly, if f(x) is a monotonically decreasing function for x € [1,n — 1], then

f()z

Wi(G) +[f2) - f Dn + (nk + k2 - -k +2)[f(D) - £(2)]

- [f(l) - f@1G-1)(n - Ei + 2k - 2).

If f(x) is a monotonically increasing function on [1,n — 1], by the condition of Theorem 3.12, we have

i-1)n- gi + 2k — 2) £ 0. Then we discuss the following two cases.

1
Case 1. Assume that (i — 1)(n — ;i +2k —2) = 0. In this case, we get W¢(G) = %nz +[f(2) - ;f(l)]n -

(nk + %k2 - ;k +2)[f(2) — f(1)]. So all the inequalities in the above arguments should be equalities. Thus

we have (a) the diameter of G is no more than two; (b)dy = - =diy =i, dij1 = =dp-i=n—-i+k-1,
. 3.
dn_,'+1=~--=d,1=n—1;and(c)z=10rn=Ez—2k+2.
Subcase 1.1. If i = 1, sincek+1 <i,thenk =0. Henced, =1,dr =--- =d,_1 =n—-2,d, = n—1, which

implies G = K3 V (K3 + K;-2).

Subcase 1.2. If n = §1'—2k+2,sincei< %(n+k),thenk+3 <n< -5k+8 Hencek=0,n=5,i=2,
which is a contradiction to n > 8.

Case 2. We assume i > 2andn—§i+2k—2 < 0. Since i < %(n+k),n > k+3,n—§i+2k—2 >

n—§ S +k)+2k-2= Zk—z > 6k4_5
then i < Son— 5 -2>n-35-5-2=1-220,a contradiction. Combining with the discussion of Case 1,
we can get the conclusion.

If f(x) is a monotonically decreasing function on [1, n — 1], we can prove the result by a similar method.

The proof is complete. [

LIfk>1,thenn — %i + 2k — 2 > 0, a contradiction. If k = 0,

NQJPP'

By Theorem 3.12, when f(x) = x, 1 i x, x*, we have the following corollaries.

Corollary 3.13. Let G be a connected graph of order n > 8 and 0 < k < n — 3. If its Wiener index
1
W(G) < n +5n- (nk + kz——k +2),

then G is k-edge-hamiltonian unless G = K V (K1 + Ky,—p).
Corollary 3.14. Let G be a connected graph of order n > 8 and 0 < k < n — 3. If its Harary index

H(G)>1n —n+ (nk+ k2—§k +2),

then G is k-edge-hamiltonian unless G = K; V (K1 + Ky,—»).

Corollary 3.15. Let G be a connected graph of order n > 8 and 0 < k < n — 3. If its hyper-Wiener index

1, 3 1, 5
WW(G) < E]’l + E]’Z - 2(71k+ Elg - §k+ 2),

then G is k-edge-hamiltonian unless G = Ky V (Ky + K;—p).
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Corollary 3.16. Let G be a connected graph of order n > 8 and 0 < k < n — 3. If its modified Wiener index

1 2 A 3 A 1 2 5
< — - = — —_ —_ R
We(G) n-+(2 m—02" -1)(nk + -k k+2),

for A >0, or
Wf(G) > ET’Z +(2 - E)n+(1—2 )(Vlk‘f‘ Ek - §k+2),
for A <0, then G is k-edge-hamiltonian unless G = K1 V (Kj + Ky—2).
Theorem 3.17. Let G be a connected graph of order n > 4, k > 1.
(1) If f(x) is a monotonically increasing function f(x) on x € [1,n — 1], then we have the following results.

n—2 n—>5

(i) Fork =n-3ork < and n—k—11is odd, or k <

£ @) - £(1)
LA

and n — k — 1 is even, if W¢(G) <

(k* —2nk—2n+5k+4), then G is k-path-coverable unless G = K1 V (Ky41 +Ky—k-2).

(ii) For n;Z <k<n-4andn-k-1lisodd, if W¢(G) < @ -;3f(1)n2+f(2) _43f(1)n+f(2) ;f(l)[}lkz_’_

1 1 —_—
Enk + Ek — 2], then G is k-path-coverable unless G = K% V (K w2 + Ky).

- 2)+3f(1 1 2)—f(1
(iii) For e B > <k<n-3andn—k-1iseven,if W¢(G) < Jw#— %n+%[k2+2nk—ﬂ,
then G is k-path-coverable unless G = K a1 V (K w1 + Ky).

(2) If f(x) is a monotonically decreasing function f(x) on x € [1,n — 1], then we have the following results.

(i) Fork =n—-3ork < n_zundn—k—lisodd,ork< n-

5
1 2) - f(1 N
]% (n*-n)— w (k* —2nk—2n+5k+4), then G is k-path-coverable unless G = Ky V (Ki41 +Ky__2).

> and n — k — 1 is even, if W¢(G) =

(ii) For~ ; 2 <k<n-4andn-k-1isodd, if We(G) > 1@ -;3f(1)n2+f(2) _43f(1)n+f(2) ;f(l)[%lk%r

%nk + %k — 2], then G is k-path-coverable unless G = K%H \Y% (K% + Ky).

- 2)+3f(1 1 2) - f(1
(iii) For 1 B > <k<n-3andn—k-1iseven,if W¢(G) > wnz—§n+w[kz+2nk—l],
then G is k-path-coverable unless G = K w1 V (K nizt + Ky).

Proof. By refining the technique of Feng et al. [10], we have the following proof. Assume that G is not
k-path-coverable and has degree sequence (dy,dy, ...,d,), where d; < d, < --- <d,. By Lemma 2.5, there is
aninteger 1 <i < %(n —k —1) such that d;yx <7and d,_; < n—i—k—1. Note that G is connected. If f(x)is a
monotonically increasing function for x € [1,n — 1], as in the proof of Theorem 3.1, we have

1 2) - f(1) v
WH(G) = 5n(n = Df(2) - ’% ; d,

~ 1 f(z) —f(l) i+k n—i n
= gl = 1fQ) - === <SZ_; d, + Z;‘l dyi + 21 dy)
> %n(n -1)f@2) - M[(Hkﬁ# (m-2i-kKn—i-—k—-1)+in-1)]

= %n(n -1)f(Q) - M(n —n-k-1)- MB# — (2n — 4k - 1)i].
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Similarly, if f(x) is a monotonically decreasing function for x € [1,n — 1], then

f)-f@) f) - f@)

W((G) < %n(n ~Df@) + = =B~ k= 1) + = (3 — (20— 4k~ )il

If f(x) is a monotonically increasing function on [1, n — 1], then we have the following discussion.
Suppose g(x) = 3x% — (2n —4k - D)x with1 <x < l(n—k-1). Sincen -k >2i+1>3,1<k<n-3.
Because x is an integer, then we have to consider n — k — 1 is odd or even.

Case1. If n—k—-11is odd, then1 < x < %(n—k—Z). So, g(1) = —2n + 4k + 4, g(%(n—k—Z)) =
(—Llin + gk - D(n-k-2), g(%(n -k-2))-g(1) = —}L(n —k — 4)(n — 5k — 2). Then we consider the following
three subcases. .

Subcase 1.1. If k =n—-3,thenn-k-4=-1<0,n—-5k-2=-4n+13 < 0. Henceg(z(n—k—Z)) <g(1),
gmax(x) = !7(1) Thus,

W(G) > %n(n -1)f(Q) - M(n —n-k-1)- M«L + 4k — 2n)
= J%(nz -n)— M(kz — 2nk — 2n + 5k + 4).
So we get the result. If W¢(G) = Jg(nz -n)— M(kz — 2nk — 2n + 5k + 4), then i = 1, and hence
di=-=diy1=1,dpsp=--=dy-1 =n-k—-2,d, =n -1, which implies G = K; V(m+l<,,_k_2).

Subcase 1.2. If n-2

<k<n-4,thenn-k-4>0,n-5k-2<0. Henceg(%(n—k—Z)) > g(1),

Goen(®) = 90501 ~ K ~2). Thus,

2) - f(1
WG = antn - @ - T2y k1)
-, 15
—T(—Zn+1k—1)(n—k—2)

_ SO, O3 fO)- ) 1

1 1
2 p— p— —_—
3 1 > 4k + 2nk+ 2k 2].

f(2)+3f(1) f@)-3f1)  f(2)-f(1) 1
3 n? + ) n+ > [Zkz

o1
i=-(m—-k-2),andhenced; =dp =+ = d sz = =2 dy =dpur = 55, dpyes = --- =d,, = n — 1, which
2 2 2 2 2 2 2

So we get the result. If W¢(G) =

1 1
+ Enk + Ek — 2], then

implies G = Kn—Tk—Z \% (@ + Kj).

Subcase 1.3. If k < ”T‘Z, thenn—k—4>0,n—-5k—2> 0. Then g(%(n —k—2)) < 9(1), Jmax(x) = g(1). This
case is the same as proved in Subcase 1.1. We omit the details.

Case 2. If n—k—-1iseven, thenl < x < %(n—k—l). So f(1) = 2n+4k+4, fGn-k-1) =
—%L(n —k=1)(n-5k+1), fG(n—k-1)) - f(1) = —3(n — k = 3)(n — 5k — 5). Then we consider the following

two subcases.
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Subcase 2.1. I n-5 <

5
n—k-—1
gmax(x) = g(T) Thus,

3,thenn—-k—-3>0,n-5-5<0. Henceg(%(n—k—l)) > g(1),

WG = dntn - @) - T2 gk
- M[—%m —k—-1)(n -5k +1)]
@M L SO
= Tn - T 8 + 2nk —1].

So we get the result. If W¢(G) = MHZ - f(21) 1@ 3 —f) - "[k*+2nk—1], theni = %(n—k— 1), and

hencedy =dy = -+ = dus = "7 dusgns = "7 dugs =+ =dy = n— 1. Thus, G = Kur V (K +K9).

Subcase 2.2. If k < 115;5, thenn—k—-3>0,n—5k—-5> 0. Hence g(%(n —k—-1)) < g(1), gmax = g(1). This
case is the same as proved in Subcase 1.1. We omit the details.

If f(x) is a monotonically decreasing function on [1, 7 — 1], we can prove the result by a similar method.

The proof is complete. [

—_

From Theorem 3.17, the previous work (see Theorem 3.4 in [10]) is a direct corollary when f(x) = x, —

2
—x, x" in Theorem 3.17, we have the following corollaries.

R

+
2
Corollary 3.18. Let G be a connected graph of ordern > 4, k > 1.

Moreover, when f(x) =

(1) Fork =n—-3ork < %2 and n —k — 1 is odd, or k < 52 and n — k — 1 is even, if its hyper-Wiener index
WW(G) < l(n2 —n) — (k® — 2nk — 2n + 5k + 4), then G is k-path-coverable unless G = Ky V (Kiy1 + Ky_g_2).

(2) For "22 <k <n—4andn—k—1isodd, if its hyper-Wiener index WW(G) < + 1k% + ink + 3k -2, then G
is k- path -coverable unless G = Ko v (KM + K).

(3) For 22 <k < n—3and n—k—1is even, if its hyper-Wiener index WW(G) < 2n? — 1n + [k* + 2nk — 1], then
Gis k -path-coverable unless G = Kz V (K psir iz + Kp).

Corollary 3.19. Let G be a connected graph of order n > 4,k > 1.

(1) If A > 0, then we have the following results.

(i) Fork=n-3ork < ”5;2 and n—k—1is odd, or k < 52 and n — k — 1 is even, if its modified Wiener index
Wi(G) < 3(n*—n)- 2A—‘l(kz —2nk—2n+5k+4), then G is k-path-coverable unless G = K1 V (Kis1 +Kn_k_2)

(ii) For ”—2 <k <n—4andn—k—11isodd, if its modified Wiener index W,(G) < 2z *371 423 T S+ 271 ( Y
nk + 1k 2), then G is k-path-coverable unless G = Kw \% (KLH + K3).

(iii) For 5% < k < n-3and n—k—1is even, if its modified Wiener index W,(G) < 2&2n?—1n+ 2L (K2 +2nk-1),
then G is k-path-coverable unless G = K a1 V (K% + Ky).

(2) If A <0, then we have the following results.

(i) Fork=n—-3ork <2 andn—k—1is odd, or k < 52 and n — k — 1 is even, if its modified Wiener index
Wi (G) > 2(n -n)— 2 > Z=1(k2 —2nk—2n+5k+4), then G is k-path-coverable unless G = K; V(Kk+1 +K—k-2)-
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(ii) For "z2 <k < n—4and n—k—1is odd, if its modified Wiener index W,(G) > 233n? + 2230 + 21112 +
Ink + 1k —2), then G is k-path-coverable unless G = K wiz V (Kugz + Ko).

(iii) For %52 <k < n—3and n—k—1is even, ifits modified Wiener index W, (G) > £33 B2 I+ 221 (k2 +2nk-1),
then G is k-path-coverable unless G = K w1 V (K s w1 + Ky).

Theorem 3.20. Let G be a connected graph of order n and a(G) be its independent number. If
2)-f(1
f D 2 my+ w(kz +K),

We(G) < —==
for a monotonically increasing function f(x)onx € [1,n—1], or
w62 Wy SOy

for a monotonically decreasing function f(x) on x € [1,n — 1], then G satisfies a(G) < k unless G = K41 V Ky—g—1.

Proof. Suppose that G does not satisfy a(G) < k and has degree sequence (dy,ds, ..., d,), where d; < dp <
- < d,. By Lemma 2.6, we have di;; < n—k —1. Note that G is connected. If f(x) is a monotonically

increasing function for x € [1,n — 1], as the proof of Theorem 3.1, we have

2) - f(1) &
W(G) > %n(n ~1fQ) - w Z. ds

k+1

=%n(n—1)f(2) f( (Zd +Zd)

s=k+2
> %n(n—l)f(Z f(2 f( —[k+1)n-k-1D+n-k-1)(n-1)]

Similarly, if f(x) is a monotonically decreasing function for x € [1,n — 1], then

1 2
w0 < 002wy SOy
If f(x) is a monotonically increasing function on [1,7 — 1], we can get a contradiction. If W¢(G) =
@(m2 n)+ =——— 1@ f ) (k* + k), then all the inequalities in the above arguments should be equalities. Thus, we
have (a) the dlameter of G is no more than two; (b)d; = - - =dyy1 =n—-k—-1,dyyp =---=d, =n-1. It

implies that G = Ky41 V Kj,—¢—1, which does not satisfy a(G) < k.
If f(x) is a monotonically decreasing function on [1,7 — 1], we can prove the result by a similar method.

The proof is complete. [

—_

From Theorem 3.20, the previous work (see Theorem 3.6 in [10]) is a direct corollary when f(x) = x,

=

24 x

,x" in Theorem 3.20, we have the following corollaries.

Moreover, when f(x) =

Corollary 3.21. Let G be a connected graph of order n, a(G) be its independent number. If its hyper-Wiener index
WW(G) < %(n2 -n)+ k> +k,

then G satisfies a(G) < k unless G = Kiiq V Kjj—g-1.
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Corollary 3.22. Let G be a connected graph of order n, a(G) be its independent number. If its modified Wiener index

A
Wi(G) < %(n2 —n)+ %(k2 +k),

for A >0, or

Y
Wi (G) = %(n2 -n) - %(k2 +k),

for A <0, then G satisfies a(G) < k unless G = Kiy1 V Ky—g-1.
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