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Available at: http://www.pmf.ni.ac.rs/filomat

A Variational Approach for Fractional Boundary Value Systems
Depending on Two Parameters

Ghasem A. Afrouzia, Samad Mohseni Kolagara, Armin Hadjianb, Jiafa Xuc

aDepartment of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
bDepartment of Mathematics, Faculty of Basic Sciences, University of Bojnord, P.O. Box 1339, Bojnord 94531, Iran

cSchool of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, China

Abstract. In this paper, we prove the existence of infinitely many solutions to nonlinear fractional boundary
value systems, depending on two real parameters. The approach is based on critical point theory and
variational methods. We also give an example to illustrate the obtained results.

1. Introduction

In this paper, we are interested in ensuring the existence of infinitely many solutions for the following
fractional boundary value system tDαi

T

(
ai(t)0Dαi

t ui(t)
)

= λFui (t,u1(t), . . . ,un(t)) + µGui (t,u1(t), . . . ,un(t))
+hi(ui(t)), a.e. t ∈ [0,T],

ui(0) = ui(T) = 0,
(1)

for 1 ≤ i ≤ n, where αi ∈ (0, 1], 0Dαi
t and tDαi

T are the left and right Riemann-Liouville fractional derivatives
of order αi respectively, ai ∈ L∞([0,T]) with ai0 := ess inf[0,T] ai > 0 for 1 ≤ i ≤ n, λ is a positive parameter,
µ is a nonnegative parameter, F,G : [0,T] × Rn

→ R are continuous functions with respect to t ∈ [0,T] for
every (x1, . . . , xn) ∈ Rn and are C1 with respect to (x1, . . . , xn) ∈ Rn for a.e. t ∈ [0,T], F(t, 0, . . . , 0) = 0 and
G(t, 0, . . . , 0) = 0 for a.e. t ∈ [0,T], Fui and Gui denotes the partial derivative of F and G with respect to
ui, respectively, and hi : R → R are Lipschitz continuous functions with the Lipschitz constants Li > 0 for
1 ≤ i ≤ n, i.e.,

|hi(x1) − hi(x2)| ≤ Li|x1 − x2|, (2)

for every x1, x2 ∈ R, and hi(0) = 0 for 1 ≤ i ≤ n.
Fractional differential equations has proved to be an important tool in the modeling of dynamical sys-

tems associated with phenomena such as fractals and chaos. In fact, this branch of calculus has found
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its applications in various disciplines of science and engineering such as mechanics, electricity, chemistry,
biology, economics, control theory, signal and image processing, polymer rheology, regular variation in
thermodynamics, biophysics, blood flow phenomena, aerodynamics, electrodynamics of complex medium,
viscoelasticity and damping, control theory, wave propagation, percolation, identification, and fitting of
experimental data. Fractional differential equations serve as an excellent tool for the description of hered-
itary properties of various materials and processes.The interest in the study of fractional order differential
equations lies in the fact that fractional order models are found to be more accurate than the classical
integer-order models; that is, there are more degrees of freedom in the fractional order models. In conse-
quence, the subject of fractional differential equations is gaining more and more attention; see for instance
the monographs of Miller and Ross [17], Samko et al [12], Podlubny [18], Hilfer [9], Kilbas et al [13] and the
papers [1–4, 6, 7]. See also [14, 15, 22, 24–30] and references therein.

Critical point theory has been very useful in determining the existence of solutions for integer order
differential equations with some boundary conditions; see for instance, in the vast literature on the subject,
the classical books [16, 19, 21, 23] and references therein. But until now, there are a few results for fractional
boundary value problems (briefly BVP) which were established exploiting this approach, since it is often
very difficult to establish a suitable space and variational functional for fractional problems.

In [5], Bai established the existence of infinitely many solutions for the following perturbed nonlinear
fractional boundary value problem tDα

T

(
0Dα

t u(t)
)

= λa(t) f (u(t)) + µ1(t,u(t)), a.e. t ∈ [0,T],
u(0) = u(T) = 0,

where α ∈ (0, 1], λ and µ are non-negative parameters, a : [0,T]→ R, f : R→ R and 1 : [0,T] ×R are three
given continuous functions.

Also, by applying the critical point theorem due to Bonanno and Marano [8], the authors in [25] provided
a new approach to study the existence of at least three weak solutions for the coupled system

tDα
T

(
a(t)0Dα

t u(t)
)

= λFu(t,u(t), v(t)), 0 < t < T,

tD
β
T

(
b(t)0Dβ

t v(t)
)

= λFv(t,u(t), v(t)), 0 < t < T,
u(0) = u(T) = 0, v(0) = v(T) = 0,

where λ is a positive real parameter, 0 < α, β ≤ 1, a, b ∈ L∞[0,T] with a0 := ess inf[0,T] a(t) > 0 and
b0 := ess inf[0,T] b(t) > 0, and F : [0,T] × R2

→ R is a function such that F(·, x, y) is continuous in [0,T] for
every (x, y) ∈ R2 and F(t, ·, ·) is a C1 function for any t ∈ [0,T].

Further, with the same assumptions as above, the existence of infinitely many weak solutions for the
following fractional differential system has been achieved in [26] via critical point theory

tDα
T

(
a(t)0Dα

t u(t)
)

= λFu(t,u(t), v(t)) + h1(u(t)), 0 < t < T,

tD
β
T

(
b(t)0Dβ

t v(t)
)

= λFv(t,u(t), v(t)) + h2(v(t)), 0 < t < T,
u(0) = u(T) = 0, v(0) = v(T) = 0,

where h1, h2 : R→ R are two Lipschitz continuous functions with the Lipschitz constants L1,L2 ≥ 0.
In the present paper, motivated by the above works and using Ricceri’s variational principle (see [20])

we ensure the existence of infinitely many weak solutions for system (1). More precisely, starting from the
results obtained in [26] and with the same method, we are interested in looking for a class of perturbations,
namely µGui , for which (1) still preserves multiple solutions.

This paper is organized as follows. In Section 2, we present some necessary preliminary facts that will
be needed in the paper. In Section 3 our main result and some significative consequences and an example
is presented.
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2. Preliminaries

In this section, we first introduce some necessary definitions and properties of the fractional calculus
which are used in this paper.

Definition 2.1. Let u be a function defined on [a, b]. The left and right Riemann-Liouville fractional deriva-
tives of order α > 0 for a function u are defined by

aDα
t u(t) :=

dn

dtn aDα−n
t u(t) =

1
Γ(n − α)

dn

dtn

∫ t

a
(t − s)n−α−1u(s)ds,

and

tDα
b u(t) := (−1)n dn

dtn tDα−n
b u(t) =

(−1)n

Γ(n − α)
dn

dtn

∫ b

t
(t − s)n−α−1u(s)ds,

for every t ∈ [a, b], provided the right-hand sides are pointwise defined on [a, b], where n − 1 ≤ α < n and
n ∈N.
Here, Γ(α) is the standard gamma function given by

Γ(α) :=
∫ +∞

0
zα−1e−zdz.

Set ACn([a, b],R) the space of functions u : [a, b]→ R such that u ∈ Cn−1([a, b],R) and u(n−1)
∈ AC([a, b],R).

Here, as usual, Cn−1([a, b],R) denotes the set of mappings having (n − 1) times continuously differentiable
on [a, b]. In particular, we denote AC([a, b],R) := AC1([a, b],R).

Proposition 2.2 ([12, 13]). We have the following property of fractional integration∫ b

a
[aD−αt u(t)]v(t)dt =

∫ b

a
[tD−αb v(t)]u(t)dt, α > 0,

provided that u ∈ Lp([a, b],R), v ∈ Lq([a, b],R) and p ≥ 1, q ≥ 1, 1/p+1/q ≤ 1+α or p , 1, q , 1, 1/p+1/q = 1+α.

Proposition 2.3 ([11]). If u(a) = u(b) = 0, u ∈ L∞([a, b],RN), v ∈ L1([a, b],RN), or v(a) = v(b) = 0, v ∈
L∞([a, b],RN), u ∈ L1([a, b],RN), then∫ b

a
[aDα

t u(t)]v(t)dt =

∫ b

a
[tDα

b v(t)]u(t)dt, 0 < α ≤ 1.

To establish a variational structure for the main problem, it is necessary to construct appropriate function
spaces. Following [10], denote by C∞0 ([0,T],R) the set of all functions 1 ∈ C∞([0,T],R) with 1(0) = 1(T) = 0.

Definition 2.4. Let 0 < αi ≤ 1 for 1 ≤ i ≤ n. The fractional derivative space Eαi
0 is defined by the closure with

respect to the weighted norm

‖ui‖αi :=
(∫ T

0
ai(t)|0Dαi

t ui(t)|2dt +

∫ T

0
|ui(t)|2dt

)1/2

, ∀ui ∈ Eαi
0 . (3)

Clearly, the fractional derivative space Eαi
0 is the space of functions ui ∈ L2[0,T] having an αi-order fractional

derivative 0Dα
t ui ∈ L2[0,T] and ui(0) = ui(T) = 0 for 1 ≤ i ≤ n. Based on [10, Proposition 3.1], we know for

0 < αi ≤ 1, the space Eαi
0 is a reflexive and separable Banach space.

For every ui ∈ Eαi

0 , set

‖ui‖Ls :=
(∫ T

0
|ui(t)|sdt

)1/s

, s ≥ 1,

and
‖ui‖∞ := max

t∈[0,T]
|ui(t)|.
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Lemma 2.5 ([25]). Let αi ∈ (1/2, 1] for 1 ≤ i ≤ n. For all ui ∈ Eαi
0 , we have

‖ui‖L2 ≤
Tαi

Γ(αi + 1)
√

ai0

( ∫ T

0
ai(t)|0Dαi

t ui(t)|2dt
)1/2

, (4)

‖ui‖∞ ≤
Tαi−1/2

Γ(αi)
√

ai0(2αi − 1)

( ∫ T

0
ai(t)|0Dαi

t ui(t)|2dt
)1/2

. (5)

Hence, we can consider Eαi
0 with respect to the norm

‖ui‖αi :=
(∫ T

0
ai(t)|0Dαi

t ui(t)|2dt
)1/2

, ∀ ui ∈ Eαi
0 , (6)

for 1 ≤ i ≤ n, which is equivalent to (3).
Similarly to [10, Proposition 3.3], we have the following property of the fractional derivative space Eαi

0 for
1 ≤ αi ≤ n.

Lemma 2.6 ([10]). Assume that 1
2 < αi ≤ 1 for 1 ≤ i ≤ n, and the sequence {un} converges weakly to u in Eαi

0 , i.e.,
un ⇀ u. Then {un} converges strongly to u in C([0,T]),R), i.e., ‖un − u‖∞ → 0, as n→∞.

Throughout this paper, we let X be the Cartesian product of the n spaces Eαi
0 for 1 ≤ i ≤ n, i.e.,

X = Eα1
0 × Eα2

0 × · · · × Eαn
0 equipped with the norm

‖u‖ :=
n∑

i=1

‖ui‖αi , u = (u1,u2, . . . ,un),

where ‖ui‖αi is defined in (6). Obviously, X is compactly embedded in (C([0,T]),R))n.
We mean by a (weak) solution of system (1), any u = (u1,u2, . . . ,un) ∈ X such that∫ T

0

n∑
i=1

ai(t)0Dαi
t ui(t)0Dαi

t vi(t)dt − λ
∫ T

0

n∑
i=1

Fui (t,u1(t), . . . ,un(t))vi(t)dt

−µ

∫ T

0

n∑
i=1

Gui (t,u1(t), . . . ,un(t))vi(t)dt −
∫ T

0

n∑
i=1

hi(ui(t))vi(t)dt = 0

for all v = (v1, v2, . . . , vn) ∈ X.
Below we recall Theorem 2.5 of [20] which is essential tool in the our paper.

Theorem 2.7. Let X be a reflexive real Banach space, let Φ,Ψ : X → R be two Gâteaux differentiable functionals
such that Φ is sequentially weakly lower semicontinuous, strongly continuous, and coercive and Ψ is sequentially
weakly continuous. For every r > infX Φ, put

ϕ(r) := inf
u∈Φ−1(−∞,r)

(
supv∈Φ−1(−∞,r) Ψ(v)

)
−Ψ(u)

r −Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), and δ := lim inf
r→(infX Φ)+

ϕ(r).

Then, the following properties hold:

(a) For every r > infX Φ and every λ ∈ (0, 1/ϕ(r)), the restriction of the functional

Iλ := Φ − λΨ

to Φ−1(−∞, r) admits a global minimum, which is a critical point (local minimum) of Iλ in X.
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(b) If γ < +∞, then for each λ ∈ (0, 1/γ), the following alternative holds: either
(b1) Iλ possesses a global minimum, or
(b2) there is a sequence {un} of critical points (local minima) of Iλ such that

lim
n→+∞

Φ(un) = +∞.

(c) If δ < +∞, then for each λ ∈ (0, 1/δ), the following alternative holds: either
(c1) there is a global minimum of Φ which is a local minimum of Iλ, or
(c2) there is a sequence {un} of pairwise distinct critical points (local minima) of Iλ which weakly converges to

a global minimum of Φ, with limn→+∞Φ(un) = infX Φ.

3. Main Results

In the present section we discuss the existence of infinitely many solutions for system (1). For u =
(u1, . . . ,un) ∈ X, we define

Υ(u) :=
n∑

i=1

Υi(ui),

where

Υi(x) :=
∫ T

0
Hi(x(s))ds and Hi(x) :=

∫ x

0
hi(z)dz, 1 ≤ i ≤ n,

for every s ∈ [0,T] and x ∈ R.
Let

k := max
1≤i≤n

{
Tαi−

1
2

Γ(αi)
√

ai0(2αi − 1)

}
,

k′ := min
1≤i≤n

{
1 −

LiT2αi

(Γ(αi + 1))2ai0

}
,

ρ := max
1≤i≤n

{
1 +

LiT2αi

(Γ(αi + 1))2ai0

}
.

For a given constant θ ∈ (0, 1
2 ) and for all 1 ≤ i ≤ n, set

Pi(αi, θ) =
1

2θ2T2

{∫ T

0
ai(t)t2(1−αi)dt +

∫ T

θT
ai(t)(t − θT)2(1−αi)dt

+

∫ T

(1−θ)T
ai(t)(t − (1 − θ)T)2(1−αi)dt − 2

∫ T

(1−θ)T
ai(t)(t2

− (1 − θ)Tt)1−αi dt

−2
∫ T

θT
ai(t)(t2

− θTt)1−αi dt + 2
∫ T

(1−θ)T
ai(t)(t2

− θTt + θ(1 − θ)T2)1−αi dt
}
,

∆ := min
1≤i≤n

{Pi(αi, θ)},

∆′ := max
1≤i≤n

{Pi(αi, θ)}.

For all γ > 0 we set

Q(γ) :=
{
x = (x1, . . . , xn) ∈ Rn :

n∑
i=1

|xi| ≤ γ
}
.

Theorem 3.1. Let 1
2 < αi ≤ 1 for 1 ≤ i ≤ n. Assume that there exists θ ∈ (0, 1

2 ) such that
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(A1) F(t, x1, . . . , xn) ≥ 0 for each (t, x1, . . . , xn) ∈ ([0, θT] ∪ [(1 − θ)T,T]) ×Rn;

(A2) lim inf
ξ→+∞

∫ T
0 sup(x1 ,...,xn )∈Q(ξ) F(t,x1,...,xn)dt

ξ2 < k′
2k2n2ρ∆′

lim sup
ξ→+∞

∫ (1−θ)T
θT F(t,Γ(2−α1)ξ,...,Γ(2−αn)ξ)dt

ξ2 .

Then, for each λ ∈ Λ :=]λ1, λ2[ where

λ1 :=
ρ∆′

lim sup
ξ→+∞

∫ (1−θ)T
θT F(t,Γ(2−α1)ξ,...,Γ(2−αn)ξ)dt

ξ2

,

λ2 :=
k′

2k2n2

lim inf
ξ→+∞

∫ T
0 sup(x1 ,...,xn )∈Q(ξ) F(t,x1,...,xn)dt

ξ2

,

for every non-negative function G : [0,T] ×Rn
→ R satisfying the condition

G∞ := lim sup
ξ→+∞

∫ T

0 sup(x1,...,xn)∈Q(ξ) G(t, x1, . . . , xn)dt

ξ2 < +∞, (7)

and for every µ ∈ [0, µG,λ[ where

µG,λ :=
k′

2k2n2G∞

(
1 − λ

2k2n2

k′
lim inf
ξ→+∞

∫ T

0 sup(x1,...,xn)∈Q(ξ) F(t, x1, . . . , xn)dt

ξ2

)
,

system (1) has an unbounded sequence of weak solutions in X.

Proof. Our aim is to apply Theorem 2.7(b) to system (1). To this end, fix λ̄ ∈ Λ and let G be a function
satisfying our assumptions. Since λ̄ < λ2, we have

µG,λ̄ =
k′

2k2n2G∞

(
1 − λ̄

2k2n2

k′
lim inf
ξ→+∞

∫ T

0 sup(x1,...,xn)∈Q(ξ) F(t, x1, . . . , xn)dt

ξ2

)
> 0.

Now fix µ̄ ∈]0, µG,λ̄[. Set

J(t, ξ1, . . . , ξn) := F(t, ξ1, . . . , ξn) +
µ̄

λ̄
G(t, ξ1, . . . , ξn)

for every t ∈ [0,T] and ξ = (ξ1, . . . , ξn) ∈ Rn. We define the mappings Φ,Ψ : X→ R by

Φ(u) :=
n∑

i=1

‖ui‖
2
αi

2
− Υ(u),

Ψ(u) :=
∫ T

0
J(t,u1(t), . . . ,un(t))dt,

for each u = (u1, . . . ,un) ∈ X and put

Iλ̄,µ̄(u) := Φ(u) − λ̄Ψ(u), u ∈ X.

Let us prove that Φ and Ψ satisfy the required conditions. Since X is compactly embedded in (C([0,T],R))n,
it is well known that Ψ is well-defined Gâteaux differentiable functional whose Gâteaux derivative at u ∈ X
is the functional Ψ′(u) ∈ X∗, given by

Ψ′(u)(v) =

∫ T

0

n∑
i=1

Jui (t,u1(t), . . . ,un(t))vi(t)dt
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for every v = (v1, . . . , vn) ∈ X. Moreover, Ψ is sequentially weakly continuous.
The functional Φ is a Gâteaux differentiable functional with the differential at u ∈ X

Φ′(u)(v) =

∫ T

0

n∑
i=1

ai(t)0Dαi
t ui(t)0Dαi

t vi(t)dt −
∫ T

0

n∑
i=1

hi(ui(t))vi(t)dt,

for every v ∈ X. Further, Φ is sequentially weakly lower semicontinuous, strongly continuous, and coercive
functional on X.

Clearly, the weak solutions of system (1) are exactly the critical points of the functional Iλ̄,µ̄. Moreover,
since (2) holds for every x1, . . . , xn ∈ R and h1(0) = · · · = hn(0) = 0, one has |hi(x)| ≤ Li|x|, 1 ≤ i ≤ n for all
x ∈ R. It follows from (4) and (5) that

Φ(u) ≥

∑n
i=1 ‖ui‖

2
αi

2
−

∣∣∣∣ ∫ T

0

n∑
i=1

Hi(ui(t))dt
∣∣∣∣

≥

∑n
i=1 ‖ui‖

2
αi

2
−

n∑
i=1

Li

2

∫ T

0
|ui(t)|2dt

≥

(1
2
−

LiT2αi

2(Γ(αi + 1))2ai0

)
‖ui‖

2
αi

≥
k′

2

n∑
i=1

‖ui‖
2
αi
,

(8)

for all u ∈ X, and so Φ is coercive.
Now, let us verify that λ̄ < 1

γ . Let {ξk} be a sequence of positive numbers such that ξk →∞ as k→∞ and

lim
k→+∞

∫ T

0 sup(x1,...,xn)∈Q(ξk) F(t, x1, . . . , xn)dt

ξ2
k

= lim inf
ξ→+∞

∫ T

0 sup(x1,...,xn)∈Q(ξ) F(t, x1, . . . , xn)dt

ξ2 .

Put rk :=
k′ξ2

k
2k2n2 for all k ∈N. Since maxt∈[0,T] |ui(t)| ≤ k‖ui‖αi for all ui ∈ Eαi

0 ([0,T]) and 1 ≤ i ≤ n, we have

sup
t∈[0,T]

n∑
i=1

|ui(t)|2 ≤ k2
n∑

i=1

‖ui‖
2
αi

(9)

for each u = (u1, . . . ,un) ∈ X. So, from (8) and (9) we have

Φ−1(] −∞, rk[) :=

u ∈ X :
k′

2
(

n∑
i=1

‖ui‖
2
αi

) < rk


⊆

u ∈ X :
n∑

i=1

|ui(x)|2 ≤
2k2

k′
rk for each t ∈ [0,T]


⊆

u ∈ X :
n∑

i=1

|ui(t)| ≤ ξk for each t ∈ [0,T]

 .
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Hence, taking into account that Φ(0, . . . , 0) = Ψ(0, . . . , 0) = 0, for every k large enough, one has

ϕ(rk) = inf
u∈Φ−1((−∞,rk[)

supu∈Φ−1((−∞,rk[) Ψ(v) −Ψ(u)

rk −Φ(u)

≤

supu∈Φ−1((−∞,rk[) Ψ(v)

rk
≤

∫ T

0 sup(x1,...,xn)∈Q(ξk) J(t, x1, . . . , xn)dt
k′ξ2

k
2k2n2

=

∫ T

0 sup(x1,...,xn)∈Q(ξk)[F(t, x1, . . . , xn) +
µ̄
λ̄

G(t, x1, . . . , xn)]dt
k′ξ2

k
2k2n2

≤

∫ T

0 sup(x1,...,xn)∈Q(ξk) F(t, x1, . . . , xn)dt
k′

2k2n2 ξ2
k

+
µ̄

λ̄

∫ T

0 sup(x1,...,xn)∈Φ(ξk) G(t, x1, . . . , xn)dt
k′ξ2

k
2k2n2

.

Moreover, from assumption (A2) and (7) one has

lim inf
k→∞

∫ T

0 sup(x1,...,xn)∈Q(ξk) F(t, x1, . . . , xn)dt
k′ξ2

k
2k2n2

+ lim
k→∞

µ̄

λ̄

∫ T

0 sup(x1,...,xn)∈Q(ξk) G(t, x1, . . . , xn)dt
k′ξ2

k
2k2n2

< +∞,

which implies

lim inf
k→∞

∫ T

0 sup(x1,...,xn)∈Q(ξk) J(t, x1, . . . , xn)dt

ξ2
k

< +∞.

Therefore,

γ ≤ lim inf
k→∞

ϕ(rk) ≤
2k2n2

k′
lim inf

k→∞

∫ T

0 sup(x1,...,xn)∈Q(ξk) J(t, x1, . . . , xn)dt

ξ2
k

< +∞. (10)

The assumption µ̄ ∈]0, µG,λ̄[ immediately yields λ̄ < 1
γ .

The next step is to show that for fixed λ̄ the functional Iλ̄,µ̄ has no global minimum. Let us verify that
Iλ̄,µ̄ is unbounded from below. Since

1
λ̄
<

1
ρ∆′

lim sup
ξ→+∞

∫ (1−θ)T

θT F(t,Γ(2 − α1)ξ, . . . ,Γ(2 − αn)ξ)dt

ξ2

≤ lim sup
ξ→+∞

∫ (1−θ)T

θT J(t,Γ(2 − α1)ξ, . . . ,Γ(2 − αn)ξ)dt

ξ2 ,

we can consider a real sequence {dk} and a positive constant τ such that dk →∞ as k→∞ and

1
λ̄
< τ <

1
ρ∆′

∫ (1−θ)T

θT F(t,Γ(2 − α1)dk, . . . ,Γ(2 − αn)dk)dt

d2
k

(11)

for each k ∈N large enough. For all k ∈N, and θ ∈ (0, 1
2 ) define {wk = (w1k, . . . ,wnk)} by setting

ωik(t) :=


Γ(2−αi)dk

hT t, t ∈ [0, θT[,
Γ(2 − αi)dk, t ∈ [θT, (1 − θ)T],
Γ(2−αi)dk

θT (T − t), t ∈](1 − θ)T,T],
(12)
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for 1 ≤ i ≤ n. Clearly ωik(0) = ωik(T) = 0 and ωik ∈ L2[0,T] for 1 ≤ i ≤ n. A direct calculation shows that

0Dαi
t ωik(t) =


dk
θT t1−αi , t ∈ [0, θT[,
dk
θT (t1−αi − (t − θT)1−αi ), t ∈ [θT, (1 − θ)T],
dk
θT (t1−αi − (t − θT)1−αi − (t − (1 − θ)T)1−αi ), t ∈](1 − θ)T,T],

for 1 ≤ i ≤ n. Furthermore,∫ T

0
ai(t)|0Dαi

t ωik(t)|2dt =

∫ θT

0
+

∫ (1−θ)T

θT
+

∫ T

(1−θ)T
ai(t)|0Dαi

t ωik(t)|2dt

=
d2

k

θ2T2

{∫ T

0
ai(t)t2(1−αi)dt +

∫ T

θT
ai(t)(t − θT)2(1−αi)dt

+

∫ T

(1−θ)T
ai(t)(t − (1 − θ)T)2(1−αi)dt − 2

∫ T

θT
ai(t)(t2

− θTt)1−αi dt

−2
∫ T

(1−θ)T
ai(t)(t2

− (1 − θ)Tt)1−αdt

+2
∫ T

(1−θ)T
ai(t)(t2

− θTt + θ(1 − θ)T2)1−αi dt
}

= 2Pi(αi, θ)d2
k ,

for 1 ≤ i ≤ n. Thus, ωk ∈ X, and in particular,

‖ωik‖
2
αi

=

∫ T

0
ai(t)|0Dαi

t ωik(t)|2dt = 2P(αi, θ)d2
k ,

for 1 ≤ i ≤ n. So,
Φ(ωk) = Pi(αi, θ)d2

k .

On the other hand, similar to (8), we have

Φ(ωk) =

n∑
i=1

‖ωik‖
2
αi

2
− Υ(ω)

≤
ρ

2

( n∑
i=1

‖ωik‖
2
αi

)
= ρ

( n∑
i=1

P(αi, h)
)
d2

k

≤ ρ∆′d2
k .

(13)

Bearing in mind assumption (A1) and since G is nonnegative, from the definition of Ψ we infer

Ψ(wk) ≥
∫ (1−θ)T

θT
F(t,Γ(2 − α1)dk, . . . ,Γ(2 − αn)dk)dt. (14)

So, according to (11), (13) and (14),

Iλ̄,µ̄(wk) ≤ ρ∆′d2
k − λ̄

∫ (1−θ)T

θT
F(t,Γ(2 − α1)dk, . . . ,Γ(2 − αn)dk)dt

< ρ∆′(1 − λ̄τ)d2
k

(15)
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for every k ∈ N large enough. Hence, Iλ̄,µ̄ is unbounded from below, and so has no global minimum.
Therefore, applying Theorem 2.7(b) we deduce that there is a sequence {uk = (u1k, . . . ,unk)} ⊂ X of critical
points of Iλ̄,µ̄ such that limk→∞ ‖(u1k, . . . ,unk)‖ = +∞. Hence, the conclusion is achieved.

Remark 3.2. Under the conditions

lim inf
ξ→+∞

∫ T

0 sup(x1,...,xn)∈Q(ξ) F(t, x1, . . . , xn)dt

ξ2 = 0,

and

lim sup
ξ→+∞

∫ (1−θ)T

θT F(t,Γ(2 − α1)ξ, . . . ,Γ(2 − αn)ξ)dt

ξ2 = +∞,

from Theorem 3.1 we see for every λ > 0 and µ ∈ [0, k′
2k2n2G∞

[ system (1) admits infinitely many weak
solutions in X. Moreover, if G∞ = 0, the result holds for every λ > 0 and µ ≥ 0.

Here we point out the following consequence of Theorem 3.1 with µ = 0.

Corollary 3.3. Assume that there exists θ ∈ (0, 1
2 ) such that assumption (A1) holds. Suppose that

(B1) lim inf
ξ→+∞

∫ T
0 sup(x1 ,...,xn )∈Q(ξ) F(t,x1,...,xn)dt

ξ2 < k′
2k2n2 ;

(B2) lim sup
ξ→+∞

∫ (1−θ)T
θT F(t,Γ(2−α1)ξ,...,Γ(2−αn)ξ)dt

ξ2 > ρ∆′.

Then, the system tDαi
T

(
ai(t)0Dαi

t ui(t)
)

= Fui (t,u1(t), . . . ,un(t)) + hi(ui) a.e. t ∈ [0,T]
ui(0) = ui(T) = 0,

for 1 ≤ i ≤ n, has an unbounded sequence of weak solutions in X.

In the same way as in the proof of Theorem 3.1 but using conclusion (c) of Theorem 2.7 instead of (b), we
will obtain the following result.

Theorem 3.4. Assume that all the hypotheses of Theorem 3.1 hold except for assumption (A2). Suppose that

(A3) lim inf
ξ→0+

∫ T
0 sup(x1 ,...,xn )∈Q(ξ) F(t,x1,...,xn)dt

ξ2 < k′
2k2n2ρ∆′

lim sup
ξ→0+

∫ (1−θ)T
θT F(t,Γ(2−α1)ξ,...,Γ(2−αn)ξ)dt

ξ2 .

Then, for each λ ∈]λ3, λ4[ where

λ3 :=
ρ∆′

lim sup
ξ→0+

∫ (1−θ)T
θT F(t,Γ(2−α1)ξ,...,Γ(2−αn)ξ)dt

ξ2

,

λ4 :=
k′

2k2n2

lim inf
ξ→0+

∫ T
0 sup(x1 ,...,xn )∈Q(ξ) F(t,x1,...,xn)dt

ξ2

,

for every non-negative function G : [0,T] ×Rn
→ R satisfying the condition

G0 := lim sup
ξ→0+

∫ T

0 sup(x1,...,xn)∈Q(ξ) G(t, x1, . . . , xn)dt

ξ2 < +∞, (16)
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and for every µ ∈ [0, µ′G,λ[ where

µ′G,λ :=
k′

2k2n2G0

(
1 − λ

2k2n2

k′
lim inf
ξ→0+

∫ T

0 sup(x1,...,xn)∈Q(ξ) F(t, x1, . . . , xn)dt

ξ2

)
,

system (1) has a sequence of weak solutions, which strongly converges to zero in X.

Proof. Fix λ̄ ∈]λ3, λ4[ and let G be a function satisfying (16). Since λ̄ < λ4, one has

µ′G,λ̄ =
k′

2k2n2G0

(
1 − λ̄

2k2n2

k′
lim inf
ξ→0+

∫ T

0 sup(x1,...,xn)∈Q(ξ) F(t, x1, . . . , xn)dt

ξ2

)
> 0.

Fix µ̄ ∈]0, µ′
G,λ̄

[ and put

J(t, ξ1, . . . , ξn) := F(t, ξ1, . . . , ξn) +
µ̄

λ̄
G(t, ξ1, . . . , ξn)

for every t ∈ [0,T] and ξ = (ξ1, . . . , ξn) ∈ Rn. We take Φ,Ψ and Iλ̄,µ̄ as in the proof of Theorem 3.1. We verify
that λ̄ < 1

γ . For this, let {ξk} be a sequence of positive number such that ξk → 0+ as k→∞ and

lim
k→+∞

∫ T

0 sup(x1,...,xn)∈Q(ξk) F(t, x1, . . . , xn)dt

ξ2
k

= lim inf
ξ→0+

∫ T

0 sup(x1,...,xn)∈Q(ξ) F(t, x1, . . . , xn)dt

ξ2
.

By the fact that infX Φ = 0 and the definition of δ, we have δ = lim inf
r→0+

ϕ(r). Then, as in showing (10) in the

proof of Theorem 3.1, we can prove that δ < +∞, and hence λ̄ < 1
δ .

Let λ̄ be fixed. We claim that the functional Iλ̄,µ̄ does not have a local minimum at zero. For this, let {dk}

be a sequence of positive numbers such that dk → 0+ as k→∞ and pick τ > 0 such that

1
λ̄
< τ <

1
ρ∆′

∫ (1−θ)T

θT F(t,Γ(2 − α1)dk, . . . ,Γ(2 − αn)dk)dt

d2
k

for each k ∈N large enough. Let {wk = (w1k, . . . ,wnk)} be a sequence in X with wik defined in (12). Note that
λ̄τ > 1. Then, as in showing (15), we can obtain that

Iλ̄,µ̄(ωk) ≤ ρ∆′d2
k − λ̄

∫ (1−θ)T

θT
F(t,Γ(2 − α1)dk, . . . ,Γ(2 − αn)dk)dt

< (1 − λ̄τ)d2
kρ∆′ < 0

for every k ∈ N large enough. Since Iλ̄,µ̄(0) = 0, this implies that the functional Iλ̄,µ̄ does not have a local
minimum at zero.

Hence, part (c) of Theorem 2.7 ensures that there exists a sequence {uk = (u1k, . . . ,unk)} in X of critical
points of Iλ̄,µ̄ which weakly converges to zero. In view of the fact that the embedding X ↪→ (C([0,T],R))n is
compact, we know that the critical points converge strongly to zero, and the proof is completed.

Remark 3.5. Under the conditions

lim inf
ξ→0+

∫ T

0 sup(x1,...,xn)∈Q(ξ) F(t, x1, . . . , xn)dt

ξ2 = 0,

and

lim sup
ξ→0+

∫ (1−θ)T

θT F(t,Γ(2 − α1)ξ, . . . ,Γ(2 − αn)ξ)dt

ξ2 = +∞,

Theorem 3.4 ensures that for every λ > 0 and µ ∈ [0, k′
2k2n2G0

[ system (1) admits infinitely many weak
solutions in X. Moreover, if G0 = 0, the result holds for every λ > 0 and µ ≥ 0.
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Now we present the following example to illustrate the above result.

Example 3.6. Consider the system

tD0.75
1

(
(2 + t2)0D0.75

t x1(t)
)

= λFx1 (t, x1(t), x2(t)) + µGx1 (t, x1(t), x2(t))
+h1(x1(t)) a.e. t ∈ [0, 1],

tD0.8
1

(
(1 + t)0D0.8

t x2(t)
)

= λFx2 (t, x1(t), x2(t)) + µGx2 (t, x1(t), x2(t))
+h2(x2(t)) a.e. t ∈ [0, 1],

x1(0) = x2(0) = x1(1) = x2(1) = 0,

(17)

where h1(x1) = 1
4 sin x1 and h2(x2) = 1

9 x2. Moreover, for all (t, x1, x2) ∈ [0, 1] × R2, let F : [0, 1] × R2
→ R be

defined as

F(t, x1, x2) :=
{

0 for all (t, x1, x2) ∈ [0, 1] × {0}2,
1(t)x2

1(1 − sin(ln(|x1|))) + k(t)x2
2(1 − cos(ln(|x2|))) for all (t, x1, x2) ∈ [0, 1] × (R − {0})2,

where 1, k : [0, 1]→ R are non-negative continuous functions. Let θ = 1
4 . We observe that

lim inf
ξ→0+

∫ 1

0 sup
|x1 |+|x2 |≤ξ

F(t, x1, x2)dt

ξ2 = 0

and

lim sup
ξ→0+

∫ 3/4

1/4 F(t,Γ(1.25)ξ,Γ(0.2)ξ)dt

ξ2 = +∞.

Now, let G : [0,T] ×R2
→ R be a function defined by

G(t, x1, x2) = 1 − cos(x1x2).

By definition, G ∈ C1(R2) and

lim sup
ξ→0+

∫ 1

0 sup
|x1 |+|x2 |≤ξ

G(t, x1, x2)dt

ξ2 = 0 < ∞.

All hypotheses of Remark 3.5 are satisfied. Then for all (λ, µ) ∈]0,+∞[×[0,+∞[ the system 17 admits a
sequence of weak solutions which strongly converges to 0 in E0.75

0 × E0.8
0 .

As an application of Theorem 3.1 we consider the case n = 1.

Corollary 3.7. Let 1
2 < α ≤ 1, f : [0,T] × R → R be an L1-Carathéodory function and h : R → R be a Lipschitz

continuous function with the Lipschitz constant L > 0. Put F(t, x) :=
∫ x

0 f (t, ξ)dξ for each (t, x) ∈ [0,T]×R. Assume
that there exist two constants θ ∈ (0, 1

2 ) and η > 0 such that

(C1) F(t, x) ≥ 0 for each (t, x) ∈ [0, θT] ∪ [(1 − θ)T,T] ×R;

(C2) lim inf
ξ→+∞

∫ T
0 sup

|x|≤ξ F(t,x)dt
ξ2 < k′

2k2n2ρ∆′
lim sup
ξ→+∞

∫ (1−θ)T
θT F(t,Γ(2−α)ξ)dt

ξ2 .

Then, for each λ ∈]λ5, λ6[ where

λ5 :=
ρ∆′

lim sup
ξ→+∞

∫ (1−θ)T
θT F(t,Γ(2−α)η)dt

ξ2

,
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λ6 :=
k′

2k2n2

lim inf
ξ→+∞

∫ T
0 sup

|x|≤ξ F(t,x)dt
ξ2

,

for every L1-Carathéodory function 1 : [0,T] ×R→ R whose potential G(t, x) :=
∫ x

0 1(t, ξ)dξ for (t, x) ∈ [0,T] ×R
is a non-negative function satisfying the condition

G∞ := lim
ξ→+∞

∫ T

0 sup
|x|≤ξ G(t, x)dt

ξ2 < +∞,

and for every µ ∈ [0, µG,λ[ where

µG,λ :=
k′

2k2n2G∞

(
1 − λ

2k2n2

k′
lim inf
ξ→+∞

∫ T

0 sup
|x|≤ξ F(t, x)dt

ξ2

)
,

the system tDα
T

(
a(t)0Dα

t u(t)
)

= λ f (t,u(t)) + µ1(t,u(t))
+h(u(t)) a.e. t ∈ [0,T]

u(0) = u(T) = 0,

has an unbounded sequence of weak solutions in X.
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