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Abstract. We classify the pseudo-Riemannian biharmonic submersion from a 3-dimensional space form
onto a surface.

1. Introduction

The theory of Riemannian submersions was initiated by O’Neill [14] and Gray [11]. One of the well
known example of a Riemannian submersion is the projection of a Riemannian product manifold on one
of its factors. Presently, there is an extensive literature on the Riemannian submersions with different
conditions imposed on the total space and on the fibres. A systematic exposition could be found in
A. Besse’s book [4]. Pseudo-Riemannian submersions were introduced by O’Neill [15]. Magid classified
pseudo-Riemannian submersions with totally geodesic fibres from an anti-de Sitter space onto a Riemannian
manifold [13]. Then Bădiţou gave the classification of the pseudo-Riemannian submersions with (para)
complex connected totally geodesic fibres from a (para) complex pseudo-hyperbolic space onto a pseudo
Riemannian manifold [1, 3].

A map between Riemannian manifolds is harmonic if the divergence of its differential vanishes. The
first major study of harmonic maps has been begun by J. Eells and J. H. Sampson [9]. In [9], Eells and
Sampson defined biharmonic maps between Riemannian manifolds as an extension of harmonic maps and
Jiang obtained their first and second variational formulas [12].

During the last decade important progress has been made in the study of both the geometry and the
analytic properties of biharmonic maps. A fundamental problem in the study of biharmonic maps is
to classify all proper biharmonic maps between certain model spaces. An example of this was proved
independently by Chen-Ishikawa [7] and Jiang [12] that every biharmonic surface in a Euclidean 3-space E3

is a minimal surface. Later, Caddeo et al. showed that the theorem remains true if the target Euclidean space
is replaced by 3-dimensional hyperbolic space form [5]. Chen and Ishikawa also proved that biharmonic
Riemannian surface in E3

1 is a harmonic surface [6]. For Riemannian submersions, Wang and Ou stated that
Riemannian submersion from a 3-dimensional space form into a surface is biharmonic if and only if it is
harmonic [19].
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The above results give us the motivation for preparing this study. In this paper, we study the biharmonic
pseudo-Riemannian submersions from 3-manifolds.

The main purpose of section §2 is to give a brief information about pseudo-Riemannian submersions,
biharmonic maps and space forms. In this section, we also give some properties of fundamental tensors
and fundamental equations which we will use them to obtain our results. In section §3, we investigate the
biharmonicity of a pseudo-Riemannian submersion from a 3-manifold by using the integrability data of
a special orthonormal frame adapted to a pseudo-Riemannian submersion. Finally, we give a complete
classification of biharmonic pseudo-Riemannian submersions from a 3-dimensional pseudo-Riemannian
space form.

2. PRELIMINARIES

2.1. Pseudo-Riemannian submersions with totally geodesic fibre

In this subsection we recall several notions and results which will be needed throughout the paper.
Let (M, 1) be an m-dimensional connected pseudo-Riemannian manifold of index s (0 ≤ s ≤ m), let

(B, 1′) be an n-dimensional connected pseudo-Riemannian manifold of index r ≤ s, (0 ≤ r ≤ n). In case of
Riemannian submersion, the fibers are always Riemannian manifolds.

A pseudo-Riemannian submersion is a smooth map π : M→ B which is onto and satisfies the following
three axioms:

S1. π∗ |p is onto for all p ∈M,
S2. the restriction of the metric to the fibres π−1(b), b ∈ B are non degenerate ,
S3. π∗ preserves scalar products of vectors normal to fibres.
We shall always assume that the dimension of the fibres dimM - dimB is positive and the fibres are

connected. By S2, one can observe fibres as spacelike and timelike cases.
The vectors tangent to fibres are called vertical and those normal to fibres are called horizontal. We

denote by V the vertical distribution and by H the horizontal distribution. The fundamental tensors of a
submersion were defined by O’Neill ([14], [15]). They are (1, 2)-tensors on M, given by the formulas:

T(E,F) = TEF = h∇νEνF + ν∇νEhF, (1)
A(E,F) = AEF = ν∇hEhF + h∇hEυF,

for any E,F ∈ χ(M).Here∇denotes the Levi-Civita connection of (M, 1).These tensors are called integrability
tensors for the pseudo-Riemannian submersions. We use the h and ν letters to denote the orthogonal
projections on the vertical and horizontal distributions respectively. A vector field X on M is called basic
if X is horizontal and π-related to a vector field X∗ on B, i.e. π∗(Xp) = X∗π(p) for all p ∈ M. The following
lemmas are well known (see [14], [15]).

Lemma 2.1. Let π : (M, 1)→ (B, 1′) be a pseudo-Riemannian submersion. If X, Y are basic vector fields on M, then

i) 1(X,Y) = 1′(X∗,Y∗) ◦ π,
ii) h[X,Y] is basic and π-related to [X∗,Y∗],
iii) h(∇XY) is a basic vector field corresponding to ∇

B

X∗
Y∗ where ∇B is the connection on B.

iv) for any vertical vector field V, the bracket [X,V] is vertical.

Lemma 2.2. For any vertical U,W and horizontal X,Y vector fields, the tensor fields T and A satisfy

i)TUW = TWU,
ii)AXY = −AYX = 1

2ν [X,Y] .
Moreover, if X is basic and U is vertical then h(∇UX) = h(∇XU) = AXU. It is not difficult to observe that

T acts on the fibers as the second fundamental form and reverse the vertical distributions. It is easy to see
that a Riemannian submersion π : M→ B has totally geodesic fibers if and only if T vanishes identically.
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We define the curvature tensor R of M by R(E,F) = ∇E∇F − ∇F∇E − ∇[E,F] for any vector fields E, F on M.
The pseudo-Riemannian curvature (0, 4)-tensor is defined by

R(E,F,G,H) = 1(R(E,F)G,H).

Let us recall the sectional curvature of pseudo-Riemannian manifolds for nondegenerate planes. Let M
be a pseudo-Riemannian manifold and P be a non-degenerate tangent plane to M at p. The number

KX∧Y =
1(R(X,Y)Y,X)

1(X,X)1(Y,Y) − 1(X,Y)2

is independent on the choice of basis X,Y for P and is called the sectional curvature. We use notation Ri jkl
= 1(R(ei, e j)ek, el). Next, we can give the following lemma:

Lemma 2.3 ([15]). Let π : (M, 1) → (B, 1′) be a pseudo-Riemannian submersion. K and KB denote the sectional
curvatures in M and B, respectively. If X, Y are basic vector fields on M, then

KB
X∗∧Y∗ = KX∧Y +

31(AXY,AXY)
1(X,X)1(Y,Y) − 1(X,Y)2 . (2)

In [17], Escobales gave a classification of Riemannian submersions with connected totally geodesic
fibres from a sphere to a Riemannian manifold and then Ranjan [16] dropped Escobales’s classification into
three categories: (a) S2n+1

→ CPn,n ≥ 1, with the fibres S1; (b) S4n+3
→ HPn,n ≥ 1, with the fibres S3; (c)

S8n+7
→ CaPn, n = 1, 2 with the fibres S7, where CPn, HPn and CaPn are complex projective, quaternionic

projective and Cayley projective space, respectively.
In the Lorentz space case, Magid [13] proved that if π : H2n+1

1 (c) → B2n be a pseudo-Riemannian
submersion with totally geodesic fibres onto a Riemannian manifold then, B2n is a Kaehler manifold
holomorphically isometric to complex hyperpolic space CHn(4c).

In [2] Baditou and Ianuş generalized Magid’s result and classified the pseudo-Riemannian submersions
with connected complex totally geodesic fibres from a complex pseudo hyperbolic space onto a Riemannian
manifold. These pseudo-Riemannian submersions are observed as mainly three categories : (1) H2m+1

1 →

CHm, (2) H4m+3
3 → H(Hm) or (3) H15

7 → H8(−4), where CHmand H(Hm) are complex hyperbolic space and
quaternionic hyperbolic space, respectively. Then Baditoiu [1] improved these results under the assumption
that the dimension of the fibres is less than or equal to three.

Recently, Baditoiu [3] generalized previous results without any assumption for dimension of the fibres
and proved that any pseudo-Riemannian submersions with connected, totally geodesic fibres from a real
pseudo hyperbolic space onto a pseudo-Riemannian manifold is equivalent to one of the (para) Hopf
pseudo-Riemannian submersions: (i) H2m+1

2t+1 → CHm
t , 0 ≤ t ≤ m, (ii) H2m+1

m → APm, (iii) H4m+3
4t+3 → H(Hm

t ), 0 ≤
t ≤ m, (iv) H4m+3

2m+1 → BPm, (v) H15
15 → H8

8(−4), (vi) H15
7 → H8

4(−4) or (vii) H15
7 → H8

4(−4), where CHm
t and

H(Hm
t ) are the indefinite complex and quaternionic pseudo-hyperbolic spaces of holomorphic, respectively,

quaternionic curvature −4; APm is the para-complex projective space of real dimension 2m, signature (m,m)
and para-holomorphic curvature −4; BPm is the para-quaternionic projective space of real dimension 4m,
signature (2m, 2m) and para-quaternionic curvature −4.

In summary, for three dimensional, these (para) pseudo-Riemannian submersions with connected,
totally geodesic fibres fall into one of the following cases:

(a1) π : S3(1)→ CP1, (a2) π : H3
1(−1)→ H2(−4) = CH1, (a3) π : H3

1(−1)→ H2
1(−4) = AH1, (a4) π : H3

3(−1)→
H2

2(−4) = CH1
1

We will finish this subsection by the following Theorem of Uniqueness:

Theorem 2.4 ([3]). Let π1, π2 : Ha
l → B be two pseudo-Riemannian submersions with connected, totally geodesic

fibres from a pseudo-hyperbolic space onto a pseudo-Riemannian manifold. Then there exists an isometry f : Ha
l → Ha

l
such that π2 ◦ f = π1. In particular, π1 and π2 are equivalent.
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2.2. Biharmonic maps
Let Mm and Bn be pseudo-Riemannian manifolds of dimensions m and n, respectively, and ϕ : Mm

→ Bn

a smooth map. We denote by ∇M and ∇B the Levi-Civita connections on Mm and Bn, respectively. Then the
tension field τ(ϕ) is a section of the vector bundle ϕ∗TBn defined by

τ(ϕ) = trace(∇ϕdϕ) =

m∑
i=1

1(ei, ei)(∇
ϕ
ei

dϕ(ei) − dϕ(∇ei ei)).

Here ∇ϕ and {ei} denote the induced connection by ϕ on the bundle ϕ∗TBn, which is the pull-back of ∇B,
and a local orthonormal frame field of Mm, respectively. A smooth map ϕ is called a harmonic map if its
tension field vanishes. A map ϕ is called biharmonic if it is a critical point of the energy

E2(ϕ) =
1
2

∫
Ω

1(τ(ϕ), τ(ϕ)dv1

for every compact domains Ω of Mm, where dv1 is the volume form of Mm. Using same argument in
Riemannian case, the bitension field can be defined by

τ2(ϕ) =

m∑
i=1

1(ei, ei)((∇
ϕ
ei
∇
ϕ
ei
− ∇

ϕ
∇ei ei

)τ(ϕ) − RB(dϕ(ei), τ(ϕ))dϕ(ei)), (3)

where RB is the curvature tensor of Bn (see [8], [12], [18]). A smooth map ϕ is a biharmonic map (or
2-harmonic map) if its bitension field vanishes (see [12], [18]). By definition, a harmonic map is clearly
biharmonic map. Non harmonic biharmonic maps are called proper biharmonic maps.

3. THE THEOREMS AND PROOFS

In this section, we will prove our classification Theorem and corollaries. Firstly, we will recall well
known theorems:

Theorem 3.1 ([10]). A pseudo-Riemannian submersion π : (M, 1) → (B, 1′ ) is a harmonic map if and only if each
fibre is a minimal submanifold.

Theorem 3.2 ([1],[13],[16],[17]). Let π : (M3
r (c), 1) → (B2

s , 1
′

) be a (para) pseudo-Riemannian submersion with
connected totally geodesic fibres, where 0 ≤ r ≤ 3, 0 ≤ s ≤ 2 and c , 0.In summary, for three dimensional, these
(para) pseudo-Riemannian submersions with connected, totally geodesic fibres. Then π is one of the following types:

Timelike Fiber Spacelike Fiber
H3

3(−1) π
→ H2

2(−4) = CH1
1;[1] H3

1(−1) π
→ H2

1(−4) = AH1;[1]
H3

1(−1) π
→ H2(−4) = CH1;[13] S3(1) π

→ S2
(

1
2

)
= CP1;[16],[17].

We will report following theorems which give us the motivation to study on this paper.

Theorem 3.3 ([6]). Let x : M→ E3
s (s = 0, 1) be a biharmonic isometric immersion of a Riemannian surface M into

E3
s .Then x is harmonic.

Theorem 3.4 ([20]). If M is a complete biharmonic space-like surface in S3
1 or R3

1, then it must be totally geodesic, i.e.
S2 or R2.

Theorem 3.5 ([19]). Let π : (M3(c), 1) → (B2, 1
′

) be a Riemannian submersion from a space form of constant
sectional curvature c. Then, π is biharmonic if and only if it is harmonic, and this holds if and only if it is a harmonic
morphism.
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Let π : (M3
r , 1) → (B2

s , 1
′

) be a pseudo-Riemannian submersion where 0 ≤ r ≤ 3, 0 ≤ s ≤ 2. Let us
consider a local pseudo orthonormal frame {e1, e2, e3} such that e1, e2 are basic and e3 is vertical . Then, it is
well known (see [14]) that [e1, e3] and [e2, e3] are vertical and [e1, e2] is π-related to [ε1, ε2], where {ε1, ε2} is a
pseudo orthonormal frame in the base manifold.

Let {e1, e2, e3} be an orthonormal frame adapted to with e3 being vertical where 1(ei, ei) = δi = ∓1. If we
assume that

[ε1, ε2] = L1ε1 + L2ε2, (4)

for L1, L2 ∈ C∞(B) and use the notations li = Li ◦ π, i = 1, 2. Then, we have

[e1, e3] = λe3,

[e2, e3] = µe3, (5)
[e1, e2] = l1e1 + l2e2 − 2σe3.

where λ, µ and σ ∈ C∞(M). Here l1, l2, λ, µ and σ are the integrability functions of the adapted frame of the
pseudo-Riemannian submersion π.

Proposition 3.6. Let π : (M3
r , 1)→ (B2

s , 1
′

) be a pseudo-Riemannian submersion with the adapted frame {e1, e2, e3}

and the integrability functions l1, l2, λ, µ and σ. Then, the pseudo-Riemannian submersion π is biharmonic if and
only if

∆Mλ = −δ2l1e1(µ) − δ2e1(µl1) − δ2l2e2(µ) − δ2e2(µl2)

+δ2λµl1 + δ2µ
2l2 + λ

{
δ2l21 + δ1l22 − δ1δ2KB

}
, (6)

∆Mµ = δ1l1e1(λ) + δ1e1(λl1) + δ1l2e2(λ) + δ1e2(λl2)

−δ1λµl2 − δ1λ
2l1 + µ

{
δ2l21 + δ1l22 − δ1δ2KB

}
,

where KB = RB
1221 ◦ π = δ2e1(l2) − δ1e2(l1) − δ1l21 − δ2l22 is the sectional curvature of pseudo-Riemannian manifold

(B2
s , 1

′

).

Proof. Let ∇ denote the Levi-Civita connection of the pseudo-Riemannian manifold (M3
r , 1). Using (5),

Koszul formula and after a straightforward computation, we have

∇e1 e1 = −δ1δ2l1e2, ∇e1 e2 = l1e1 − σe3,

∇e1 e3 = δ2δ3σe2, ∇e2 e1 = −l2e2 + σe3,

∇e2 e2 = δ1δ2l2e1, ∇e2 e3 = −δ1δ3σe1, (7)
∇e3 e1 = δ2δ3σe2 − λe3, ∇e3 e2 = −δ1δ3σe1 − µe3,

∇e3 e3 = δ1δ3λe1 + δ2δ3µe2.

The tension of the pseudo-Riemannian submersion τ is given by

τ(π) =

3∑
i=1

1(ei, ei)
[
∇
π
ei

dπ(ei) − dπ(∇M
ei

ei)
]

= −δ3dπ(∇M
e3

e3) = −δ1λε1 − δ2µε2. (8)
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After some calculation by using (7) we get

τ2(π) =

3∑
i=1

1(ei, ei)
{
∇
π
ei
∇
π
ei
τ(π) − ∇π

∇
M
ei

ei
τ(π) − RB(dπ(ei), τ(π))dπ(ei)

}
= δ1

[
∇
π
e1

(−δ1e1(λ)ε1 − δ1λ∇πe1
ε1) + ∇πe1

(−δ2e1(µ)ε2 − δ2µ∇πe1
ε2)

+δ1δ2l1∇πe2
(−δ1λε1 − δ2µε2) + δ2µRB(ε1, ε2)ε1

]
+δ2

[
∇
π
e2

(−δ1e2(λ)ε1 − δ1λ∇πe2
ε1) + ∇πe2

(−δ2e2(µ)ε2 − δ2µ∇πe2
ε2)

−δ1δ2l2∇πe1
(−δ1λε1 − δ2µε2) + δ1λRB(ε2, ε1)ε2

]
δ3

[
∇
π
e3

(−δ1e3(λ)ε1 − δ1λ∇πe3
ε1) + ∇πe3

(−δ2e3(µ)ε2 − δ2µ∇πe3
ε2)

−δ1δ3λ∇πe1
(−δ1λε1 − δ2µε2) − δ2δ3µ∇πe2

(−δ1λε1 − δ2µε2)

]
.

Now we calculate Laplace of λ and µ. Since 1radλ = δ1e1(λ)e1 + δ2e2(λ)e2 + δ3e3(λ)e3, we obtain

∆mλ =

3∑
i=1

1(ei, ei)1(∇ei1radλ, ei)

= δ1e1(e1(λ)) + δ2e2(e2(λ)) + δ3e3(e3(λ)) + δ2e2(λ)l1 − δ1e1(λ)l2
−δ1e1(λ)λ − δ2e2(λ)µ.

Using same calculations for µ we get

∆mµ = δ1e1(e1(µ)) + δ2e2(e2(µ)) + δ3e3(e3(µ)) + δ2e2(µ)l1 − δ1e1(µ)l2
−δ1e1(µ)λ − δ2e2(µ)µ.

τ2(π) = δ1

[
−∆Mλ − δ2l1e1(µ) − δ2e1(µl1) − δ2l2e2(µ) − δ2e2(µl2)

+δ2λµl1 + δ2µ2l2 + λ
{
δ2l21 + δ1l22 − δ1δ2KB

} ]
ε1

+δ2

[
−∆Mµ + δ1l1e1(λ) + δ1e1(λl1) + δ1l2e2(λ) + δ1e2(λl2)
−δ1λµl2 − δ1λ2l1 + µ

{
δ2l21 + δ1l22 − δ1δ2KB

} ]
ε2,

which completes the proof.
When the integrability function µ = 0 we have the following corollary.

Corollary 3.7. Let π : (M3
r , 1)→ (B2

s , 1
′

) be a pseudo-Riemannian submersion with an adapted frame {e1, e2, e3} and
the integrability functions l1, l2, λ, µ and σ with µ = 0 . Then, the pseudo-Riemannian submersion π is biharmonic
if and only if

−δ1∆
Mλ + λ

{
δ1δ2l21 + l22 − δ2KB

}
= 0, (9)

δ1δ2l1e1(λ) + δ1δ2e1(λl1) + δ1δ2l2e2(λ) + δ1δ2e2(λl2) − δ1δ2λ
2l1 = 0.

The following lemmas will be used to prove classification Theorem.

Lemma 3.8. Let π : M3
r (c) → (B2

s , 1
′

) be a pseudo-Riemannian submersion from a space form of constant sectional
curvature c. Then, for any orthonormal frame {e1, e2, e3} on M3

r (c) adapted to the pseudo-Riemannian submersion
with e3 being vertical, all the integrability functions l1, l2, λ, µ and σ are constant along fibers of π, i.e.,

e3(l1) = e3(l2) = e3(µ) = e3(λ) = e3(σ) = 0 (10)
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Proof. From definition, li = Fi ◦ π for i = 1, 2 we can conclude that l1 and l2 are constant along the fibers. It
remains to show that

e3(µ) = e3(λ) = e3(σ) = 0. (11)

Using the Jacobi identity to the frame {e1, e2, e3}, we have

2e3(σ) + λl1 + µl2 + e2(λ) − e1(µ) = 0. (12)

By using (12) and the fact that M3
1(c) has constant sectional curvature c, calculating RM

1312, RM
1313, RM

1323, RM
1212,

RM
1223, RM

2313, RM
2323 respectively, we get

i)e1(σ) − 2λσ = 0,
ii) δ1e1(λ) + δ1δ2δ3σ

2
− δ1λ

2 + δ2µl1 = c,
iii) − e1(µ) + e3(σ) + λl1 + λµ = 0,

iv) − δ2e2(l1) + δ1e1(l2) − δ2l21 − δ1l22 − 3δ1δ2δ3σ
2 = c, (13)

v)e2(σ) − 2µσ = 0,
vi) − e2(λ) − e3(σ) − µl2 + λµ = 0,

vii) δ1δ2δ3σ
2 + δ2e2(µ) − δ1λl2 − δ2µ

2 = c.

Applying e3 to both sides of the equation iv) of (13) and using e3e1 = [e3, e1] + e1e3 and e3e2 = [e3, e2] + e2e3,
we obtain

σe3(σ) = 0,

which implies

e3(σ) = 0.

Using the last equation and applying e3 to both sides of the equations i) and v) of (13) respectively, we get

e3(λ) = 0, e3(µ) = 0.

Case 1. Spacelike Fiber
Submersion

Signature of 1
Signature of 1′

New Orthonormal frame of Base Manifold

π : (M3
1, 1)→ (B2

1, 1
′)

(e1, e2, e3; +,−,+)
(ε1, ε2; +,−)

ε
′

1 = − λ̄√
λ̄2−µ̄2

ε1 +
µ̄

√
λ̄2−µ̄2

ε2, ε
′

2 = −
µ̄

√
λ̄2−µ̄2

ε1 + λ̄√
λ̄2−µ̄2

ε2;if λ̄2
− µ̄2 > 0

ε
′

1 = −
µ̄

√
µ̄2−λ̄2

ε1 + λ̄√
µ̄2−λ̄2

ε2, ε
′

2 = − λ̄√
µ̄2−λ̄2

ε1 +
µ̄

√
µ̄2−λ̄2

ε2;if µ̄2
− λ̄2 > 0

π : (M3
2, 1)→ (B2

2, 1
′)

(e1, e2, e3;−,−,+)
(ε1, ε2;−,−)

ε
′

1 = λ̄√
λ̄2+µ̄2

ε1 +
µ̄

√
λ̄2+µ̄2

ε2, ε
′

2 =
µ̄

√
λ̄2+µ̄2

ε1 −
λ̄√
λ̄2+µ̄2

ε2

π : (M3, 1)→ (B2, 1′)
(e1, e2, e3; +,+,+)

(ε1, ε2; +,+)
ε
′

1 = λ̄√
λ̄2+µ̄2

ε1 +
µ̄

√
λ̄2+µ̄2

ε2, ε
′

2 = −
µ̄

√
λ̄2+µ̄2

ε1 + λ̄√
λ̄2+µ̄2

ε2

Table 1

Case 2. Timelike Fiber
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Submersion
Signature of 1
Signature of 1′

New Orthonormal frame of Base Manifold

π : (M3
1, 1)→ (B2, 1′)

(e1, e2, e3; +,+,−)
(ε1, ε2; +,+)

ε
′

1 = λ̄√
λ̄2+µ̄2

ε1 +
µ̄

√
λ̄2+µ̄2

ε2, ε
′

2 =
µ̄

√
λ̄2+µ̄2

ε1 −
λ̄√
λ̄2+µ̄2

ε2

π : (M3
2, 1)→ (B2

1, 1
′)

(e1, e2, e3; +−,−)
(ε1, ε2 : +,−)

ε
′

1 = − λ̄√
λ̄2−µ̄2

ε1 +
µ̄

√
λ̄2−µ̄2

ε2, ε
′

2 = −
µ̄

√
λ̄2−µ̄2

ε1 + λ̄√
λ̄2−µ̄2

ε2;if λ̄2
− µ̄2 > 0

ε
′

1 = −
µ̄

√
µ̄2−λ̄2

ε1 + λ̄√
µ̄2−λ̄2

ε2, ε
′

2 = − λ̄√
µ̄2−λ̄2

ε1 +
µ̄

√
µ̄2−λ̄2

ε2;if µ̄2
− λ̄2 > 0

π : (M3
3, 1)→ (B2

2, 1
′)

(e1, e2, e3;−,−,−)
(ε1, ε2 : −,−)

ε
′

1 = λ̄√
λ̄2+µ̄2

ε1 +
µ̄

√
λ̄2+µ̄2

ε2, ε
′

2 =
µ̄

√
λ̄2+µ̄2

ε1 −
λ̄√
λ̄2+µ̄2

ε2

Table 2

Lemma 3.9. Let π : (M3
r (c), 1)→ (B2

s , 1
′

) be a pseudo-Riemannian submersion with an adapted frame {e1, e2, e3} and
the integrability functions l1, l2, λ, µ and σ . Then, there exists another adapted orthonormal frame

{
e′1, e

′

2, e
′

3 = e3

}
on M3

r (c) with integrability functions µ′ = 0, and σ′ = σ.

Proof. Applying the same method in ([19], Lemma 3.2) and using Lemma 3.8 , Table 1 and Table 2, one can
complete the proof of the lemma.

Now we will give a classification of biharmonic pseudo-Riemannian submersions.
Classification Theorem: Letπ : M3

r (c)→ B2
s be a pseudo-Riemannian submersion from a space form of constant

sectional curvature c. Then, π is biharmonic if and only if it is equivalent to one of the following submersions:
Timelike Fiber Spacelike Fiber

π1 : H3
3(−1)→ H2

2(−4) = CH1
1; π6 : E3

2 → E2
2;

π2 : E3
3 → E2

2; π7 : H3
1(−1)→ H2

1(−4) = AH1;
π3 : H3

1(−1)→ H2(−4) = CH1; π8 : E3
1 → E2

1;
π4 : E3

1 → E2; π9 : S3(1)→ S2
(

1
2

)
= CP1;is proved by [19]

π5 : E3
2 → E2

1; π10 : E3
→ E2,is proved by [19]

Table 3

Proof. By Lemma 3.9, we can choose an orthonormal frame {e1, e2, e3} adapted to the pseudo-Riemannian
submersion with integrability functions l1, l2, λ, µ and σ with µ = 0. According to this frame (13) reduces
to

a1)e1(σ) − 2λσ = 0,
a2)δ1e1(λ) + δ1δ2δ3σ

2
− δ1λ

2 = c,
a3)λl1 = 0,

a4) − δ2e2(l1) + δ1e1(l2) − δ2l21 − δ1l22 − 3δ1δ2δ3σ
2 = c, (14)

a5)e2(σ) = 0,
a6)e2(λ) = 0,

a7)δ1δ2δ3σ
2
− δ1λl2 = c.

From a3) of (14), we have either λ = 0 or l1 = 0. If λ = 0, from (8) the tension field of π vanishes. This
means that pseudo-Riemannian submersion is harmonic. If l1 = 0 and λ , 0, this case can not happen. We
will prove this by a contradiction.

Case I: λ , 0, l1 = 0 and l2 = 0. So, from a4), a7) in (14), we have σ = c = 0. If we put l1 = l2 = σ = 0 and
µ = 0 into (9) we obtain

∆Mλ = 0,
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which, one can easily get by using a2), a6) of (14) ,

λ3 = 0.

It follows that λ = 0 which is a contradiction.
Case II: λ , 0, l1 = 0 and l2 , 0. In this case, by using l1 = 0 and a5), a6) and a7) of (14), (9) reduces to

−δ1∆
Mλ + λ

[
−δ2c − 3δ1δ3σ

2 + l22
]

= 0, (15)

where KB = c + 3δ1δ2δ3σ2 obtained from curvature formula for a pseudo-Riemannian submersion. Using
a1), a2) of (14) and after a straightforward calculation yields

∆Mλ = δ1e1(e1(λ)) − δ1e1(λ)l2 − δ1e1(λ)λ
∆Mλ = −5δ1δ2δ3λσ

2 + δ1λ
3 + λc + l2(−c + δ1δ2δ3σ

2
− δ1λ

2).

Substituting this into (15) and using a7) we obtain

λ
[
δ3(6δ2 − 3δ1)σ2

− λ2
− (2δ1 + δ2)c

]
= 0. (16)

We accept λ , 0, so (16) is equivalent to

λ2 = δ3(6δ2 − 3δ1)σ2
− (2δ1 + δ2)c. (17)

After applying e1 to both sides of (17), we get

λe1(λ) = δ3(6δ2 − 3δ1)σe1(σ).

Combining this and a1) , a2) in (14), we have

λ(λ2
− δ2δ3σ

2 + δ1c) = 2δ3(6δ2 − 3δ1)λσ2.

By assumption λ , 0, this turned into

λ2 + δ1c = δ3(13δ2 − 6δ1)σ2,

or

λ2 = δ3(13δ2 − 6δ1)σ2
− δ1c. (18)

Applying e1 to both sides of (18) and again using a1), a2) in (14) we get

λ2 = δ3(27δ2 − 12δ1)σ2
− δ1c. (19)

Combining (17), (18) with (19) we have λ = σ = c = 0. This implies there is a contradiction. Because our
assumption is λ , 0.So we have λ = µ = 0. If we use (7) in the first equation of (1) we get T(ei, e j) = 0,
1 ≤ i, j ≤ 3. It means that fiber is totally geodesic. By (a2)of (14), we have

δ1δ2δ3σ
2 = c. (20)

Using the last equation and Theorem 3.2 , we get our classification.
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