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Abstract. In this paper, we derive Ostrowski and Brauer type theorems for the left and right eigenvalues of
a quaternionic matrix. Generalizations of Gerschgorin type theorems are discussed for the left and the right
eigenvalues of a quaternionic matrix. After that, a sufficient condition for the stability of a quaternionic
matrix is given that generalizes the stability condition for a complex matrix. Finally, a characterization of
bounds is derived for the zeros of quaternionic polynomials.

1. Introduction

Quaternions are extensively used in the programming of video games, computer graphics, quantum
physics, flight dynamics, and control theory, etc. The solutions of linear differential equations with quater-
nion constant coefficients lead to quaternionic polynomials. So, the stability analysis of such differential
equations can be studied through localization theorems of quaternionic matrices. In recent past, finding
the zeros of quaternionic polynomials and finding the bounds of zeros of quaternionic polynomials have
gained much attention in the literature. This paper attempts to study the localization theorems for matrices
over a quaternion division algebra, which includes the Ostrowski, Brauer, and Gerschgorin type of the-
orems. Bounds for the zeros of quaternionic polynomials are also considered. Localization theorems for
quaternionic matrices have received much attention in the literature due to their numerous applications in
pure and applied sciences; see, e. g., [1, 2, 4, 6, 8, 13, 17-21, 27, 30, 31, 36-38] and the references therein.
Unlike the case of matrices over the field of complex numbers [3, 5, 11, 25, 35], localization theorems for
quaternionic matrices have been proposed for left and right eigenvalues separately in [16, 38, 39]. Ostrowski
and Brauer type theorems for the right eigenvalues of a quaternionic matrix with all real diagonal entries
have been introduced in [39]. A Brauer type theorem for the left eigenvalues of a quaternionic matrix has
been considered in [16, Theorem 4] for the deleted absolute row sums which is not same for the deleted
absolute column sums of a quaternionic matrix. Similar differences arise on the Gerschgorin and Ostrowski
type theorems for a quaternionic matrix. Therefore, more research is required to understand the Ostrowski,
Gershgorin, and Brauer type theorems for matrices over a quaternion division algebra. Furthermore, to
investigating their applications in finding various bounds for the zeros of quaternionic polynomials and to
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analyze conditions for the stability of a quaternionic matrix, one has to do further research in this direction.
Therefore we have developed a general framework using generalized Holder inequality of quaternions to
enhance our theory.

In the first part of this paper, we provide a general framework for localization theorems for quaternionic
matrices. Let M,,(IH) be the space of all nxn quaternionic matrices. Then, forany A = (a;;) € M,,(H), we prove
a Ostrowski type theorem which states that all the left eigenvalues of A are located in the union of n balls
Ti(A) ={zeH:|z—a; < Ti(A))’Ci(A)l_y}, where Ti(A) = Z;’:l,j:ﬁi |bl,']'| and Ci(A) = 27:1,#1- |ﬂji|, v Yy € [0, 1].
From this result, we deduce a sufficient condition for invertibility of a quaternionic matrix. We find that
the Brauer type theorem, proved in [16, Theorem 5] for the left eigenvalues in the case of deleted absolute
column sums of a quaternionic matrix, is incorrect, and we prove a corrected version. In fact, in the
case of the generalized Holder inequality over the skew field of quaternions, we show that all the left
eigenvalues of A = (a;;) € M,(IH) are contained in the union of n generalized balls: Bi(A) := {z € H :

—y 1

lz—ail < (n—1) 7 (A (nP(A))17), where y € [0, 1], n(A) := (X0, jsilaijl?)’, for any p,q € (1, o) with
% + % = 1. Further, we prove that all the right eigenvalues of A € M,,(IH) with all real diagonal entries are
contained in the union of n generalized balls B;(A). In the sequel, we present localization theorems for the
right eigenvalues of quaternionic matrices.

In the second part of this paper, we provide bounds for the zeros of quaternionic polynomials using the
aforementioned localization theorems. Recall that quaternionic polynomials in general are expressed in the
following forms

pi(z) = guz"+ qm_1zm‘1 + -+ g1z + qo, 1)
pr(z) = Z"gu + z""lqm_l + -+ 241 + qo, )

where q;, z € H, (0 < j < m). The polynomials (1) and (2) are called simple and monic if g,, = 1. Some
recent developments on the location and computation of zeros of quaternionic polynomials can be found
in [7, 14, 15, 22-24, 28, 32]. As a consequence of the localization theorems for quaternionic matrices, we
provide sharper bounds compared to the bound introduced by G. Opfer in [24] for the zeros of quaternionic
polynomials. Finally, we provide bounds for the zeros of quaternionic polynomials in terms of powers of
the companion matrices associated with the quaternionic polynomials (1) and (2). Some of our bounds are
sharper than the bound from [24].

The paper is organized as follows: Section 2 reviews some existing results from [26, 37]. Section 3
discusses the Greshgorin type, Ostrowski type, and Brauer type theorems for the left and right eigenvalues
of a quaternionic matrix. Section 4 explains bounds for the zeros of p;(z) and p,(z). Comparisons are made
with the bound provided in [24]. A sufficient condition for the stability of a quaternionic matrix is also
given. Section 5 introduces bounds for the zeros of the polynomials p;(z) and p,(z) in terms of powers of
their companion matrices. Finally, Section 6 summarizes this work.

2. Preliminaries

Notation: Throughout the paper, R and C denote the fields of real and complex numbers, respectively. The
set of real quaternions is defined by

H :={g = ap + mi+ aj + ask : ap,a1,a2,a3 € R}

with i? = j> = k? = ijk = —1. The conjugate of g € H is § := ap — a1i — a2j — ask and the modulus of
qis |ql := \ja}+ai+a5+a3. I(a) denotes the imaginary part of # € C. The real part of a quaternion
q = ap + mi + azj + azk is defined as R(g) = ap. The collection of all n-column vectors with elements in H is
denoted by H". For x € K", where K € {R, C, H}, the transpose of x is 2l Ifx = [x1,...,x,]7, the conjugate of
x is defined asx = [x7, ..., %,]7 and the conjugate transpose of x is defined as x™ = [x1,...,X;,]. Forx, y € H",

the inner product is defined as (x, y) := y"x and the norm of x is defined as ||x|| := V{x, x). The sets of m x n
real, complex, and quaternionic matrices are denoted by M;x(IR), Myxn(C), and M,,x,(IH), respectively.
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When m = n, these sets are denoted by M, (K), K € {R,C, H}. For A € M,;x,(K), the conjugate, transpose,
and conjugate transpose of A are defined as A = @), AT = (a;i) € Myxm(H), and A" = (AT € M,yon(H),
respectively. For z € H", the vector p-norm on H" is defined by ||z]|, := Xzl )P, where 1 < p < oo and
l1zl|eo := {r}g);{lzil}. Define R* := {a: @ € R, a > 0}. The set

[q]::{rEIH:r:p_lqpforallO;tpe]H}

is called an equivalence class of 4 € H.
Let x € H". Then x can be uniquely expressed as x = x; + x»j, where x1,x, € C". Define the function

Y:H"— c2 by
_|x*1
Py = [—E]

This function 1 is an injective linear transformation from H" to C>".

Definition 2.1. Let A € M, (IH). Then A can be uniquely expressed as A = A1 + Azj, where A1, Az € M, (C). Define
the function ¥V : M,,(H) — M,,(C) by

A A
\PAZZ[ ! 2].

~Ay A
The matrix W 4 is called the complex adjoint matrix of A.

Definition 2.2. Let A € M, (IH). Then the left, right, and the standard eigenvalues, respectively, are given by

A(A) = {AeH:Ax = Ax for some nonzero x € H"},
A(A) = {AeH: Ax = xA for some nonzero x € H"} and
As(A) = {A eC:Ax = xA for some nonzero x € H", I(A) > 0}.

Definition 2.3. Let A € M,,(H). Then the matrix A is said to be stable ifand only if A,(A) c H™ := {g e H: R(g) < 0}.
Definition 2.4. Let A € M,,(IH). Then A is said to be n-Hermitian if A = (A’Y)H , where A = r]HAn and n € {i,j, k}.

Definition 2.5. A matrix A € M,(IH) is said to be invertible if there exists B € M, (IH) such that AB = BA = I,,
where 1, is the n X n identity matrix.

We next recall the following result necessary for the development of our theory.

Theorem 2.6. [37, Theorem 4.3]. Let A € M,,(IH). Then the following statements are equivalent:
(a) A is invertible, (b) Ax = 0 has the unique solution, (c) det(W4) # 0, (d) W4 is invertible, (e) A has no zero
eigenvalue.

Let A := (a;;) € M,,(IH) and define the absolute row and column sums of A as

i(A) == ri(A) + laz] and c[(A) := c;(A) + |ay] (1 <i<n).

3. Distribution of the left and right eigenvalues of quaternionic matrices

It is known from [29, Corollary 3.2] that a quaternionic matrix A and its conjugate transpose Al have

the same right eigenvalues. However, A and A" may not have the same left eigenvalues, take for example
A= [(1) (])] and AH = [Bl _0]] We now present the following lemma for left eigenvalues of A and AH.

Lemma 3.1. Let A € M,(H) and let A € H. Then A is a left eigenvalue of A if and only if A is a left eigenvalue of
Al
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Proof. Let A be a left eigenvalue of A. Then there exists x(# 0) € H" such that (A — AL,)x = 0. This can be
written as W(a_a1,)Px = 0. Hence it follows that A is a left eigenvalue of A if and only if det [\P(A_M”)] =0

& det[WH | 1=0 & det[Wiu_yy] =0 det|W 3] = 0. Thus, Xis a left eigenvalue of A™. m

The Gerschgorin type theorem is proved in [38] for the left eigenvalues using deleted absolute row sums
of a matrix A € M,(H). However, the Gerschgorin type theorem for the left eigenvalues using deleted
absolute column sums of A has not yet been established. We now state and prove the theorem.

Theorem 3.2. Let A := (a;j) € M,(H). Then all the left eigenvalues of A are located in the union of n Gerschgorin
balls Q;(A) :={zeH: |z —a;| < ¢i(A)},1 <i < n,that is,

A(A) € QA) == UL, Qi(A).

Proof. Let A be a left eigenvalue of A. Then from Lemma 3.1, A is a left eigenvalue of A”. Then there exists

some nonzero x € H" such that AHx = Ax. Letx := [x1,...,x,]7 € H" and let x; be an element of x such that
x| > |xil,1 <i < n. Then, |x;| > 0. From the ¢-th equation of AHx = Ax, we have

n

Z ajxj = Ax;.

j=1

This shows
n

N -aul < Y lagl = ci(A). m

j=1, j#t

We now have the following localization theorem for the deleted absolute row and column sums of a matrix
A € M, (IH) which is known as Ostrowski type theorem.

Theorem 3.3. (Ostrowski type theorem for the left eigenvalues) Let A := (a;j) € M, (H) and let y € [0,1]. Then all
the left eigenvalues of A are located in the union of n balls Ti(A) :={z € H : |z —a;| < ri(A) (A7), 1 <i < n,
that is,

N(A) € T(A) == UL Ti(A).

Proof. Let y € (0,1); as the cases y = 0 and y = 1 (Gerschgorin type theorems for column and row sums,
respectively) can be obtained by taking limits. We may assume that all r;(A) > 0, because we may perturb
A by inserting a small nonzero entry € > 0 into any row in which r;(A) = 0; the resulting matrix has a ball
that is larger the ball for A, and the result follows in the limit as the perturbation goes to zero.

Let A be a left eigenvalue of A. Then there exists some nonzero x € H" such that Ax = Ax. Let
x=[x1,...,x,]7 € H*. Then for eachi=1,2,...,n, we have

n n n
1—y
A —ajillxi] = | z a;jxj| < z laijllx;| = z laiil” (laij1* 7 ;).
syt syt o1 i

we obtain

Applying the generalized Holder inequality withp = 1 and g = £

T
n v n 1
A=l < | Y (e || Y Gl )™

j=1j#i j=1,j#i

. Y( » 1-y n 1-y
[Z |az~]~|] {Z |aij||x,~|1-1~/] =n(A)V{ Y |aij||x,~|1-1~/] : 3)

1-y

A

=L j#i j=1j#i j=1j#i
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Since r;(A) > 0, then from (3) we have

1
A-al\T ¥ =
] TS ) ki

j=1,j#i

Summing over all i, one obtains

n |/\ _ {Il“l ﬁ . n n ) n )
Z( r(A);l ) bl ™ < Z Z laijllx;| ™= = ZCj(A)|xj|1TV. (4)
i=1 4 i=1 j=1j#i =

If

1
A —aql \"™7
Gl

for each i such that x # 0, then (4) could not hold. Hence, we can conclude that at least one i exists such as

A — ajl =
() <o

that is |A — a;| < 7;(A)”c;(A)'77. Thus, all the left eigenvalues of A are located in the union of # balls T;(A). m

Corollary 3.4. Forany A := (a;;) € M,(H), n > 2 and for any y € [0, 1]. Let us assume that
|aii| > ri(A) Ti(A)l_V, 1<i<n. (5)
Then A is invertible.

Proof. On the contrary, suppose A is not invertible. Then by Theorem 2.6, there is a left eigenvalue A = 0 of
A. Now from Theorem 3.3, we obtain |a;;| < r;(A)”ci(A)!77. This contradicts our assumption (5). Hence A is
invertible. m

The Brauer type theorem is proved in [16] for the left eigenvalues in the case of deleted absolute column
sums of a matrix A € M,,(IH). That is, if A € A;(A), then its conjugate A lies in the union of @ ovals of
Cassini. However, this is incorrect as the following example suggests:
i
0
Here, i is a left eigenvalue of A and its conjugate —i is not contained in the above oval of Cassini.

Example 3.5. LetA = [ ﬂ . Then by [16, Theorem 5], oval of Cassini is givenby {z € H : |z — i| |z — j| < 0}.

According to [16, Theorem 5], if A € Aj(A), then A € u; i1,

i#]

Fij(A), where

Fij(A) = {Z €eH:|z—allz—ajl < Ci(A)Cj(A)}, 1<ij<n, i#]j
However, this result is not necessarily true as
A —ail 1A —ajjl > ci(A)cj(A), 1<ij<n, i#]

which follows from Example 3.5. Now, we derive a corrected version of [16, Theorem 5] as follows:

Theorem 3.6. Let A := (a;j) € M,,(H). Then all the left eigenvalues of A are located in the union of "("2_1) ovals of
Cassini
Fi(A) =z € H: lz—ail Iz - | S ci(A)cj(A)}, 1<ij<n, i#]

that is, Ai(A) C F(A) := UZ;‘:LFU(A)‘

i#j
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Proof. Let A be a left eigenvalue of A. Then by Lemma 3.1, A is a left eigenvalue of A", so that there exists
some nonzero x € H" such that AHx = Ax. Let x := [x1,...,x,]T € H" and let x, be an element of x such that
Ixs| > |xil, 1 < i < n. Then, |x;| > 0. Clearly, if all the other elements of x are zero, then the required result
holds.

Let x; and x; be two nonzero elements of x such that |x,| > |x;/] > |x;|,1 < i < n,i # s. From the s-th
equation of Ax = Ax, we have Y.7_; @;sx; = Ax;, which implies (A — a5)xs = Y7y ;s @55x;. Thus

||
)\—asss(—)csA. 6
A -asl < (1) 6@ ©)
Similarly, from AHy = Xx, we obtain
X,
A ail < (E) ) %
x|

Combining (6) and (7), we have
[A = ass| A — ayl < cs(A)ci(A).

Hence, all the left eigenvalues of A are located in the union of @ ovals of Cassini Fjj(A), 1<1i,j<
n, i#j M
For A := (a;;) € M,,(H), define

n ;
nay=| Y |aij|r’] , 1<i<n, pe(lo).

j=1, j#i

We are now ready to derive the following localization theorem for left eigenvalues of a quaternionic
matrix.

Theorem 3.7. Let A := (a;;) € M,(IH) and let y € [0,1]. Then all the left eigenvalues of A are contained in the
union of n generalized balls

Bi(A) = {z €H: |z —ai < (n - 1)?ri(A)V(nf”>(A))l-V}, 1<i<n,
that is,
Ai(A) € B(A) = UL, Bi(A),
for any p,q € (1, 00) with 5 + = 1.
Proof. Let u be a left eigenvalue of A. Then there exists some nonzero x € H" such that Ax = ux. Let
x:=[x1,...,x,]7 € H" and let x; be an element of x such that |x;| > |x;|, 1 < i < n. Then from Ax = ux, we

have

n

aux; + Z AjXj = UXt.

j=1, j#t
This implies
n n
=anlbl = | Y a{< Y layl gl ®)
j=1, j#t j=1, j#t

Applying the generalized Holder inequality to (8), we have

" P G
= aull < (Z |atj|ﬂ] [Z |x]~|q] :

j=1, j#t j=1, j#t
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Since |x;| > |x;| for all 1 <i < n, we have |y — aullx] < ngp)(A) ((n— 1)|xt|‘7)% thatis,

I —ayl < nP(A) (n = 1)1 . 9)

Similarly, using |x;| > |x;| V i (1 < i < n)in (8), we get

n

m—anl < ) lal = (). (10)

j=1, j#t

Combining (9) and (10) for y € [0, 1], we have

= a7 < (P () =1)T and | - aul’ < r(AY, (11)
that is,
1—y
=anl < (1 =17 (1P(A) (A m
Let us relate Theorem 3.7 to some existing results:

e Setting p = q = 2 and y = 1 implies that the left eigenvalues of A := (a;;) € M,,(H) are contained in the
union of n Greschgorin balls B;(A) := {z € H : |z —a;| < ri(A)},1 <i < n, thatis,

Ai(A) € B(A) := UL, B;(A).
This result can be found in [38, Theorem 6].
e Setting p = q = 2 and y = 0 implies that the left eigenvalues of A := (a;;) € M,,(H) are contained in the
union of 7 balls Bi(A) := {z € H : [z - a; < (n = 1)¥n{”(A)},1 <i < n, that is,
Ai(A) € B(A) := UL Bi(A).
This result can be found in [36, Theorem 1].

We now present a generalization of [38, Theorem 7] and [39, Theorem 3.1] by applying the generalized
Holder inequality over the skew field of quaternions. For a general matrix A := (a;;) € M, (IH) , all the right
eigenvalues may not lie in the union of n generalized balls B;(A),1 < i < n. On the other hand, we show
that every connected region of the generalized balls B;(A), 1 < i < n contains some right eigenvalues of A.

Theorem 3.8. Let A := (a;;) € M, (H) and let y € [0,1]. For every right eigenvalue u of A there exists a nonzero
quaternion B such that B~ up (which is also a right eigenvalue) is contained in the union of n generalized balls

Bi(A) = {z €H: |z —ai < (n - 1)?rl-(A)V(n§”>(A))l-y}, 1<i<n,

that is, {z‘lyz :0#z€ ]I—I} N UL, Bi(A) # 0, where p,q € (1, 0) with ’1—] + % =1

Proof. Let p be aright eigenvalue of A. Then there exists some nonzero vector x € IH" such that Ax = xu. Let
x:=[x1,...,x,]7 € H" and choose x; from x as given in Theorem 3.7. Consider p € H such that x;u = px;.
Then we have

n

2, o

j=1, jt

n

< Yl il (12)

j=1, jt

lp — agllxe] =

Using the method from the proof of Theorem 3.7, we have

p—aul < (n=1)7 (AN 7r(A). m

Let us relate Theorem 3.8 to some existing results:
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e Substituting p = g = 2 and y = 1, we obtain
{z_lpz :0#£ze HINUL {ze H: |z —a;| <ri(A)} # 0.
This result can be found in [38, Theorem 7].

e Substitutingp =g =2and y =0, we get
z'uz:0#£ze HNUL, {z eH:|z—a; < Vn-1 nfz)(A)} 0.

This result can be found in [39, Theorem 3.1].

We next present a sufficient condition for the stability of a matrix A € M,,(IH).

Proposition 3.9. Let A := (a;;) € M,,(H) and let y € [0,1]. Assume that
R(ai) + (n — 1)%I-(A)V(n§”)(A))1-y <0, 1<i<n, (13)
where Il—] + % =1 with p,q € (1,00). Then the matrix A is stable.

Proof. Let A € A,(A). From Theorem 3.8 there exists 0 # p € H such that p™ Ap € UL B;(A). Without loss of
generality, we assume p~!Ap € Bj(A), that is,

1-y
|P_1AP -yl < (n— l)T)rl(A))’(ngl’)(A))l_y'
Consider A := Ay + Ayi + A3j + Ayk and ay = a; + bji + ¢jj + dik. Then from (13), we obtain
(A1 = @)+ (o~ Aaip = bi) + (p™ Asjp — cij) + (p™ Aakp — dilo)] < ~R(an) = —au. (14)

The equality (14) is possible when A; < 0, that is, R(A) < 0, hence A € H™. This shows that the matrix A is
stable. m
When all the diagonal entries of a matrix A € M,,(IH) are real, we have the following theorem.

Theorem 3.10. Let A := (a;)) € M,(H) with a; € R and let y € [0,1]. Then all the right eigenvalues of A are
contained in the union of n generalized balls

Bi(A) = {z €H:|z—ag < (n— 1)?ri(A)V(n§”)(A))1-V}, 1<i<n,

that is, A,(A) € B(A) := U Bi(A), where p,q € (1, 00) with ;—7 + % =1.

Proof. Let A be a right eigenvalue of A. Then there exists some nonzero vector x € H"” such that Ax = xA.
Let x := [x1,...,x,]7 € H" and let x; be an element of x such that |x;| > |x;|,1 < i < n. Then |x;| > 0. Thus

from Ax = xA, we have
n

apXx + 2 aijXxj = x,g/\,
j=1, j#t

since ay € R, s0 ayx; = xay. Then from the proof method of Theorem 3.7, we have

A —ayl < (n=1)T (VAT r(AY.

The above result has great significance as Hermitian, and n-Hermitian matrices have all real diagonal
entries. In general, n-Hermitian matrices arise widely in applications [12, 33, 34]. To that end, we state the
following proposition when all diagonal entries of A € M, (IH) are real. In particular, this result gives a
sufficient condition for the stability of a matrix A € M,,(IH).
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Proposition 3.11. Let A := (a;) € M,,(H) with a; € R and let y € [0, 1]. Assume that
ai + (1 =1) 7 A P(A) <0, 1<i<n
1 1 i 7 — — 7

where p,q € (1, o0) with % + % = 1. Then the matrix A is stable.
From Theorem 3.10, all the complex right eigenvalues of a matrix A = (a;;) € M,,(H) with all real diagonal
entries lie in the union of n-discs D;(A) := {z € C : |z — ;| < (n — 1)%,-(A)y(n§”)(A))l-Y}, 1<i<n,thatis,
Acd(A) € D(A) := UL Di(A). (15)

However, if diagonal entries are from C \ IR, then it is not necessary that all the complex right eigenvalues
of A are contained in the union of n-discs D;(A),1 < i < n as the following examples suggest.

1-2i j k
Example 3.12. LetA:=| 0 —2i  —i |. The set of complex right eigenvalues of A is
0 k 3+i

AC(A) = {/\1/ /\2/ A:‘}/ A4/ AS/ /\6}/

where A; = —0.0164 + 2.0083i, A, = —0.0164 — 2.0083i, A3 = 1+ 2i, Ay = 1 - 2i, A5 = 3.0164 + 1.0324i, and
Ag = 3.0164 + 1.0324i. For y = 1 in (15), the discs D1(A), D2(A), and D3(A) are as follows:

Di(A):={z€C:|z—1+2i| <2}, Dy(A):={z€C:|z+2i <1}, and

D3(A):={zeC:|z-3—-1i < 1}.
From Figure 1, it is clear that A1, A3, and A lie outside the discs D1(A), D2(A), and D3(A).

X-axis

Figure 1: Location of the complex right eigenvalues of A from Example 3.12.

—4 1+j+V2k  j
Example 3.13. Let A = i+j -10 2j — k|. In this example, there are six complex right
i-2j+2k V3+2j-3k -8
eigenvalues A; (1 < j < 6) which are shown in Figure 2. Substituting = 1 in (15), then all the complex
right eigenvalues of the matrix A are contained in the union of three discs D1(A), D(A), and D3(A), where

Di(A):={z€C:|z+4/ <3}, Dy(A):={z€C:|z+10 < V2 + V5}, and

D3(A) ={zeC:|z+8/ <7}
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From Figure 2, the standard right eigenvalues of A are A;, A3, and As. Then
Ay(A) = [M]U[A5] U [A5].
Also, from Figure 2, we observe that R(A;) € H™ (i = 1,3,5). Hence
R(A1) = R(p~'A1p), R(Aa) = R(t7 A1), and R(A3) = R(v'A3v) Vp,t,veH

Thus the matrix A is stable.

Y-axis

ER -10 -5 0

Figure 2: Location of the complex right eigenvalues of A from Example 3.13.

In general, similar quaternionic matrices may not have the same left eigenvalues, see, [38, Example 3.3].
However, the following result is true.

Proposition 3.14. Let A € M,,(H) and let W be any invertible real matrix. Then A and WAW™! have the same left
eigenvalues.

Proof. Let A be a left eigenvalue of A. Then there exists some nonzero vector x € H” such that Ax = Ax. Let

W be an invertible real matrix. Then
WAx = WAx = AWx.

Now, WAW~1Wx = AWx. Setting Wx = y implies WAW 'y = 1y. m
Let A := (a;;) € M,(H). Suppose W = diag(wy, w, ..., w,) with w; € R*,1 <i < n. Then

1 aijwj -1
WLAW = (7) and A/(A) = A(WLAW).

Define
n

i, Yl
(A = Z T and cV(A) = Z T 1<i<n
jre Wi e Y

Applying Theorem 3.3 to W' AW, we get the following theorem which may be sharper than Theorem
3.3 depending upon the choice of W.

Theorem 3.15. Let A := (a;;) € M,(H). Then all the left eigenvalues of A are contained in the union of n balls
TV(A) i={zeH:lz—aul < (" (A) (" (A)'7}, 1<i<n,

that is,
N(A) = A(WTTAW) € TV(A) == UL, TV (A).
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Since the above theorem holds for every W = diag(w;, wy, . .., w,), where w; € R*, we have

A(A) = A(WTTAW) C )TW(A) =: T5(A),

N
WeM,(S

where M,(S) is a set of real diagonal matrices with non-negative entries. T°(A) is called the minimal
Ostrowski type set for the matrix A.
Substituting y = 1 in Theorem 3.15, we obtain

Ai(A) = ANWTTAW) € nY(A) = UL Y (A), (16)

i=

where n/V(A) := {z eH:|z—a; < er(A)} . Therefore,

— -1 w —. S
A = AWTAW S | n(A4) = (),

where n°(A) is called the first minimal Gerschgorin type set for the matrix A.
For y = 0 in Theorem 3.15, we have

A(A) = A(WTTAW) € QY(A) = UL, QY (A), (17)
where QV(A) := {z eH:|z—ay < CI’V(A)} . Then

= -1 - W = QS
M) =AWZAW) € | A (QF(A) = Q°(4),
where Q°(A) is called the second minimal Gerschgorin type set for the matrix A.

4. Bounds for the zeros of quaternionic polynomials

In this section, we derive bounds for the zeros of quaternionic polynomials by applying the localization
theorems for the left eigenvalues of a quaternionic matrix. Due to noncommutivity of quaternions, we first
define some basic facts on multiplication of quaternions. For p,q € IH, define p X g := pq. For 0 # p € H and
g € H, define

1 — 1 — 1 1,_ -1 ._ -1
p AP X =g X P =y

Recall the quaternionic polynomials p;(z) and p,(z) from (1) and (2). Then the corresponding companion
matrices of the simple monic polynomials p;(z) and p,(z) are given by

0 1 0 1 m-1
m—1 [ 0 ‘ I

C, =] : =
Cp(m,1) | Cp(m,2:m)

" 1o 0 1 1
[—% \ —-q1 .- _qm—lj

and C,, := C;I,

respectively. Let g9 # 0, and define simple monic reversal polynomials of p;(z) and p,(z) as follows:

1

1 1 m m -1 m— -1 -1
ql(z):z%xpl(g)xz =z"+q, q1z + gy Gz + 4y,

1 1
gr(z) := 2" X pr(z) X 11_0 =z"+ z’”*lqlqal +o-+ zqm_1q51 + qal,

respectively. The corresponding companion matrices of the simple monic reversal polynomials ¢;(z) and
q,(z) are denoted by C,, and C,,, respectively. We observe that the zeros of 4;(z) and g,(z) are the reciprocal
of zeros of p;(z) and p,(z), respectively.

Now, we need the following result:
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Proposition 4.1. [32, Proposition 1]. Let A € H. Then A is a zero of the simple monic polynomial p;(z) if and only
if A is a left eigenvalue of its corresponding companion matrix Cp,.

In general, a right eigenvalue of C,, is not necessarily a zero of the simple monic polynomial p;(z). For
example, let a simple monic polynomial p;(z) = z* + jz + 2. Then its companion matrix is given by

0 1

-2 |

Here i is a right eigenvalue of Cp,. However, i is not a zero of p;(z).
Analogous to Proposition 4.1, the following result is presented for p,(z).

Cy =

1

Proposition 4.2. Let A € H. Then A is a zero of the simple monic polynomial p,(z) if and only if A is a left eigenvalue
of its corresponding companion matrix C,,.

We now present bounds for the zeros of p(z) as follows.

Theorem 4.3. Let pi(z) be a simple monic polynomial over H of degree m. Then every zero Z of pi(z) satisfies the
following inequality:
1
(max (71(Co) cC)'™)) < 1 < ma (G, /G ),

1<i<m 1<i<m

for every y € [0, 1].

Proof. From Proposition 4.1, zeros of p)(z) and left eigenvalues of C,, are same. Thus, if Z is a zero of p(z),
then Z is a left eigenvalue of C,,. By applying Theorem 3.3 (Ostrowski type theorem) to C,,, we obtain

~ ’ ! 1-

2 < max (H(Cp) /(C)' 7).
We use the respective upper bounds for the zeros of the simple monic reversal polynomial g;(z) for the
desired lower bounds for the zeros of p;(z). =

Corollary 4.4. Let pi(z) be a simple monic polynomial over IH of degree m. Then every zero Z of pi(z) satisfies the
following inequalities:

190l
<Pl < max iqol 1+1g}-
 Jmax {1, Igol + gl 1<i<(m~
|90l

- et
. max{|q0| 1+ Z |ql} <zl < max{l,zizo |%|}.

Proof. Substituting y = 0,1 in Theorem 4.3, we obtain the desired results. m
Next, we derive the following lemma which gives a better bound than Opfer’s bound [24, Theorem 4.2]
for |go| > 1.

Lemma 4.5. Assume that |qo| = 1. Then a < T, where o :=  max_ {lgol, 1 + lgil} and T := max{l,ZﬁBl |qi|=.
<i<m—

Proof. Case 1: If |go| = 1, then @ = max {lgol, 1 +g:l} = max {1+|gl} and T := max{l,Z’iﬁl Iqil} =
1<i<m—1 1<i<m-1 !

max {1, g0l + L5 gil} = 1+ 75" lgil.
Case2: If|go| > 1, thena = ) m(axl){|q0|,1 +gil} = lgol or maxq<i<gn-1) {1+ Igil} and 7 := max{1, ¥.;; ! |gil}

max {1 g0l + X115 Iql } g0l + Z:ﬁ]l |7il. Thus o < 7. This completes the proof. =

On the other hand, if |gol < 1 in Lemma 4.5 then @ < 7 or a > 7. For example, for a simple monic
polynomial p(z) := 2> + (i + 2j + 2k)z* — 2kz + 0.5k, we have @ = 4 and 7~ = 5.5. Hence « < 7. Further, if
we consider p’(z) = z° + 0.5jz> + (0.2i + 0.3j)z + 0.5i, then a = 1.5 and 7~ = 1.36. Hence a > 7.

Next, by applying Theorem 3.3 to WC,, W™ and WC,, W~! (W is an invertible real diagonal matrix), we
obtain different and potentially sharper bounds.
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Theorem 4.6. Let w; € R*, 1 <i < m. Then every zero Z of the simple monic polynomial p|(z) satisfies the following
inequality:

[max friowe, Wty gwe, wh- >}] < 2| < max {rowe, Wty cwe, w -,
1<i<m 1<i<m

where W := diag(w1,wy, ..., wy) and y € [0,1].

Proof. The companion matrix of p;(z) is given by

1 m=1
_m-1 0 ‘ I
=y [ —q0 | -7 =gl ]
Then
1 m—1
WC. W1 _m-1 [ 0 ‘ dlag(zll,. ,wl;;—:l) ]
g O O S TRy

By Proposition 3.14, C,, and WC,, W™! have the same left eigenvalues. Rest of the proof follows from the
proof method of Theorem 4.3. m

Corollary 4.7. Let pi(z) be a simple monic polynomial over IH of degree m. Then every zero Z of pi(z) satisfies the
following inequalities:

-1
(|q0|w + wmlqm— |) wi+ wml‘]l
1. [Omaxl{ ! 4 <z < [max L where wo = 0.
<j<m-— <j<m—

|l10|dj+1 Wi
=
m—1
w w; Wi
2. mldil <2l £ max —L Z M .
1<J<m 1 w]+1 = |golwisy 1jsm=1 | Wjy1 &= Wity

Proof. Substituting y = 0,1 in Theorem 4.6, we get the desired results. m
Let w; = wylq;l,1 < j <m -1, in the part (1) of Corollary 4.7. Then we obtain

o)

qj+1

qo

nl’

This is called the Kojima type bound for the zeros of the simple monic polynomial p;(z).
For computation of bounds of the zeros of p,(z), we define the following polynomial:

|Z| £ max {
1<j<m-1

pi@) = p@ = ) 77, g€ H.

=0
Now, we discuss the following theorem which shows relation between the zeros of p,(z) and p(z).

Theorem 4.8. Let A € H. Then A is a zero of the simple monic polynomial p,(z) if and only if A is a zero of the simple
monic polynomial py(z).

Proof. The corresponding companion matrices of p,(z) and pi(z) are given by
Gy, = C;/ and Cy, := Cifr,

respectively. By Lemma 3.1, if A is a left eigenvalue of C,, then A is a left eigenvalue of C;{ = Cy. By
Propositions 4.1 and 4.2, the left eigenvalues of C,, and C; imply the zeros of p,(z) and p(z), respectively.

Hence if A is a zero of p,(z), then A is also a zero of pi(z). m

Remark 4.9. Similar results can be obtained for the quaternionic polynomial p,(z) as well.
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5. Bounds for the zeros of quaternionic polynomials by using the powers of companion matrices

We present some preliminaries results for the powers of companion matrices C,, and C,,. In general,
if A is a left eigenvalue of a quaternionic matrix A, then A? is not necessarily a left eigenvalue of A%. For

1],wehaveA;(A) = {y cu=a+pfjt+ykat+p+y?= 1}and

. . 0
example, for a quaternionic matrix A = [—i 0

A% = [1 O] .So Ai(A?) := {1}. Here j is a left eigenvalue of A but j? is not a left eigenvalue of A%.

Proposition 5.1. If A is a left eigenvalue of C,, with respect to the eigenvector x € H", then A' is a left eigenvalue of
C,, corresponding to the same eigenvector x € H".

Proof. Case (a): Let t be a positive integer and let A be a left eigenvalue of C,,. Then, there exists 0 # x :=
T
[1, AA2 L, /\m‘l] € H" such that Cyx = Ax. Therefore,

Cf,lx = Cp(Cpx) = Cpxd = xA?

Cx = C N (Cux)=Cplad=---=xA"= A'x.

Thus, A is a left eigenvalue of matrix Cj, corresponding to the same eigenvector x € IH".
Case (b): Let t be a negative integer. From Case (a), we have C,x = xA. This implies CF‘,le = xA™L
Therefore,

Cljlzx = C,;l(C;llx) = C;llx)\_l =xA72
Cx = C;,tlﬂ)(C;llx) = C;fl“)x)\_l =...=xA"= Al

Thus, A is a left eigenvalue of C}, with respect to the same eigenvector x € H". m
Next, we state the following result for left eigenvalues of C,, and C;, (¢ is a nonzero integer).

Proposition 5.2. If A is a left eigenvalue of C,, with respect to the eigenvector x € H", then A" (t is a nonzero integer)
is a left eigenvalue of C,, corresponding to the same eigenvector x € H".

Proof. Case (a): Let t be a positive integer and let A be a left eigenvalue of C,,. Now from Lemma 3.1, Aisa
left eigenvalue of Cjl. Then there exists 0 # x := [1,%, A3,..., (X)m‘l] € H" such that Cj/x = Ax = xA. This
gives

2 — —
(C)'x = Cll(Clx) = CHxA = x()?

(C)x = (C) (@ =(C) " Wl == 2(0) = (W'

Thus, (A)' is a left eigenvalue of (Cg )t . Then by Lemma 3.1, A' is a left eigenvalue of C,, .

Case (b): Let t be a negative integer. From Case (a), we have C,/x = Ax = xA. This implies C)'x =
x(A)~L. Thus

CH2x = (CH™HECH ™) = () Tx() T = x(1) 7

H\t
(€)' x

CHECH ) = (CHEDx() ! = - = x(V) = (V).



S. S. Ahmad, I. Ali / Filomat 32:2 (2018), 553-573 567

Thus, (A)' is a left eigenvalue of (Cg )t . Then by Lemma 3.1, A is a left eigenvalue of C,, . m

Further, we present a framework to find the powers of the companion matrix C,, which can be derived
in a simple procedure as follows, keeping in view that quaternions do not commute.

1 m—1
0 | I
Cp(m, 1) | Cy(m,2:m) |

Theorem 5.3. Consider Cp, = mi [

(a) If t < m is a positive integer, then

t m—t
t m—t 0 I
G, = , [—FG D ], (18)
(D) ift = m, then
Cp "D (m, 1 m)
Cp, "D (m, 1 m)
Cy = : , (19)
Cp,H(m, 12 m)
G, (m, 1 :m) e
where
Ch(m,1) = Cilm,m)Cy(m,1),
G (m,2:m) = Cy'(m,1:m—1)+Cy " (m,m)Cp(m,2 : m),
Cg,(m,l 1) ng(m/t"' 1:m)
Cpl(m,l 1) Cpl(m,t+ 1:m)
= . , and D := .
i 1 t 1.
Cpl(m, 1:1) it sz (m,t+1:m) b

Note that C,,(k, 1 : m) denotes the k-th row of the matrix Cp,.

1 m—1
-1 0 | I
1 Cp(m, 1) | C,(m,2:m)

Proof. Assumingt = 1, (18) becomes C,, = " ],where Cp,(m, 1) := —qo, Cp,(m, 2 :

m) :=[~q1 ... — gm-1]. Thus the theorem is true for t = 1. Now, let us consider C,, as
m—k k
k A’ B’
Cy = - [ o 7 ], where

A =Cy(1:k1:m—-k),B =Cytk+1:mm-k+1:m),C" :=Cyk+1:m1:m-k),D" :=Cyk+1:
m,m—k+1:m).Fort=k=23,weget

2 m-2 m-2 2 m-2 2
CS . om=2 0 ‘ I 2 A’ ‘ B’ _m=2 C’ ‘ D’
m = 2 | C| D w2 | C [ D|” 2 |CA+DC | CB+DD

Note that in each step, size of the identity matrix I reduces by order 1 and the size of matrix C increases by
order 1. Similarly, the matrix D increases by 1 row and decreases by 1 column. Finally, after rearranging
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and separating 0 and I matrices we get
2+1 m-2-1
m—=2-1 0 I
2+1 C D 7
where C and D are of size 3 x 3 and 3 X (m — 3), respectively. Assuming that the theorem is true for t = k,
we have

m—k k k+1 m—k—1
Ck+1 _ Ck C _ m—k c ‘ D’ _ m—k-1 0 I
pT e T CA’+DC" | CB' +DD’ |~ &+ C D [

where the corresponding C and D matrices are given in the statement of the theorem.
The proof for t > m is similar. m

In the case of quaternionic matrix, Cp, = C;, butC;, # (C;,I)T for t > 2. This is illustrated by the following
example.

Example 5.4. Consider the following simple monic polynomials over IH :
pi(z) = 22— kz® + (k- j)z+({1+j) and p,(z) = 23— 22k + z(k — i)+ 3G +7).

The corresponding companion matrices of p;(z) and p,(z) are given by

1 2
_ 2 0 ‘ I _ AT
Cor =, [cp,(s,l) | C,G3,2:3) }and Cpr = Cor
respectively, where C,,(3,1) = —i —j and C,,(3,2 : 3) := [j — k,Kk]. Then
0 0 1 0 —-i—-j j-i
C=l-i-j j-k k and C; =10 j-k 1-j
i-j 1-2i-j j-k-1 1 k j-k-1

This shows that C; # (C;)".
Hence, we can derive results analogous to Theorem 5.3 for the case of C;,r, t>2.

m—1 1

0 | ¢,am
I | C,@2:mm) |

Theorem 5.5. Consider C,, = ' )
m—

(a) If t < m is a positive integer, then

m—t t
¢t 0 C
Cor = [ T [ D ] (20)
(b) if t = m, then
C;,y — [ C;:(m‘l)(l - m, m) C;:(m—Z)a cm,m) ... C;:l(l sm,m)  C, (1:m,m) ]me’
where
C = [cp,(l ttm) CR(L:t,m) ... C(1: t,m)],
D = [C,,r(t+l:m,m) Co(t+1:mm) ... C;r(t+l:m,m)],
C,(1,m) := C,(1,m) C,"(m,m), and

t (o .
C,,(2:m,m)

Gy, (1 :m—=1,m) + C,, (2 : m,m) Cy, " (m, m).
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Proof. The proof follows from the proof method of Theorem 5.3. m
Polynomials from Example 5.4 satisfy

Pi2) =@ =2 + k2 + (j - K)z + (=i — ), and p,(z) := p@) = 2 + 22k + 2(j — K) — (i +j).

Thus the companion matrices corresponding to f;(z) and f(z) are given by Cj, = C_p,and G, = C_,,,, respec-
tively. Next,

0 0 1 0 i+j j—i

C2=|i+j -j+k -k |andC:=[0 -j+k 1+2i+j

N . . Pr .
i-j 1+4j k-j-1 1 -k -1-j+k

Then
max [ (r}(C2))"?] = 2.3655 and max [(/(C3))"?] = 1.9656,
1<i<3 !

1<i<3

max [(r’. ()" 2] = 19319 and max [(/(C3))'"2] = 21355,

i<z [V VTP
Now, we have

max [(r (C l))m] # max [(rlf(Cf@))l/z] and max [(r: (Cf,r)) ] # max [(r (C2 ))1/2]

1<i<3 1<i<3 1<i<3 1<i<3

Further, we have the following bounds for the zeros of p;(z) and p,(z) for y € [0, 1].

Theorem 5.6. Let pi(z) and p,(z) be the simple monic polynomials over H of degree m and let C;, and C, (t > 2)
be the t-th power of the companion matrices Cp, and Cp,, corresponding to pi(z) and p,(z), respectively. Then for
y € [0, 1] bounds for every zero Z of pi(z) satisfy the following inequalities:

(max (o)) (e ()] << mma (7)) e ()™ @)
(max] (7 (e, )" (¢ (CZ;))G—W]) <tel < max | (7 ()" (e ()], (22)

and bounds for every zero Z of p,(z) satisfy the following inequalities:

(max [ (o))" e )™ ]) <1< o [l et ) ()" @)
(max (7)) (e () ™) << mma (7)) s ()" (24)

Proof. Let A be a left eigenvalue of Cp.. Then by Proposition 5.1, A ('t > 2 is positive integer) is a left
eigenvalue of C,,. Hence by applying Theorem 3.3, we get (21).

By Lemma 3.1, A is a left eigenvalue of Cy, and by Proposition 5.2, (1) is a left eigenvalue of (Cy,)!. Then
from Theorem 3.3, (22) follows. The proof of (23) and (24) are similar. ®
Substituting ¢ = 2 and y = 1 in Theorem 5.6, we have the following corollary.

Corollary 5.7. Let p)(z) and p,(z) be the simple monic polynomials over IH of degree m. Then bounds for every zero
Z of pi(z) satisfy the following inequalities:

1<Z< and1<|2|<a
- > = 1 — =~ (2,
p1 p2
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where

m—1 172 m—1 1/2
a1 = max<1, [Z |q1|] /[Z |‘1m—1‘]j - %—1|] 7
j=0

j=0

_ _ 112
o = jmax (ol + 0 Fort) ", Ol + 75 s =00 (14 byl + 5 ot - 31) ),

m—1 1/2 m—1 172
1 = max 1I[Zlqalqjl] r[z%lql%l%—f_%1%—1‘+1|] :
=1

j=0

_ T ) TR s s e T
B> max < \lgg'1+1a5" ¢4l \lgmage' |+ gmagyt gyt —agtl)

2<j<m~1

1/2
(1 + 1 gmjy | + qm=ia5" Qa5 — qm_mqgll) }

and bounds for every zero Z of p,(z) satisfy the following inequalities:

l<|2|<a andl<IZ|<a
ﬁg > > (&3, ﬁ4 = = (4,
where
1/2
%=2$M%MMmWMM%MrM%W%WWMWW}
m-1 V2 (mo1 12
ay = max<l, Z lg;l{ Z |Gm-1 q; = g1l ’
=0 j=0
) . o B e
ps = 221'521)(71{0%” + |%1 41%1') /(|¢7m71q01| + |qm*1%1 qlqol - q01|) ¢
B L Y
(1+ 19— + 1gms75 " 15" = Gm-j105"1) }
m—1 1/2 m=1 1z
Bs = max{l, [Z |q61q]'|] ,[Z |q51‘11 qalqm—j - qalqm—j+1|] /-1 =0=que1,qm = 1.
j=1 j=0

Proof. The proof follows from Theorem 5.6 and Appendix A. m
Example 5.8. Consider the following polynomials p;(z) and p,(z) over H:

pi(2) 28 + (i +3K)2° + (3 +j)z* + (5i + 15k)2> + (—4 + 5§)z° + (6i + 18k)z + (6] — 12),
pr(z) = 2°+2°(+3k) +2*3 +j) + 22(5i + 15k) + z°(—4 + 5j) + z(6i + 18k) + (6 — 12).

The zeros of p;(z) are given in [32]. Moreover, we find the zeros of p,(z) by Niven’s algorithm [23]. Thus,
the zeros and bounds for the zeros of p;(z) and p,(z). are given in the following tables.

6. Conclusion

In this paper, we have derived Ostrowski type theorem for left eigenvalues of a quaternionic matrix that
generalizes Ostrowski type theorem for right eigenvalues of a quaternionic matrix when all the diagonal
entries of a quaternionic matrix are real. We have derived a corrected version of the Brauer type theorem
for left eigenvalues for the deleted absolute column sums of a quaternionic matrix. Moreover, we have
extended localization theorems by applying the generalized Holder inequality for left as well as right
eigenvalues of a quaternionic matrix. Bounds for the zeros of quaternionic polynomials have derived. As
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Z 1] 2

|z2|

[i V3] 1.7321 [i V3]
[iv2] 1.4142 [iv2]
—0.6i — 0.8k 1 —k

-i-2k 22361 -0.4i-22k 2.2361

1.7321
1.4142
1

Table 1: Zeros of p;(z) and p,(z) and their absolute values, where z; and z; are the set of zeros of p;(z), and p,(z), respectively.

Example 5.8 lower bound upper bound
Corollary 4.4 (1) 0.4142 19.9737
Corollary 4.4 (2) 0.2766 60.9291
Theorem 4.3,y =1/4 0.3744 8.1415

Table 2: Lower and upper bounds for the zeros of p;(z) and p,(z).

Example 5.4 lower bound

lower bound

Corollary 5.7 1(a) 0.6156
Corollary 5.7 1(b) 0.6078
Corollary 5.7 2(a) 0.6078
Corollary 5.7 2(b) 0.6436

2.3655
1.9656
1.9319
2.1355

Table 3: Lower and upper bounds for the zeros of p;(z) and p,(z).

a consequence, we have shown that some of our bounds are sharper than the bound given in [24]. Further,
we have derived bounds via the powers of companion matrices which are always sharper than the bound

given in [24].

Appendix A.

In this appendix, we state formulas for the squares of quaternionic companion matrices. For t = 2,
Theorem 5.3 implies

and

and

2 m-2
> m=2 | 0 I _|Cp(m,1:2)
C=, [ c 1 D ] where C:= [Cgl(m,l :2)
D - [Cgl(m,?) : m)] _ [ —qz —q3
Cp,(m,?’ 2 m) gm-192 =41 qm-143 — 41
2 m—2
> m2 [0 I [Cp(m,1:2)
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