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Abstract. In this work, we investigate the following nonlinear singular problem with Riemann-Liouville
Fractional Derivative

D5 (oD )P oDiu(h) = 5 + Af(t,u(t)) t € (0, T);

Pr)
u(0)=u(T) =0,

where A is a positive parameter, p > 1, <@ <1,0<y <1,g € C([0,T]) and f € C([0, T] x R,IR). Under
appropriate assumptions on the function f, we employ the method of the Nehari manifold combined with
the fibering maps in order to show the existence of Ay such that for all A € (0, A¢) the problem (P,) has at
least two positive solutions. Finally, some examples are given to illustrate our results.

1. Introduction

The purpose of this work is to study the existence and multiplicity of positive solutions for the singular
fractional boundary value problem

D% (oD ()2 oDfu(h) = Fk + Af(t,u(®), t€ (0, T);

u

P2)
u(0) =u(T) =0,

where A is a positive parameter, <@ < 1,0 <y < 1and g € C([0,1]). While f € C([0,1] X R, RR) is positively
homogeneous of degree r — 1 that is

f(x, tu) = 7! f(x, u) holds for all (x,u) € [0, T] X R,

where rissuch that1l < p < r.PutF(x,s) := fos f(x, t)dt and assume that F satisfies suitable growth conditions.
Precisely, we assume the following:
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(Hy) F:[0,T] xR — R is homogeneous of degree r that is
F(x,tu) = t'F(x,u) (t > 0) forall x€[0,T], u€R.

(Hy) F*(x,u) = max(xF(x,u),0) # 0 for all u # 0.
Note that, from (H;), f leads to the so-called Euler identity

uf(t,u) = rF(t, u)
and
|F(t,u)| < K|u|" for some constant K > 0. (1)

The theory of fractional calculus may be used to the description of memory and hereditary properties
of various materials and processes. The mathematical modelling of systems and processes in the fields of
physics, chemistry, aerodynamics, electro dynamics of complex medium, polymer rheology, etc. As a con-
sequence, the subject of fractional differential equations is gaining more importance and attention. There
has been significant development in ordinary and partial differential equations involving both Riemann-
Liouville and Caputo fractional derivatives. For details and examples, one can see the monographs [7, 8]
and references therein.

By means of the critical point theory, AcrawaL [1] discussed the existence of solutions for the following
fractional boundary value problem

{ —D¢ oDfu(t) = VE(t, u(t)), t € (0, T) )
u(0) =u(T) =0,

and obtained the existence of at least one nontrivial solution. We note that it is not easy to use the critical
point theory to study (2), since it is often very difficult to establish a suitable space and variational functional
for the fractional boundary value problem.

Based on the fixed point index theory, Xu-Yanc [9] study the singular fractional boundary value problem

{ Dg.u(t) = h(t)f(t, u(t)), t € (0,1) 3)
u(0) =u(l) =uw'(0) =u'(1) =0,

where 3 < a < 4 is a real number, Dj, is the standard Riemann-Liouville derivative, f € C([0,1] x
[0, ), [0, 0)), and h € C(0,1) N L(0, 1) is nonnegative and may be singular at ¢ = 0 and/or t = 1. The authors
established two existence results of twin positive solutions for (3). It should be remarked our main results,
even in the case of & being non-singular, essentially extend and improve the corresponding ones in the

literature.

In this paper we want to contribute with the development of this new area on fractional differential
equations theory. More precisely, our main results is the following.

Theorem 1.1. Let § <a <1,1<p <r,0<y < 1and assume that f satisfies the conditions (Hy)-(Hy). Then there
exists a parameter Ag > 0, such that for all A € (0, Ay), problem (P,) has at least two nontrivial solutions.

This paper is organized as follows. In Section 2, some preliminaries on the fractional calculus are presented.
In Section 3, we set up the variational framework of problem (P,) and give some necessary lemmas. Finally,
Section 4 presents the main result and its proof.
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2. Preliminaries

In this section, we give some background theory on the concept of fractional calculus, in particular the
Riemann-Liouville operators and results which will used throughout this paper. Let us start by introduce
the definition of the fractional integral in the sense of Riemann-Liouville.

Definition 2.1. Let a > 0 and u be a function defined a.e. on (a,b) C R with values in R. The Left (resp. right)
fractional integral in the sense of Riemann-Liouville with inferior limit a (resp. superior limit b) of order o of u is
given by

¢
Jiu(t) = % f (t —9)*tu(s)ds, te(a,b]
a
respectively

b
tyu(t) = ﬁft (t = s)* tu(s)ds, tea,b),

provided the right side is point-wise defined on [a, b], where T denotes Euler’s Gamma function. If u € L'(a, b), then
olfu and I are defined a.e. on (a, b).

Now, we define the fractional derivative in the sense of Riemann-Liouville as follows.
Definition 2.2. Let 0 < a < 1. Then, the Left (resp. right) fractional derivative in the sense of Riemann-Liouville
with inferior limit a (resp. superior limit b) of order a of u is given by
Dfult) = (1) 1), ¥ L€ @,b],
respectively
Du(t) = % (L)) (), ¥ t € [a,b],
provided that the right-hand side is point-wise defined.

Remark 2.3. From [7], if u is an absolutely continuous function in [a, b]. Then ,Dju and Dju are defined a.e. on
(a,b) and satisfy

a _ 1-a,,’ u(a)
Dfu(t) = oI u'(t) + (—aTd-a) ()
and
DYu(t) = — 17U’ (t) + u(b) (5)

b-1TA-a)

Moreover, if u(a) = u(b) = 0, then ,D%u(t) =, I}~ (t) and tDju(t) = —J;‘“u’(t). So in this case we have the
equality of Riemann-Liouville fractional derivative and Caputo derivative defined by

eDfu(t) = ol (1)

and
DRu(t) = — (I (8).
Consequently, one gets
Dfu(t) = SDfu(h) + )
! (t—a)T1-a)

and
u(b)

tD?u(t) = fDZM(t) + m.
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Next, we provide some properties concerning the left fractional operators of Riemann-Liouville. For more
details we refer the reader to [3].

Proposition 2.4. forany a, p > 0and any u € L(a, b), the following equality holds

a+f

di o JfPu= I

From Property 2.4 and the equations (4) and (5), it is simple to deduce the following results concerning the
composition between fractional integral and fractional derivative. That is, for any 0 < a < 1, if u € L'(a,b)
we have

WDf o Jiu=u,
and if u is absolutely continuous such that u(a) = 0. Then, one has

ol o oDiu =u.

Now, we presented an important result on the boundness of the left fractional integral from L”(a,b) to
LP(a,b):

Proposition 2.5. for any o > 0 and any p > 1, ,I! is linear and continuous from LF(a, b) to LF(a, b). Moreover for

all u € L*(a,b), we have
(b—a)
Ifull, £ ——— .
loffaly < e gyl

In the same way, we give another classical result on the boundness of the left fractional integral from L*(a, b)
to C,(a, b) which completes Property 2.5 in the case 0 < % <a<l:
Proposition 2.6. Let 0 < % <a<landg = %. Then, for any u € LP(a,b), ,I}u is Holder continuous on (a,b]

with exponent o — 1 > 0, moreover, I*u(t) = 0. Consequently, ,Iu can be continuously extended by 0 in t = a.
Finally, ,Ifu € Cy(a,b), and

(b—a)*"7
T(@)((a - 1)g + 1)1

llalf lleo <

lell- (6)

Also, we will need the following formula for integration by parts:

Proposition 2.7. Let 0 < o < 1 and p, q are such that
p=1 q>1and1+1<1+a or p#1 qiland1+1—1+a
S P ’ poa '
Then, for all u € LP(a, b) and all v € L9(a, b), one has
b b
[ e e = [ uth oo, )
and
b . b
f u(t) ;Div(t)dt = v(t)tli‘“u(t)lt;a +f v(t) D u(t)dt. (8)

Moreover, if v(a) = v(b) = 0, then, one gets

b b
f u(t) JDio(H)dt = f o(t) SD*u(t)dt. 9)
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3. A Variational setting and main results

To show the existence of solutions to the problem (P;) we will use critical point theory. For this purpose
we introduce some basic notations and results, which we use to proof our main results.
The set of all functions u € C*([0, T], R) with u(0) = u(T) = 0 is denoted by C7([0, T], R). For, « > 0 we

define the fractional derivative space Eg’p as the closure of C7([0, T], R) under the norm

1
el = (Illfy + IED5ully)” (10)

Remark 3.1. (i) It is obvious that the fractional derivative space Eg’p is the space of functions u € LF([0, T])
having an a-order Caputo fractional derivative {Dju € LF([0, T]) and u(0) = u(T) = 0.

(ii) For any u € Ey”, noting the fact u(0) = 0, we have
“Deu(t) = oD%u(t), t € [0, T].

This means that the left and right Riemann-Liouville fractional derivatives of order « are equivalent to the left
and right Caputo fractional derivatives of order .
(iii) The fractional space Eg’p is reflexive and a separable Banach space.

Lemma3.2. Let0<a<1,and1l <p < oco. Then, forall u € EXP one has

(44

T
< —_
lelly < Ta+1)

llo Dy ull- (11)

1

Moreover, if a > ’

and % + ;—7 =1, we have

il < L Dl (12)
I(@)((@ - 1p+1)}

According to (11), we can consider E;” with respect to the equivalent norm
llull = 1l Dy ull-

Lemma3.3. Let0 <a < 1,and 1 <p < co. Assume that a > ; and the sequence {uy} — u weakly in Eg”. Then,
{u,} = win C([0,T)), that is
[y, — t]low = 0 asn — oo.

Associated to the problem (P;) we define the functional

A

1 g 1 (7
= = p_ _ _ 1-y a,p
MPMrLWWIWMWMW%. (13)

We say that u € Eg’p is a weak solution of problem (P,) if for every v € Eg"p we have:

T T T
f | oD u(®)P 2 oD2u(t) D o(Hdt = f gOuE)VoBdt + A f £, u(t))o(t)dt.
0 0 0

Note that u is a positive solution of problem (P,) , if u is positive and

1 1 T _ AT
Ellu”p_ﬂ fo gtu(t)! th—7 fo E(t,u(t)dt = 0.
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It is easy to see that the energy functional ], is not bounded below on the space E;”, but it is bounded below

on a suitable subset of Eg’p . In order to investigate the problem (P,), we define the constraint set
Ny o= {u € EP\ {0} : tupu = 0},
where t(u) is the zero of the map @, : (0, 0) — R defined as

@,(t) = Ja(tu).

Such maps are called fiber maps and were introduced by Drabek and Pohozaev in [4].
Foru € Eg’p, we have

o) = D -ak f ' E u(e)ids - A f Sl 7d
u = Ul —A— s, u(s))ds — S)|u(s)| " "ds,
p r Jo 1-y Qg
T /\ T
O = P A f Fs,u(s))ds - 1 f gl ds,
0 0
T V T
(1) = (p-DEull - Ar =1t f F(s,u(s))ds + —o5 f 9)u(s)| 7 ds.
0 0

Note that NV} contains every nonzero solution of (P,), and u € N, if and only if

T T
lull - A fo F(t, u(t)dt - fo OBt = 0.

(14)

To obtain the existence of solutions, we split NV, into three parts: corresponding to local minima, local

maxima and points of inflection, are measurable sets defined as follows:

T
Nt = {u ENy:(p+y =Dl = A(r+7y - 1)1; F(t, u(t))dt > 0},

T
N; = {u ENy:(p+y—-Dlulll —A@r+y - 1)](; F(t, u(t))dt < 0},

T
NY = {u ENy:(p+y—-DIulll —A@r+y - l)f F(t, u(t))dt = 0}.
0

: ; + N 0 B T 1,1
Next, we present some important properties of N7, N and N}. Firstly, fix p be such that ; + 7 =1, and

put

r+y-1

) p+y—1[ r-p)p ]

h K - rij;il
=P gy - DT

Ao

Then, we have the following crucial results.
Lemma 3.4. ], is coercive and bounded below on N.

Proof. Let u € N,. Then, using equations (1) and (12), we obtain

T T 1+r(a—1)
KT
fF(t,u(t))dtst |u|’dts—ﬁ, ull,
0 0

and

1+(1—y)(a—%

T

1—
™"

T T
f Ol dt < lglle f =t < gl
0 0

(15)

(16)

(17)
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Consequently, from (16) and (17), we obtain

[ R ——— f o f " E G, (ot
! p 1y Jo 7 rdo
r—p r+y-1 T s
= = f Bl dt
7 -y Jp 1@
r— r+v—1 1+(1—)’)(a—%)
> gy - gl ——— il
rp r(l-v) B

659

Since0 <y <land1l-y <p<r,],is coercive and bounded below on N,. The proof of the Lemma 3.4 is

now completed. [

Lemma 3.5. Let A € (0, Ao). Then, there exist t§ and t; such that

T
D, () = A fo F(t, u) dx = D, (£;)

and
D (t5) <0 < Dy (t5);
that is, tju € NT and tyu € N7 .

Proof. Firstly, for @;(t) = 0 it is simple to verify that @, attains it's maximum at

(0= f] gt
e (r = pllullP '

Moreover, @) () > 0 for all 0 < t < tmax and P, (t) < O for all ¢ > tpax. On the other hand,
plr+y-1)

r+y-1
pry=1(_r=p \"7 Il
r—p \r+y-1

CD(tmax) =

r-p *

( atyarar)™

Combining equations (16) and (17), we obtain

T
Dy (ta) — A f E(t, u(x)dt
0

r+y-1 pr+y=1)  (1-y)(r=p) 1
Jpry—1f r=p \7 llul| 79T B 7T /\KT“’(“‘E) ll
> - u
r—p r+y-1 I (A-e-p) 0=} B ’
llglles™™ llaal |75t T 75T
riy-1 A=y)(r-p)
p+y—1( r—p \/7 B |ullr AKT““‘“‘%) .
— - u
r—p r+y-1 I (1+1-))e-3) B’ el

llghes™ T ¥
1
KT

== (o=l >0,

for all A € (0, Ag). Therefore, there exist 0 <t < tmax < t; such that

T
D, (t) = A f F(t, u) dx = D, (t;)
0

(18)
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and
D, (t) <0 < Dy (ty);

thatis, tju € N and tju € N. This completes the proof of the Lemma 3.5. [J
Now, we prove the following crucial Lemma:
Lemma 3.6. Suppose A € (0, Ao), then Nt # 0 and N = 0. Moreover, Ny is a closed set in E, " —topology.

Proof. Firstly, using Lemma 3.5, we conclude that N* are non-empty for A € (0, Ag). Now, we proceed by
contradiction to prove that N? = 0 for all A € (0,Ao). Let us suppose that there exists ug € N}. Then, it
follows that

T
(p+y = Dlluolll = A(r+y — 1)f0 F(t, up(x))dt =0,

which implies that

T T
= [ ooy dt = [ F,uot
0 0

T
L T 1=y
= [ gty

0

Using, (18) we obtain that

T
0< (Puo(tmax) - /\f F(t/ UO)dt
0

rty-l plrty-1)

+y-1 - pry=1 T T
_pty ( r-p ) luoll 777 ‘Af E(, o)
r—p \r+y-1 0

( I8 a(x)u;—mt)”””l
<P+V—1( r—=p )Wl llol| 7o pty-1
T or=p \r+y-1 ((rfp)\luol\”)% r+y-1

r+y-1

lluoll” =0 (19)

which is impossible. Thus, N/“) =0 for all A € (0, Ap). Finally, to prove that N} is closed for all A € (0, Ao),
we introduce the sequence {u,} C N such that u, — u in E. Since {u,} C N7, then we have

T T
NP — f a()u dt— A f F(t, u,)dt = 0,
0 0

and
T
(7= Dll? = AQ-+r=1) [ F@ur <o 20)
0
That is,
T T
llullP — f g(tyu'vdt — A f E(t, u)dt = 0,
0 0

and

T
Pp+y—-Dlullf — Ay +r- 1)[ F(t,u)dt <0,
0

then u € N/? U NA_ = NA‘. Thus u € NA‘ for all A € (0,Ap). Therefore the proof of the Lemma 3.6 is now
completed. O
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Lemma 3.7. Givenu € N (respectively NY) withu > 0, for allv € E withv > 0, there exist ¢ > 0 and a continuous
function w such that for all k € R with |k| < & we have

w(0) =1 and w(k)(u +kv) € N (respectively N7Y).
Proof. We introduce the function ¢ : R X R — R define by:

T T
U(t, k) = 77 Yu + kol - f g(s)(u + ko) 7V ds — AP f F(s, u + kv)ds.
0 0
Hence, .
%Gkﬁ4p+y—DWVHW+MW—AU+y—Dﬂ”21“P@u+km%,
0

is continuous on R X R. Since u € N; ¢ N, we have ¢(1,0) = 0, and

Pi(L,0)=@p+y-Diulf —AFr+y-1) j; F(t,u)dt < 0.
Therefore, applying the implicit function theorem to the function ¢ at the point (1,0). So, we obtain the
existence of a parameter 6 > 0 and a positive continuous function w satisfying
w(0) =1, wk)(u+kv)e N, VkeR, [kl <6.
Hence, taking ¢ > 0 possibly smaller enough, we get
wk)(u+kv)e N, VkeR, [k <e.

The case u € N. may be obtained in the same way. This completes the proof of the Lemma 3.7. [

4. Solutions of (P,) for all A € (0, Ap)
Since Jy(u) = Ja(lul), we can assume that all the price elements in N, are nonnegative. On the other
hand, according to Lemma 3.4 and Lemma 3.6, for all A € (0, Ao)

m* = inf Jy(u) and m™ := inf Jy(u)
N ueEN;

ueNy

are well defined. Moreover, for all u € N7, it follows that

T
(v +y - DlulP = Ay +7—1) f F(t, u(®)dt > 0,
0

and consequently, since 0 < y <1,p < rand u # 0, we have

L) = - —— f gttt - f " E G,
p 1-vJo rJo
1 1 1 1. (T
- Gl A== ) [ e
l-y-p, w, Pty-1
Syl + S
r-pp+y-1)
ey et
Thus,
m* = ulerhf; Ia(w) <0 (21)

for all A € (0, Ag).
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Proof. [Proof of Theorem 1.1] The proof is done in two steps:

Step 1: (P,) have a positive solution in N}
Let us consider the sequence {u,} C N and applying Ekeland’s variational principle (see [2] for the
detail), we obtain

(i) Ja(un) <m* + 1,
(i) Ja(u) > Ja(un) = 2llu — uy|, for all u € N'*.

Since [i(u) = Ja(lul), we can assume that u,(x) > 0. Consequently, as J, is coercive on Ny, {u,} is a
bounded sequence in Eg’p , going to a sub-sequence denoted by {u,}, and uy > 0 such that u, — uy,
weakly in Eg’p, u, — ug, strongly in L1(Q), for 1 < g < p*, and u,(x) = up(x), a.e. in Q, as n — oo.
Now, from (21) and using the weak lower semi-continuity of norm J; (1) < liminf J(u,) = 5\r/1+f] 1, we

see that ug # 0in Q.
Claim 1. uy(x) > 0 a.e. in Q.
Firstly, we start by observing that, since u, € N7, one has

T
(p+v—Dlu,llP —A(y+r—1)](; F(t,uy)dt >0 (22)

equivalent to

T T
wy=1 [ gou =0 =p) [ Fue> i 23)

Now, using Lemma 3.3, we get that, as n — oo,

T T T
f u, Vdt < f ug "dt + f | 1ty — up |17 dt
0 0 0

T
sf g " Ax + T ||ty — g 15"
0

T
= f uy dt +o(1).
0

Similarly
T T T
f u(l)_ydt < f uy VAt + f | 1, —ug |7 dt
0 0 0
T
< f w7 At + T ||y — uo |17
0
T
= f w7V dt + o(1).
0
Thus,
T T
f wdt = f ug " dx +0(1). (24)
0 0

On the other hand, using Vitali’s convergence Theorem, we have

T T
lim F(t, u,)dt = f F(t, up)dt. (25)
n—oo O O
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Therefore, from (24) and (25), it follows that
T T
lim ((p +y-1) f g(tyuy Vdt — A(r - p) f F(t, un)dt)
n—o00 0 0
T T
=(p+y- 1)f g(t)u(l)fydt - A(r - p)f F(t, ug)dt > 0.
0 0
Now, we assume that
T T
Grr=1 [ gude-A0-p) [ F@ud =0 26)
0 0
Consequently, Combining (24)-(25) and the weakly lower semi-continuity of the norm, we obtain
T T
0> [[uollP - f g(hyuy Vdt — A f F(t, u)dt
0 0
+y-1 (T _
= lluoll - L= f gltyuy " dt 27)
r=r Jo
= llugll = A——" fTFa )it
= llto pry—1J, s Uo
and consequently, from (19) one has a contradiction. That is
T T
p+y-1) f g(Huy 7 dt = A(r — p) f F(t, ug)dt > 0. (28)
0 0

Now, let us consider the function ¢ € EXP with @ > 0. From Lemma 3.7 with u = u,, there exits a
sequence of continuous functions h, = h,(t) such that h,(t)(u, + tp) € A* and K(0) = 1. That is,

T T
[, (), + tollP - [hn(t)]l_"’fo g(s)(uy, + t(p)l_Vds - /\[hn(t‘)]r‘[0 F(s,uy + to)ds = 0.

Since
T T
il - f gl dt — A f F(t u,)dt = 0, (29)
0 0

it follows that, for t small enough
0 = (ra(®)) = Dllun + tll” + (llun + tll” — lluall”)

T T
~(ha(H'7 = 1) fo 9(5) (1 + tep)' 7Vdds — fo 9(5) ((u + t@)'™ =1, )ds
T T
—A(ha(t)" — 1)[ F(s, uy, + to)ds — Af F(s, uy + to) — F(s,u,)ds
0 0
T
< (ha () = Dy + tllP + (it + t@|lP = |unllP) — (h, () = 1)[() 9(8) (1 + t(p)l_yds

T T
=Alh, () — 1)f F(s, uy + te)ds — )\f F(s, uy + tg) — F(s, u,)ds,
0 0
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dividing the above inequality by ¢ > 0, and passing to the limit for t — 0, we obtain
T T
0 <Ol =10 =) [l ds = A 0) [ Fs,w)as
0 0
T
#p [ 1Dt oD, (9) D p(o)s
0
T
= I,(0) ((P =Dl + (r+y = 1)f ;| dS)
0

T
+PI) | ()Dg‘un(s)lp_2 oDgu,(s) oD gp(s)ds.

where 117,(0) € [—o0, 0] denotes the right derivate of g,(t) at zero and since u, € N, h,(0) # —oco.
For simplicity, we assume that the right derivate of h, at t = 0 exists. Moreover, from (27) h;,(0) is
uniformly bounded from below. Now, using the condition (ii) ,

) = 1 P 2 ) 0+ )

_ T
e e AT
0

p(L-7y) rl-7y)
+%h O llitn + toolf -
_pty-
- p-
r+y—1
r1-y)

Then, dividing the above inequality by t > 0, and passing to the limit t — 0, we obtain

r+y-1
r(l—V)

[Ilun + Il — llunll” + () = Dl + tepll’]

T
h,,(t)’f F(s, uy + to)ds
0

T
[f F(s, uy + t@) — F(s, uy)ds + (h,(¢)" — 1)f F(s,u, + tgo)ds] .
0 0

1., h;(O) rey—1 (T . pry—1
n VOl + Ha®llgll) 2 750 T35 | 96 Tds - NN Ilunllp] (30)
p(ﬂ_) P f | 0D un(s)P? 0D 1tn(5) DS p(s)dls

L (rtr-1
/\( a- )fo F(s, uy)qds.

Then from (28), there exists a positive constant C such that

T
_%((7’_}7)||un||p—(7’+7/—1)‘f0 u:,yd) ” all >C>0. (1)

Thus, according to (30) and (31), /;,(0) is uniformly bounded from above. Consequently,
h;,(0) is uniformly bounded for n large enough. (32)

Thus from condition (ii) it follows that for ¢ > 0 small enough,

Tt < a0t + 1) + ()t + ) = . (33)
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That is,
1 1
— (n(®) = Ulatnll + Hin(OlPID) = — [[rn (1) atn + t0) = 10|
> ]A(un) - ]A (hn(t)(un + t(P))
W) -1 e -1 7T,
= Oy f ()l ds
p 1y Jo?

h:l—y ¢ T _y hf, t
+3 (7/) f 9(5) (e + t@)' ™ =10, )ds + # (anll” =l + tepl)
- 0

A T A T
+7h:,(t)f F(s, uy + te) — F(s, u,)ds + ?(h;(t) - 1)f F(s, uy)ds.
0 0

Then dividing by t > 0, and passing to the limit { — 0, we obtain

T T T
L (Ol + lgl) > —I,(0) [nunnfw f gl ds + A f F(s, wn)ds| + 1 f E(s, uy)pds
0 0 0

T
- [ 18P 2 D29 D)
0

T s t 1-y _ 1-y
+liminf 1 f (s + tp) U gs
=0t 1=y Jo t

T
__ f oD% tn($)P2 0Dl (s) oD p(s)ds
0

T T
+A f F(s,u,,)gods+li{n3nf% f | oD% uy(£)P~2 oDfuy(t) oD (t)dt
0 -0 1=YJo

From the above inequality we deduce that

T n+ t 1-y _ 1-y
lim inf — f (U +0Q) 77—t~
1-v U

t—0* t

T
< f | oD% 1, ()P 2 oD%, (t) oD (t)dt
0

T
Lo
—Afo E(s, un)pds + — (1, O)llluall + llll) - (34)

Since
9Oy + @) —u, 7120, Vse[0,T], V>0,

using Fatou’s Lemma we get

T T 1— 1-y
- . . ]- (u‘fl + t(P) V= u
Y - n
[) g(s)u,” pds < htrg(}pf Ty j(; g(s)( n ds].

Hence, using (34), it follows that

T
lunll + llll
n

T T
f w, pds < f oD (P2 0Df un(t) oD ()t — A f (s 1) ds + 5(0)
0 0 0

for n large enough. Therefore, from (32) and applying Fatou’s Lemma again, to conclude that uy(t) > 0
a.e. in [0, T] and

T T T
f | oD un(OF 2 0D (t) oD p(t)dlt — f gty pdt = A f F(t, uo)pdt > 0, (35)
0 0 0
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for all ¢ € E, with ¢ > 0. Now, we prove that ug € N} forall A € (0, A). Then, choosing ¢ = u in (35),
we get

T T
lfuoll” = Af F(s, up)ds +f 9(s)(uo)' 7 ds.
0 0

On the other hand, from (27) it follows that,

T T
lluoll” < /\f F(s, ug)ds + f 9(s)(uo) ' 7 ds.
0 0

Thus

T T
WW=AfF@m%+Lg®%WWa (36)
0

this implies that u| € N,. Moreover from (29), ones gets

T T
lim |Ju,|F = A f F(t, ug)dt + f g ) 7 dt.
n—oo 0 0

Hence according to (36), we have u, — up in E as n — oo. In particular, combining (28) with (36),
we obtain

T
T+ P)lluoll — Ay + r)f F(t, up)dt > 0,
0

and therefore uy € N.

Claim 2: u is a solution of problem (P,). Our proof is inspired by GHanmi-Saouni [5, 6]. Let ¢ € E;”
and € > 0. We define W € Eg’p by W := (1 + ep)* where (19 + €)™ = max{ug + €, 0}. Replace ¢ with
W in (35) and combining with (36) we obtain

T T T
0< fo | oD%ug(H)IP2 oD ug(t) oDV ()dt — fo g(Hu," Y dt — A fo f(t, up)W dt
=f D)2 oD% o) oD% (o + ep) ()t

{tlug+ep>0}
- f (9(tyuy” (o + €p) + AF(t, o) (g + €¢p)) dt
{tlug+ep>0}
T
=f|@%WW%W%@@%mWWWt
0
T
= [ (o0 + )+ Afte )+ €9)
0
—f DS oD uot) oD (g + ep) (1)t
{tluo+ep<0}

+ j{: 520 (9(t)ugy(uo +ed) + Af(t,uo)(uo + €¢)) dr
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T T T
= lluollP — f uy ' dt— A f F(t, uo) dt — f (g7 + Af(t, u0)p) dit
0 0 0
T
+€f | ()D?MO(t)lp_z on‘uO(t) OD?(p(f)dt
0
- DR (D) D + e
{tluo+ep<0}
+ f (9(tyuy” (o + €) + A£(t, o) (up + €¢p)) dt
{tluo+ep<0}
T T
—e f | oD ug(B)P2 oDSug(t) oD p(t)dt — € f (ug” ¢ + Af(t uo)p) dit
0 0
- L aDR P D) oD + e
{tlup+ep<0}
—e f (9(tuy” (o + €p) + A£(t, o) (1o + b)) dit
{tlug+ep<0}

T T
<e [ 1oDun(Or 2 oDfuatr D~ [ (gt 6-+ 476, 01)

_ f | oD uo(B)P~2 oDl o(t) oD ity + ) (E)d
{tlug+ep<0}

Since the measure of the domain of integration {x : 19 + e < 0} tends to zero as € — 0*. It follows as
€ — 0" that,

f | ()D(txuo(t)lp_z on‘uO(t) oD?(MO + GCZ))(t)dt — 0.
{tlug+ep<0}

Dividing by € and letting ¢ — 0%, we get

T T
f [ oD% ug(H)IF 2 oD ug(t) oDEP(t)dt — f (u57¢ +Af(t, u0)¢) dt > 0.
0 0

Since the equality holds if we replace ¢ by —¢ which implies that u is a positive solution of problem
(P2).

Step 2: (P)) have a positive solution in N .

Similarly to the first Step, applying Ekeland’s variational principle to the minimization problem m~ =

ir/bf Ja(v) there exists a sequence {v,} C N such that
vE /;

(i) Ja@a) <m*+ 1,

(i) Ja(@) 2 Ja(v,) = £llo = v4ll, forallv € N~
Since JA(v) = Ji(|v]), we can assume that v,(x) > 0. Consequently, as |, is coercive on N}, {v,} is a bounded
sequence in Eg’p , going to a sub-sequence denoted by {v,}, and vy > 0 such that u, — uy, weakly in Eg’p ,

v, — v, strongly in L'77(Q), and L*(Q), for 1 < s < p*, and v,(x) = vp(x), a.e. in Q, as n — oo. Now, from
(21) and using the weak lower semi-continuity of norm [ (vg) < liminf J,(v,) = wf Tr, we see that vy # 0 in

Q. Now, we prove that vp(x) > 0 a.e. in Q. Similarly to the arguments in Claim 1, we start by observing
that, since v, € A~, one has

T
I+ Pl = Ay + r)f F(t,v,)dt <0 (37)
0
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and consequently,

T T
1+y) fo g(tyoy Vdt — A(r— 1) fo F(t, v,)dt < 0. (38)

Therefore, from (24) and (25) it follows that

n—oo

T T
lim [(1+7) f g(tyorVdt — A(r—1) f F(t,0,)dt |
0 0

T T
=1+ y)jo‘ g(t)v(l,_7'dt —A(r - 1)fO F(t,vp)dt < 0.

Now, repeating the same arguments as in Claim 1, it follows that

T T
(1+7v) fo [oo|'7dt — A(r — 1) fo E(t, |vo))dt < 0. (39)

Now, let ¢ € Eg’p , with ¢ > 0. From Lemma 3.6 with u = v,, there exits a sequence of continuous functions
hy = hy(t) such that h,(t)(v, + tp) € A~ and h,(0) = 1. Therefore, using the same arguments as in Claim 1 we
prove that

h;,(0) is uniformly bounded for n large enough. (40)
Then, as in Step 1 applying (ii) and (40), we conclude that vy(x) > 0 a.e. in {2 and

T T
fo | oD% 1uo(B)P2 o Dug(t) D p(t)dlt — fo (g7 + Af(t, u0)p) dt > 0.

forall p € Eg'p. Finally, as in the arguments of Claim 2, we obtain that vy € A~ is a positive solution of
problem (P,). The proof of the Theorem 1.1 is now completed. [

5. Some Examples

In this section we give some examples to illustrate the usefulness of our main results.

Example 5.1. Let h and g be continuous functions on [0, T] such that h* # 0 and h~ # 0. Consider the following
fractional differential equation with Riemann-Liouville boundary conditions:

D5 (JoDg w(H)P2 oD ut))
(Py) = L8+ AnBu®I2u() (te (0,T)),

u(0) =u(T) =0,

where } <a <1,0<y <1,1<p<rlItiseasy tosee that f(t,x) = h(t)|x|""2x is positively homogeneous of degree
r — 1. Moreover, By a simple computation, we obtain F(t,x) = h(t)|x|" which is positively homogeneous of degree r.
On the other hand, since h* # 0 and h™ # 0, all properties in hypothesis (Hy) and (Hy) hold true. So all conditions of
Theorem 1.1 are satisfied, and our conclusion follows from Theorem 1.1.

Example 5.2. Consider the following fractional differential equation with Riemann-Liouville boundary conditions:
=05 (loD§ (u(£)P"2 oD uu(8))

=9
r

ol =&+ Ao ([ morar) " o, re o,

u(0) =u(T) =0,
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where } <a<1,0<y <1,1<q<p<r, geC(0,1]) and the function h is such that h* # 0.
It is easy to see that the function f defined by:

—q
T

T
f(tru)=h(f)( fo Iu(t)lrdt) ()" ut),

is positively homogeneous of degree r — 1. Moreover, a simple calculation shows that

T 7
F(tu) = h(t) ( fo |u<t>|'dt) (o,

which is positively homogeneous of degree r, that is hypothesis (Hy) is satisfied. On the other hand, since h* # 0,
then, hypothesis (H») is also satisfied. So, Theorem 1.1 implies the existence of Ag > 0 such that for all A € (0, Ag),
problem (P,) has at least two non-trivial solutions.
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