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Abstract. We estimate the errors of selected cubature formulae constructed by the product of Gauss
quadrature rules. The cases of multiple and (hyper-)surface integrals over n-dimensional cube, simplex,
sphere and ball are considered. The error estimates are obtained as the absolute value of the difference
between cubature formula constructed by the product of Gauss quadrature rules and cubature formula
constructed by the product of corresponding Gauss-Kronrod or corresponding generalized averaged Gaus-
sian quadrature rules. Generalized averaged Gaussian quadrature rule Gouy is (21 + 1)-point quadrature
formula. It has 2] + 1 nodes and the nodes of the corresponding Gauss rule G; with I nodes form a subset,
similar to the situation for the (2 + 1)-point Gauss-Kronrod rule Hy.; associated with G;. The advantages
of E;},H are that it exists also when H,..; does not, and that the numerical construction of EM, based on
recently proposed effective numerical procedure, is simpler than the construction of Hy1.

1. Introduction

Assume that do is a nonnegative measure on an interval [a, b] = supp(do), and do(t) = w(t)dt on [a, D],
where w is a weight function.
Consider the I point quadrature formula (q.f.) of the form

b 1
1(f)=f f®do(t) = Qu(f) + Ri(f), Qz(f)=ijf(tj), 1)

=

with nodes t; <t <.. <t and weights w; € R, j = 1,2,..., . If all w; are positive, than (1) is called positive
quadrature formula.

The q.f. (1) is said to have (algebraic) degree of exactness d if R;(f) = 0 for all f € P, where $; denotes
the set of all (algebraic) polynomials of degree at most d. The q.f. (1) with d = [ — 1 is called interpolatory.
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The unique optimal interpolatory q.f. with / nodes is Gauss formula

) 1
1f) = f f(Hda(t) = Gi(f) + RE(f), Gi(f) = Z w; ).
a j=1

It has degree of exactnes 2/ — 1 and is named after Gauss who discovered it in the case do(t) = dt (see [8]).
Let mtx(-), k = 0,1, 2, ... be the monic orthogonal polynomials with respect to the measure do. They satisfy
the three-term recurrence relation

T (t) = (t — a)me(t) = Brre—a(t), k=0,1,2,...,

where 11_1(t) = 0, mo(t) = 1, ax € R, B > 0 (for details see Gautschi [9]).
The I X [ Jacobi matrix is tridiagonal symmetric matrix

ao\/E 0
VB B

JE(do) = .

VB2 a2 B

0 VBi-1

The nodes of G; are the eigenvalues and the weights are proportional to the squares of the first compo-
nents of the corresponding eigenvectors of the Jacobi matrix ]IG (do) (see Wilf [28]). The nodes and weights
of G; can be conveniently computed by the Golub-Welsch algorithm [12].

An important task in practical calculations is to (economically) estimate the error |(I - G;)(f)| of the Gauss
q.f. G;. Of our interest are two formulae which can be used in this purpose.

One of them is (2/ + 1)-point Gauss-Kronrod q.f.

1+1

b !
)= [ FOo(0) = Hua() + R (), () = Yl 569+ Lol
L -

which has degree of precision 3/ + 1. The error of G; can be estimeted by the difference |[(Hy1 — G1)(f)I.

Hp;41 has 2]+ 1 nodes and the I nodes of the corresponding Gauss rule G; form a subset. Additional / +1
nodes should alternate with the Gauss nodes and be choosen, together with all weights, in such a manner
as to achive maximum degree of exactness. It turns out that the additional nodes are zeros of the Stieltjes
polynomials (first considered by Stieltjes in the case do(t) = dt, see [2]), which are orthogonal with respect
to a variable-sign weight function.

The idea of such error estimation (in the case do(t) = dt) was first put forward by Kronrod [14]. For
historical details see Gautschi [11], while an overview on Gauss-Kronrod formulas can be found in Notaris
[18].

Laurie [15] and Calvetti at al. [3] proposed the efficient numerical methods for calculating the positive
Gauss-Kronrod q.f. (see also Monegato [16] and Gautschi [9], jointly with [10]).

There are several known cases of nonexistance of the positive Gauss-Kronrod q.f. For the Gegenbauer
measure do@¥(t) = (1 — t?)%dt, Peherstorfer and Petras [21] have shown nonexistance of Gauss-Kronrod
formulae for sufficiently large [ and o > 5/2. In their paper [22] can be found analogous results for the
Jacobi measure do‘®f)(t) = (1 — t)*(1 + t)Pdt, in particular nonexistence of Gauss-Kronrod formulae for large
I when min(e, $) > 0 and max(a, ) > 5/2. Kahaner and Monegato [13] shown that Kronrod extension does
not exist in some cases of Gauss-Laguerre and Gauss-Hermite formulae.

In the situations when Gauss-Kronrod formula doesn’t exist, it is of interest to find adequate alternative
and this alternative can be (2] + 1)-point generalized averaged Gaussian q.f.

b _ _
1) = f F(Bdo(®) = G (F) + R (),
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with degree of precision 2/ + 2. The difference |(62]+1 — Gy)(f)| can also be used as the error estimation of G;.

Same as Hj,1, formula Ezm has 2/ + 1 nodes and the nodes of the corresponding Gauss rule G; with /

nodes form a subset. The Jacobi matrix of EM is also tridiagonal symmetric matrix of the form

—0(0

VB

1S, (do) =

| 0

VB

aq \/ﬁ_z

\/ﬁz.—1 az—.1 VBi
VB @

VB

VB

a1

VB

VB

a2

N

VB2

ai

VB

N

Qo

Spalevi¢ [24] (see also [25], [26]) proposed a very simple and effective method for constructing the
generalized averaged Gaussian q.f. by following the results on caracterization of the positive q.f. by
Peherstorfer [19] (see also [20]).

The adventages of G141 are that it exists in some situations when Hy;,; does not, and that it’s numerical
construction in [24] is simpler than the construction of Hy.1 in [15] (see also [9], jointly with [10]).

Now, let Q" c R"” and w(x) > 0 for all x = (x1, x, ..., x;) € R", n > 2. Consider the cubature formula (c.f.)
of the form

L
P = [ e =0+ R, Q1N =Y ifw) @
=1

withx; € R", wj € R, j =1,2,.., L. The c.f. (2)is said to have (algebraic) degree of exactness d if R}(f) = 0
for all f € P, where )] denotes the set of all (algebraic) polynomials in n variables of degree at most d.

There are several encyclopedic works on multiple numerical integration, like Mysovskikh [17] and
Stroud [27]. Stroud’s work was continued by Cools and Rabinowitz, see [4] and [6]. Something about c.f.
can be found also in [1], [5], [7] and [23].

Some multiple integration rules (also called cubature rules or cubature formulae) can be constructed by
the product of Gauss q.f. The c.f. which approximate integral over n-dimensional region constructed by
the product of I-point Gauss q.f. will be denoted by GJ'. In the next chapters we consider the formulas G

for integrals over n-dimensional cube, simplex, sphere and ball, by following results from Mysovskikh [17].
In order to estimate the error of G} we first extend it to H}, |
I(H},,, — GI)(f)land [(G},,, — G])(f)| as error estimates, where H)

21+1
of corresponding Gauss-Kronrod q.f., and G}, , denotes c.f. constructed by the product of corresponding
generalized averaged Gaussian q.f.

and L and than use the differences

denotes c.f. constructed by the product

In all examples we first solve I" analytically, and than show results for [[" — G/l II" = H5, |, 1Hy,,, — G,
|I"— Egml and @m — G| for different values of n and I. All results are calculated with 40 significant decimal

digits.
2. Error estimates for integrals over n-dimensional cube
The simplest situation which will be considered is the case of integral over n-dimensional cube,

I' = fxydx, K'={xeR'| -1<x;<1,i=12,.,n},
K”
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which can be written in the form

1 1 1
:f dxlf dxz...f fx1,x2, .., X4)dxy.
-1 -1 -1

Integral of each variable on the right side of previous equation can be approximated by I-point Gauss q.f.
G; with Legendre weight function w(t) = 1 on [-1,1],

1 i
f Q(t)dt ~ Z wS(t),
_1 ]:1

which leads to ["-point c.f.

Z a) w @b w; f (tG tG )
]1 jz
Analogously, using (2] + 1)-point q.f. Hy or Ezm,

21+1 21+1

f p(t)dt ~ Za) P(th, f p(t)dt ~ Za) (i)

instead of G;, we get (2] + 1)"-point c.f.

21+1 21+1

Hy,y = Z (‘) w Hf(tH tH s tﬁ)/ G = Z w Gf(tc tG )
Jf2s Jisj2m
Example 2.1. In Table 2.1 are shown selected results on error estimates of G for certain integrals over cube. We
consider the cases of | = 2,4,6 forn = 1,2,3,5, the cases of | = 2,4 for n = 7, and the case of | = 2for n = 10 (notice
211 OF Ggm with
have better accuracy than G7, and

that | is number of nodes of Gauss q.f.; for expamle, the number of nodes of corresponding c.f. H
I=dandn="7is 2l +1)" =97 = 4782969). In all cases both H", . and G!

20+1 20+1
both |(H,,, — G/)(f)l and I(G = G)(f)| give good error estimates of Gy'.

21+1

Example 2.2. In this example we consider 2-dimensional integral and take a slightly different approach. Integral of
variable x; is approximated by I-point Gauss q.f. with Legendre weight function w(t) = 1 on [-1,1],

f Q(t)dt ~ Zwﬂ(p(t

j2=1

while integral of variable x, is approximated by l-point Gauss q.f. with Jacobi weight function w(t) = (1 + t)* on
[-1,1],

f Q)1 + H*dt ~ Zwﬂ(p(t

j1=1

Gauss- Kronrod q.f. with Jacobi weight function w(t) = (1 + t)* on [=1, 1] doesn’t exist for any | = 2,4,6 (see [22])
and c.f. H, | can't be constructed. On the other hand, corresponding generalized averaged Gaussian q.f. does exist.
The results are shown in Table 2.2, and again we have good error estimates.

In Table 2.3 are shown results for the same integral, but here f(x1,x2) = (1 +x1)* cos(x1+x2) and w(x;) = w(xy) = 1

(Gauss-Kronrod q.f. exists in this situation). Both |(H},,, — G})(f)| and |(G21+1 G))(f)l give good error estimates
of G}, but notice that G} with w(x1) = (1 + x1) has better accuracy than G} with w(x1) = 1, and also Gzz | with

w(x1) = (1 + x1)* has better accuracy than Gzz | with w(x) = 1. G2, . with w(x1) = (1+x1)* for | = 2,4 has even

21+1
better accuracy than H 21 1 (with w(x) = 1).
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I' = [ cos(xi)dx = 2sin1 ~ 1.682...

LIM=Gll I —Hy | | Hy, =Gl | I' =Gyl |Gy, — Gl
2 [ 7.118e-03 | 8.850e.08 | 7.118¢-03 | 8.850e-08 | 7.118¢-03
1] 2.809¢-07 | 1.127e-16 | 2.809e-07 | 3.226e-14 | 2.809¢-07
6 | 1.514e-12 | 2.451e26 | 151de-12 | 1.347e20 | 1.514e-12
I? = f_ll f_ll cos(x1 + xp)dx1dx; = (2sin1)? ~ 2.832...

LIP=-G}l | IP-H), | | IHy, —Gll | IP-Gyl |G, ~ Gl
2 [ 2.391e-02 | 2979e-07 | 2.391e-02 | 2.979-07 | 2.391e-02
1945507 | 3.794e-16 | 9.455e-07 | 1.086e-13 | 9.455e-07
6 | 5.095¢-12 | 824926 | 5.095e-12 | 4534620 | 5.095¢-12
P =[] [ cos(e + 3+ x:)dxiduadxs = (2sin1)° ~ 4.766...
LIIP=-GIl | IP-H) | |IH, =Gl |IP-G | |G, -Gl
2 | 6.023e-02 | 7.520e-07 | 6.023e-02 | 7.520e-07 | 6.023¢-02
1] 2.387¢-06 | 9577e-16 | 238706 | 2.741e-13 | 2.387¢-06
6 | 1.286e-11 | 2.082¢25 | 1.286e-11 | 1.145e-19 | 1.286e-11
B= [ [ cos(a + -+ xs)dxy..dxs = (2sin 1)° ~ 13.500..
LIIP=GIl |IP-Hy, | | IHy, =Gl |IP-G | |G, -Gl
2 | 2.831e-01 | 3.550e:06 | 2.831e-01 | 3.550e-06 | 2.831e-01
1| 1127e-05 | 4521e-15 | 112705 | 1.294e-12 | 1.127e-05
6 | 6.072¢-11 | 9.830e25 | 6.072e-11 | 5403e-19 | 6.072e-11
7= [\ [ cosGa + - +x,)dx..dx; = (2sin 1) ~ 38.237...
LIP=G]l | —Hy, | | H, =Gl |-Gyl |G}, ~G]l
2 [ 1.118 1408e-05 | 1.118 1.408e-05 | 1118

1| 4468¢05 | 1.792¢-14 | 4.468¢-05 | 5.131e-12 | 4.468¢-05
10 = [ . [ cos(xs + -+ + xi0)dx1...dxyp = (2sin 1)!0 ~ 182.260...
LM =GO I —H)) || ), =GP I =Gyl | Gy, = G
2 | 7564 9.584e-05 | 7.564 9.584e-05 | 7.564

Table 2.1: Example 2.1

I? = f_ll f_ll(l + x1)* cos(x1 + xp)dx1dx; = 16(1 — sin2 — cos 2) ~ 8.109...

1P - G12| 2 - H§1+1| H§1+1 — Gzzl 2 - G§l+1| |G§l+1 — Gzzl
2 | 3.880e-02 | - - 6.634e-07 | 3.880e-02
4 | 1.454e-06 | - - 4.310e-13 | 1.454e-06
6 | 7.700e-12 | - - 2.115e-19 | 7.700e-12

Table 2.2: Example 2.2a) with w(x1) = (1 + x¢ )%, wlx) = 1.

P = [0 [L(1+x)  cosa +x:)dxidx, = 16(1 - sin2 — cos 2) ~ 8.109...

LIIP=Gll | 1P —H) | | H3y, =Gl | 1P =G| | IGy,, =Gl
2 | 6.276e-01 | 1.030e-04 | 6274e-01 | 1.030e-04 | 6274e-01
1| 6.008e-04 | 426312 | 6.008¢-04 | 5.874e-10 | 6.008¢-04
6 | 2.772¢-08 | 4.669e-21 | 2.772e-08 | 9.469e-16 | 2.772¢-08

Table 2.3: Example 2.2b) with w(x1) = w(x2) = 1.

6897
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3. Error estimates for integrals over n-dimensional simplex

Consider the integral over n-dimensional simplex
I"'= fx)dx, T'={xeR"|x;>0,i=12,..,n x1+x2+ - +x, <1}
TVI

Approximating integral of variable x,, x,-1,...,x1 by [-point Gauss q.f. G; with Jacobi weight function
wlt) =1 -t"dt, m=nn-1,.,1,0n]0,1],

1 1
fo 1 - " Lpdt ~ Z WS p(tS, ), m=nn=1,.1,
j=1

leads to I"-point c.f.

1
I'~ G? = Z a)]C‘i,n_la)jc’;n_z‘”ch'i“of(nc(jl)r HG(jl/ jZ)l iy HG(jl/ er ooy jn))/

j]er/--~/j11=1
NG =150 TG joy e i) = A= A=t )= £7 D m=2,3,.n.

Using corresponding (2! + 1)-point q.f. Hy or EM instead of G;, we get (2/ + 1)"-point c.f.

21+1

In ~ Hg[+1 = 2 w]i[,n_lwg,n_Z”'wz,of(HH(jl)r HH(jl/ jZ)r ey HH(jlr j2/ weey jl’l))/
J1j2rerjn=1

21+1 . = . . . .
171 ~ G;l+1 = Z a)jcllnfla)]gz,n72"'wﬁlof(nc(jl)l Hc(jll jz)/ sy Hc(jll jZ/ e ]1’!))

jl/er-<-rjix:1

Example 3.1. In Table 3.1 are shown selected results on error estimates of GJ' for certain integrals over simplex. Both

I(H},,, — G)(f)l and |(6” - Gf)(f)Lgive good error estimates of G}'. Notice that in all cases Hb, | has better (or the

2l+1 2[+1
same for n = 1,1 = 2) accuracy than G, but in casesn = 4,1 = 4,6, q.f. Hyj41 doesn’t exist and c.f. H))

2+17 14, Can't be
constructed.

4. Error estimates for integrals over n-dimensional sphere

Now we consider the integral over n-dimensional sphere

I"= s fx)dx, S"={xeR"]| x%+x§+---+x§ =2}
Let r be radial coordinate, and @1, @2, ..., ¢4-1 angular coordinates of n-dimensional spherical coordinate
system, where 0 < ¢; <7, j = 1,2,..,n-2,0 < ¢,1 < 2n. Cartesian coordinates x1,xy, ..., X, may be
computed from 7, @1, ¢y, ..., -1 With

X1 = TrCos@i,
X2 = rsingqcos@,,
X3 = rsingqsing;cos@s,

Xp—p = TSIN@qSin@s...SIN@,_3COS Py_2,

Xp—1 = TSingisings...sin@,_3sin @, cos @,_1,

X, = rsing;sing,...sin@,_3sin@,_»sing,_1,
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= [ 4 —1n2 ~ 0.693...

— Jo 1+x;

1 1 1 1 1 1
= Gll| I - H21+1| |H;1+1 — Glll I - G21+1| |G21+1 — Gll|
2 | 8.395e-04 | 2.179e-07 | 8.397e-04 2.179e-07 | 8.397e-04
4 | 7.631e-07 | 1.322e-12 | 7.631e-07 1.636e-11 | 7.631e-07
6 | 6.734e-10 | 1.228e-17 | 6.734e-10 3.983e-15 | 6.734e-10

T 1= -
P= [ gt = 2821 £ 0.193..,

2 2 2 2 2 2 2 2 2 2
L L Gl | L H21+1| |H21+1 — Gl| L Gzl+1| |G21+1 — Gl |

2 | 4973e-04 | 8.995e-08 | 4.974e-04 1.865e-07 | 4.975e-04
4 | 4914e-07 | 4.446e-13 | 4.914e-07 1.996e-11 | 4.914e-07
6 | 4.406e-10 | 2.702e-18 | 4.406e-10 5.529e-15 | 4.406e-10

T ,I—x T—x1—x
3 — 1 17X dxidxydxs  _ 8In2-5
r= j(; 0 j(; (1+x+20+x3)3 — 16 ~ (0.034...

3 3
LIIP-Gl | IP-H),| | IH, -Gl |IP-G,| |G, -Gl
2 [ 1.237e-04 | 1.353¢-08 | 1.237e-04 | 6.196e-08 | 1.237e-04
4| 1.285e-07 | 2.513e-14 | 1.285¢-07 | 7.961e-12 | 1.285e-07

6 | 1.167e-10 | 2.024e-18 | 1.167e-10 2.337e-15 | 1.167e-10

_ 1 pl-x1 pl-x1—x2 pl=X1=%2-X3  Jy,dx,dxad _ 24In2-16 .
I*= jg) 0 j(; j(; (1+;11+);§+?3f;4)4 - 144 T 0.004...
LIIE-Gll | I*=Hy | | Hy, —Gjl | I'=G | | G, ~ Gl
2 | 1.959¢-05 | 1.131e-09 | 1.959e-05 1.179e-08 | 1.960e-05
4| 2111e-08 | - - 1.661e-12 | 2.111e-08
6 | 1.937e-11 | - - 5.015e-16 | 1.937e-11

Table 3.1: Example 3.1

where volume element is

1

dx = "1 sin"2 1 sin @Q2...sin @,_1d@1dQy...dQ,_1.

Than, I" is equal to integral over (n — 1)-dimensional parallelepiped,
T Tt 271
"=l f f f(rcos @1, rsin @1 cos s, ..., ¥ sin @1 sin @s... sin ,_1) sin"~2 01 sin 2 Q2...sinQyu_1dQ1d@;...dp,_1.
0 0o Jo

If we replace integral of variable ¢, with (2])-point rectangle formula,

b 21
[ ot =1 Y gt G-, h=0-ay@), telaarh
a =1

and approximate integral of each variable ¢,_, @n-1,..., @1 by Gauss q.f. G; with Gegenbauer weight
function w(t) = (1 - )2, m=n-3,n-2,...,0,on [-1,1],

1 I
f (1= 2y"2p(t)dt ~ Z WS,@(5,), m=n-3n-2,.,0,
we get c.f. with 2" nodes,

21 I
s i
n . —n _ n-1"" G G G G G G I
'~ Gl =r"5 Z Z W 3@y g @ oF O QY@ s P T
=1 1, j2rmin2=
J=1 j1sj2,mjn2=1 . . . ‘ ?3)
F(r, 1, 92, ..., Pn-1) = f(r cos @1, rsin @i cos @y, ..., ¥ sin @1 sin ;... sin ¢,,_1),

G

_ G _ B
(P”_m_zlj = arccos tj/m, m=0,1,..,n—3.
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S:2+x2+x2=1 P=[, xldx—Zn(e—l/e)z 14.768...

3 3 3 3 3 3
! I - Gl I — zz+1| |H o ~ Gl P~ 21+1| |G21+1 -Gl
2 | 4.842e-02 | 5.748e-07 | 4.842e-02 5.748e-07 | 4.842e-02
4 1.854e-06 | 7.429e-16 | 1.854e-06 2.123e-13 | 1.854e-06
6 | 9.855e-12 | 1.583e-25 | 9.855e-12 8.746e-20 | 9.855e-12
S:2+x2+x3=4, P= [ edx=4n(-1/e*) ~91152..

3 3 3 3 3 3 3
! I -Gl I’ —Hy,, |H o ~ Gl P~ 21+1| |G21+1 -Gl
2 3.484 6.184e-04 | 3.485 6.184e-04 | 3.485
4 2.044e-03 | 5.225e-11 | 2.044e-03 3.729e-09 | 2.044e-03
6 1.703e-07 | 6.922e-19 | 1.703e-07 2.408e-14 | 1.703e-07
8 3.873e-12 | 2.086e-27 | 3.873e-12 8.727e-20 | 3.873e-12
S:2+x3+x3=9, P= [ e"dx=06n(’—1/¢) ~377.664..
! I - G13| e - 21+1| | 20+1 G13| I - 21+1| |Gzl+1 - Gl3|
2 | 4.803e+01 | 3.866e-02 | 4.807e+01 | 3.866e-02 | 4.807e+01
4 1.331e-01 | 3.852e-08 | 1.331e-01 1.222e-06 | 1.331e-01
6 5.428e-05 | 5.550e-15 | 5.428e-05 3.860e-11 | 5.428e-05
8 | 6.132e-09 | 1.871e-22 | 6.132¢-09 6.962e-16 | 6.132¢-09
Sixd+xs+xs=16, P = [,endx =8n(e! —1/e*) ~ 1371.740...

3 3 3 3 3 3 3
! I — G | I — My, | 2041 | I — G21+1| |G21+1 G |
2 3.496e+02 | 7.667e-01 | 3. 503e+02 7.667e-01 | 3.503e+02
4 2.796 4.495e-06 | 2.796 8.052e-05 | 2.796
6 3.443e-03 | 3.426e-12 | 3.443e-03 7.669e-09 | 3.443e-03
8 1.197e-06 | 6.329e-19 | 1.197e-06 4.269¢-13 | 1.197e-06
10 | 1.592e-10 | 3.534e-26 | 1.592e-10 1.344e-17 | 1.592e-10

Using corresponding (2] + 1)-point q.f. Hyq or EM instead of G;, we get c.f. with 2(2] + 1)"

=1 jujase

In aﬂ

21+1 —

According to [21], Gauss-Kronrod q.f. Hyq with Gegenbauer weight function w(t)

2(21+1)

2(214+1)

=1 jujze

21+1

Jjn-2=1

21+1

=r 21+1 Y, )

]nZ1

Table 4.1: Example 4.1

H

H H
Wiy 13@, g @; F

]n 2,0

G

]1n 3w jzn -4 w],,ZO

exist for suff1c1ently largeland a > 5/2. In construction of c.f. H

m=n-3,n-2,.

n 2
large I c.f. H}, | can’t be constructed.

211

F(r (p] ]1/ (p2]2

H _H H T .
(7’ (Pl,jl’gozrjz’ ceey (Pn—z,jmz’ N +1 ])/

c U
P 7 4 1))

we use weight function w(t) =
.,0. So, if integral over n-dimensional sphere is considered with n > 8, for sufficiently

6900

~1 nodes,

= (1 - t*)* doesn’t
(1_t2)m/2’

Example 4.1. Consider the sphere S° : x3 + x5 +x3 = r* and surface integml P = [, efdx = 2rn(e’ —1/¢"). In Tuble

4.1 selected results for r = 1,2, 3,4 are shown. Both |(H},, | —

of G

GN(f)l and |(G!

21+1

— G))(f)I give good error estimates
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5. Error estimates for integrals over n-dimensional ball

Integral over n-dimensional ball,

= (x)dx, B”——{xe]R”|x2+x2+~-+x2<1}
1 2 n
B

can be approximated by the sume of integrals over n-dimensional spheres,

I
zZBiLWf(x)dx, S?={xe]R”|xf+x§+---+xi=riz}.
i=1 i

If n is even, than
G2 _ G G, Gyn-1 _ 1G =+ _
)y =17, 2B7(r)'" =A7, i=12,..1

where ¢ and A¢ are nodes and weights of Gauss q.f.

1 1
f P12 p(H)dt ~ Z ASq(r6)
0 i=1

If n is odd, than

G _ G Gr,Gyn-1 _ 3G H—
1S =15, BOGOYT =A%, i=12,.],

where 7¢ and A{ are nodes and weights of Gauss q.f.

f P lo(Hdt ~ Z/\G(p(’[

i==I

According to (3), (2I)"-point c.f. takes the form

I 4l
o Gy, Gyn-1TC G G G G G .G G .
~ 6= Z B; (ri ) 21 Z Z a)flr”—3wjz’"—4"'wjn—zlop(ri 1P P27 s P2, juar 21])'

i=1 7=1 jij2sejn-2=1
For error estimates we extend it to (4] + 2)(4/ + 1)"~1)-point c.f.

21+1 81+2 41+1

H( Hyn-1 H H H H _H H T .
2I+1 ZB ( )Vl 4l+ 1 Z Z a)]l n— 3w]2n 4 a)],, ZOF(rsz (pl,jl’(PZ,jz""’ q071—2,1';:72’ m])’

7=1 j1j2sesjn-2=1

21+1 8142 41+1

" G(,Gyn-1 G G G G G T
I~ Gy = ZB i) 41+1 ;] ] Z,' . O 3@ g @ oF (] PP Pojr - P2 T 10
1/]2 n-2=

Example 5.1. In Table 5.1 are shown selected results on error estimates of G! for integral I = [, /(x3 + x3 + x2)17dx,

B*: x7 + x5 + x5 + x5 < 1. Again, both |(H},,, — G))(f)| and (G — G))(f)| give good error estimates of G;'.

21+1
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B+ g+ B+ <1, 1= [0+ 33+ x)Vdx = 5242887/4849845 ~ 0.339..,

4 4 4 4
I - G?' L H21+1| |H§l+1 — G?l I~ G21+1| |G§1+1 — G?'
1.084e-01 | 7.329e-06 | 1.084e-01 6.606e-05 | 1.084e-01
9.084e-05 | 9.728e-13 | 9.084e-05 4.984e-11 | 9.084e-05
4.369e-10 | 3.459¢e-16 | 4.369e-10 1.409e-14 | 4.369e-10

6.133e-13 | 1.283e-18 | 6.133e-13 5.122e-17 | 6.133e-13

Q| N[ | N

Table 5.1: Example 5.1
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