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Application of Thermal Potentials to the Solution of the Problem of
Heat Conduction in a Region Degenerates at the Initial Moment

Alexey A. Kavokina, Adiya T. Kulakhmetovaa, Yuriy R. Shpadia

aInstitute of Mathematics and Mathematical Modeling, Kazakhstan, Almaty

Abstract. In this paper, the boundary value problem for the heat equation in the region which degenerates
at the initial time is considered. Such problems arise in mathematical models of the processes occurring by
opening of electric contacts, in particular, at the description of the heat transfer in a liquid metal bridge and
electric arcing. The boundary value problem is reduced to a Volterra integral equation of the second kind
which has a singular feature. The class of solutions for the integral equation is defined and the constructive
method of its solution is developed.

1. Introduction

Thermal potentials are some convenient tools for solving boundary value problems of heat conduction
in regions with variable boundaries [8]. With their help, the boundary value problems are reduced to some
integral equations of Volterra type of the second kind, which are successfully solved by Picard’s method of
successive approximations [4].

It has been experimentally established that when the contacts of electric current circuit breakers open,
a liquid metal bridge, which significantly affects the erosion of the contact material, appears for a short
time [2]. Modeling the thermophysical properties of the bridge, S. N. Kharin came to the boundary-value
problem, in which at the initial moment of contact opening the solution region is absent [3]. This fact
affected the integral equation of the boundary value problem. It turned out that the sequence of Picard
approximations of the integral equation is divergent. This feature and some results of its investigation will
be considered below.

2. Formulation of the Boundary Value Problem

It is required to find the solution u(x, t) of the equation

∂u
∂t

= a2 ∂
2u
∂x2 (1)
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in a region Ω = {0 < x < α0t, 0 < t < T} with moving boundary x = α0t, α0 = constant, with the boundary
conditions

u(0, t) = ϕ(t), (2)

u(α0t, t) = ψ(t). (3)

It is assumed that the functions ϕ(t) and ψ(t) satisfy the Hölder condition with exponent σ > 1
2 , that is∣∣∣ϕ(t2) − ϕ(t1)

∣∣∣ < A |t2 − t1|
σ , (4)∣∣∣ψ(t2) − ψ(t1)

∣∣∣ < A |t2 − t1|
σ , (5)

and agreed at the initial moment t = 0
ϕ(0) = ψ(0) = 0. (6)

3. Integral Representation of Solution of the Boundary Value Problem

The solution of boundary value problem (1)–(6) is sought in the form of a sum of two integrals

u(x, t) = u1(x, t) + W(x, t), (7)

where

u1(x, t) =

∫ t

0

xϕ(τ)

2a
√
π(t − τ)

3
2

exp
(
−

x2

4a2(t − τ)

)
dτ,

W(x, t) = 2a2
∫ t

0
θ(τ)

∂G(x, r, t − τ)
∂r

∣∣∣∣∣
r=α0τ

dτ.

Integral u1(x, t) is the solution of equation

∂u1

∂t
= a2 ∂

2u1

∂x2 , 0 < x < ∞, 0 < t < T, (8)

satisfying boundary condition
u1(0, t) = ϕ(t), (9)

and zero initial condition u1(x, 0) = 0.
Integral W(x, t) is a heat potential of the double layer with density θ(t) and with kernel

K(x, t) = 2a2 ∂G(x, r, t − τ)
∂r

∣∣∣∣∣
r=α0τ

,

where

G(x, r, t) =
1

2a
√
πt

{
exp

(
−

(x − r)2

4a2t

)
− exp

(
−

(x + r)2

4a2t

)}
, 0 < x, r, t < ∞. (10)

4. Properties of the Function G(x, r, t)

The function G(x, r, t) defined by expression (10) is a positive, infinitely differentiable function and it is
a solution of equation

∂G
∂t
≡ a2 ∂

2G
∂x2 .

On the border region Ω the function G(x, r, t) satisfies the following conditions:
a) lim

t→0

∫
∞

0 G(x, r, t)dx = 1,

b) G(0, r, t) ≡ 0, 0 < r, t < ∞,
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c) lim
t→0

G(x, r, t) =

{
0, x , r,

+∞, x = r.

The derivative ∂G(x,r,t)
∂r has the form

∂G(x, r, t)
∂r

=
1

2a
√
πt

{
x − r
2a2t

exp
(
−

(x − r)2

4a2t

)
+

x + r
2a2t

exp
(
−

(x + r)2

4a2t

)}
.

It is a solution of the equation
∂
∂t

(
∂G
∂r

)
≡ a2 ∂

2

∂x2

(
∂G
∂r

)
(11)

everywhere in the domain 0 < x, r, t < ∞which satisfies the condition

∂G(0, r, t)
∂r

≡ 0, 0 < r, t < ∞. (12)

5. Properties of the Potential W(x, t)

From (11) and (12) it follows that the potential W(x, t) in any bounded continuous function θ(t) satisfies
the equation

∂W
∂t
≡ a2 ∂

2W
∂x2 , (13)

and the boundary condition
W(0, t) = 0, 0 < t < ∞. (14)

The movable boundary x = α0t of the region Ω is the set of discontinuity points of the potential W(x, t)
which has the jump on the boundary

lim
x→α(t)±0

W(x, t) = ∓θ(t) + W̃(t),

W̃(t) = W(α0t, t) =

∫ t

0

α0θ(τ)

2a
√
π
√

t − τ

exp

−α2
0(t − τ)

4a2

 +
t + τ
t − τ

exp

−α2
0(t + τ)2

4a2(t − τ)

 dτ.

6. Integral Equation for the Density of the Double-Layer Potential

On the basis of (8) and (13) we conclude that integral representation (7) satisfies equation (1). Expressions
(9) and (14) show that function (7) satisfies boundary condition (2) with an arbitrary density θ(t). Moving
an interior point (x, t) of the region Ω in (7) to the boundary x = α0t a for fixed t and taking into account
boundary condition (3), we obtain the integral equation for the density θ(t)

θ(t) = 1(t) +

∫ t

0
K(t, τ) θ(τ) dτ, (15)

where

K(t, τ) =
α0

2a
√
π
√

t − τ

exp

−α2
0(t − τ)

4a2

 +
t + τ
t − τ

exp

−α2
0(t + τ)2

4a2(t − τ)

 , (16)

1(t) = u1(α0t, t) − ψ(t). (17)



A.A. Kavokin et al. / Filomat 32:3 (2018), 825–836 828

7. The Method of Successive Approximations Picard’s Solution of the Integral Equation

The Picard method of successive approximations for the solution of integral equation (15) is applied.
Recall that the functional Picard’s sequence {θn(t)}, n = 0, 1, 2, . . . is based on the following recursive formula{

θ0(t) = 1(t),
θn(t) = 1(t) +

∫ t

0 K(t, τ)θn−1(τ)dτ, n = 1, 2, . . . .
(18)

Consecutively performing iterative procedure (18) we obtain

θ1(t) = 1(t) +

∫ t

0
K(t, τ)1(τ)dτ,

θ2(t) = 1(t) +

∫ t

0
K(t, τ)

{
1(τ) +

∫ τ

0
K(τ, τ1)1(τ1)dτ1

}
dτ

= 1(t) +

∫ t

0
K(t, τ)1(τ)dτ +

∫ t

0
K(t, τ)dτ

∫ τ

0
K(τ, τ1)1(τ1)dτ1.

If we substitute θ2(t) into θ3(t) and continue this process further, we obtain in the general case

θn(t) = 1(t) +

n∑
i=1

∫ t

0
Ki(t, τ)1(τ)dτ = 1(t) +

∫ t

0

 n∑
i=1

Ki(t, τ)

 1(τ)dτ, n = 1, 2, . . . , (19)

where the functions Ki(t, τ) are called re-cores and are computed by the formula

K1(t, τ) = K(t, τ), Ki+1(t, τ) =

∫ t

τ
K1(t, τ1)Ki(τ1, τ)dτ1, i = 1, 2, . . . . (20)

In the case when the functions 1(t) and K(t, τ) are continuous and bounded, we have the inequalities∣∣∣1(t)∣∣∣ ≤ A1, |K(t, τ)| ≤ AK, 0 ≤ t ≤ T, 0 ≤ τ ≤ t,

then

|Ki+1(t, τ)| ≤ Ai+1
K

(t − τ)i

i!
, i = 0, 1, 2, . . . .

Thus, the integral operator in (15) is contractive. The solution of equation (15) can be written in the form

θ(t) = 1(t) +

∫ t

0
R(t, τ) 1(τ) dτ, (21)

where the solving kernel

R(t, τ) =

∞∑
i=0

Ki+1(t, τ) (22)

has the estimation

|R(t, τ)| ≤
∞∑

i=0

Ai+1
K

(t − τ)i

i!
= AKeAK(t−τ).

It follows from this evaluation that series (22) converges uniformly and its sum R(t, τ) and the function
θ(t) in (21) are continuous and bounded.
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8. A Special Property of the Integral Operator of Equation (15)

Definition 8.1. We introduce the functional class Mβ(0,T), to which belong all continuous functions f (t)
defined on the interval (0,T) and satisfying the condition

∣∣∣ f (t)
∣∣∣ ≤ A f tε where ε > β.

Generally speaking, the condition of boundedness of K(t, τ) and 1(t) for the convergence of Picard’s
method is not strictly necessary. For the convergence in the class of bounded functions 1(t) it is sufficient
that the kernel K(t, τ) was continuous and satisfies the inequality

|K(t, τ)| ≤ AK(t − τ)ε, where ε > −1.

In particular, it follows from this inequality that

lim
t→0

∫ t

0
K(t, τ)dτ ≤ lim

t→0

AKtε+1

ε + 1
= 0. (23)

We will show that in the case of problem (1)–(3) condition (23) fails. We write the integrand K(t, τ) as
the sum

K(t, τ) = K̂(t, τ) + N(t, τ), (24)

where

K̂(t, τ) =
α0t

a
√
π(t − τ)

3
2

exp

− α2
0tτ

a2(t − τ)

 ,
N(t, τ) =

α0

2a
√
π
√

t − τ
exp

−α2
0(t − τ)

4a2

 1 − exp

− α2
0tτ

a2(t − τ)


−

α0t

a
√
π(t − τ)

3
2

1 − exp

−α2
0(t − τ)

4a2

 exp

− α2
0tτ

a2(t − τ)

 . (25)

Let us consider the integral operator

(
K̂1

)
(t) =

∫ t

0
K̂(t, τ)1(τ)dτ =

∫ t

0

10α0t

a
√
π(t − τ)

3
2

exp

− α2
0tτ

a2(t − τ)

 dτ,

where 1(t) ≡ 10 , 0, 10 = constant. Using the substitutions x = α0
√

tτ
a
√

t−τ
, 0 < x < ∞, dx = α0t

3
2

2a
√
τ(t−τ)

3
2

dτ,

τ = a2x2

a2x2+α2
0t , we get (

K̂10

)
(t) =

210
√
π

∫
∞

0
exp(−x2)

a x dx√
a2x2 + α2

0t
,

hence
lim
t→0

(
K̂10

)
(t) = 10 , 0. (26)

The second term in (24) is a Volterra kernel. Indeed, given that the exponential function in (25) is positive
and does not exceed unity, and also that for all x ≥ 0 the inequality 1− e−x

≤ x holds, we get the inequalities∣∣∣∣∣∣exp

−α2
0(t − τ)

4a2

 − exp

−α2
0(t + τ)2

4a2(t − τ)

∣∣∣∣∣∣ ≤ 1,

∣∣∣∣∣∣1 − exp

−α2
0(t − τ)

4a2

∣∣∣∣∣∣ ≤ α2
0(t − τ)

4a2 .

These inequalities enable us to derive the estimation

|N(t, τ)| ≤
D1
√

t − τ
, (27)
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where the constant D1 is determined by the constant parameters T, a and α0 of boundary value problem
(1)–(3).

In this case for an integrable function 1(t) ∈Mε(0,T), ε > − 1
2 we get∣∣∣∣∣∣

∫ t

0
N(t, τ)1(τ)dτ

∣∣∣∣∣∣ ≤ D1A1

∫ t

0

τε
√

t − τ
dτ = D1A1B

(
ε + 1,

1
2

)
tε+

1
2

t→0
−→ 0, (28)

where B(·, ·) is the Beta function of Euler.
From (24), (26) and (28) we find that at 1(t) ≡ 10 , 0

lim
t→0

(
K1

)
(t) = lim

t→0

∫ t

0
K(t, τ)1(τ)dτ = 10 , 0. (29)

It follows from (29) that the integral operator in equation (15) with kernel (16) for boundary problem
(1)–(3) in the class of bounded functions 1(t) is not compressive. Therefore, despite the fact that equation
(15) formally refers to the type of Volterra integral equations of the second kind, it requires a separate study.

Equation (29) for the first time was obtained by S. N. Kharin [3] when he considered the asymptotic
properties of the solution of integral equation (15). T. E. Omarov showed the existence and uniqueness
of the solution of integral equation (15) in the class of the functions 1(t) decreasing with t → 0 faster than
any power function [5]. M. I. Ramazanov investigated the spectral properties of the operator

(
K̂θ

)
(t) [6].

In particular, he found that the eigenfunction of the operator is the function 1(t) = 1
√

t
. The study of the

integral equations with such properties continues at the present time [1, 7].

9. The Analytical Expression for Kn(t, τ)

We perform the study of the kernel K(t, τ) in details. By applying an iterative procedure (20) to (24), we
obtain

Kn(t, τ) = K̂n(t, τ) + Nn(t, τ), (30)

where

K̂n+1(t, τ) =

∫ t

τ
K̂1(t, s)K̂n(s, τ)ds, (31)

Nn+1(t, τ) =

∫ t

τ

[
K̂1(t, s)Nn(s, τ) + N1(t, s)K̂n(s, τ) + N1(t, s)Nn(s, τ)

]
ds, n = 1, 2, . . . , (32)

K̂1(t, τ) = K̂(t, τ), N1(t, τ) = N(t, τ).

Now let us obtain an analytical expression for K̂n(t, τ). Using the method of the complete induction and
direct evaluation of the integral in (31) we will show that

K̂n(t, τ) =
nα0t

a
√
π(t − τ)

3
2

exp

− n2α2
0tτ

a2(t − τ)

 . (33)

Formula (33) is valid for n = 1. We calculate K̂n+1(t, τ) by the formula (31). We have

K̂n+1(t, τ) =

∫ t

τ

α0t

a
√
π(t − s)

3
2

nα0s

a
√
π(s − τ)

3
2

exp

− α2
0ts

a2(t − s)
−

n2α2
0sτ

a2(s − τ)

 ds

=
nα2

0t
a2π

∫ t

τ

s

(t − s)
3
2 (s − τ)

3
2

exp

− α2
0ts

a2(t − s)
−

n2α2
0sτ

a2(s − τ)

 ds.
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The last integral is evaluated using the following substitutions of variables of integration. First, we
apply the substitution s = 1

x and introducing the notation t = 1
u , τ = 1

ν .

K̂n+1(t, τ) =
nα2

0v
3
2
√

u
a2π

∫ v

u
exp

− α2
0

a2(x − u)
−

n2α2
0

a2(v − x)

 dx

(x − u)
3
2 (v − x)

3
2

.

Second, we apply the substitutions

y =

√
n(x − u)

v − x
, 0 < y < ∞, x =

nu + vy2

n + y2 , dx =
2n(v − u)y(

n + y2)2 dy,

x − u =
(v − u)y2

n + y2 , v − x =
n(v − u)
n + y2 ,

1

(x − u)
3
2 (v − x)

3
2

=

(
n + y2

)3

n
3
2 (v − u)3y3

,

α2
0

a2(x − u)
+

n2α2
0

a2(v − x)
=
α2

0(n + y2)

a2(v − u)y2 +
n2α2

0(n + y2)

a2(v − u)n

=
α2

0

a2(v − u)

(
n
y2 + 1 + n2 + ny2

)
=

α2
0

a2(v − u)

((
n
y2 − 2n + ny2

)
+

(
1 + 2n + n2

))
=
α2

0(n + 1)2

a2(v − u)
+

α2
0n

a2(v − u)

(
y −

1
y

)2

.

K̂n+1(t, τ) =
2
√

nα2
0v

3
2
√

u
a2π(v − u)2 exp

−α2
0(n + 1)2

a2(v − u)

 ∫ ∞

0
exp

− α2
0n

a2(v − u)

(
y −

1
y

)2
(
n + y2

)
y

dy
y
.

Third, we apply the substitutions

z =
1
2

(
y −

1
y

)
, −∞ < z < ∞, y =

√

1 + z2 + z,
dy
y

=
dz

√

1 + z2
,

n + y2

y
=

n
y

+ y = n
(√

1 + z2 − z
)

+
√

1 + z2 + z = (n + 1)
√

1 + z2 − (n − 1)z,

K̂n+1(t, τ) =
2
√

nα2
0v

3
2
√

u
a2π(v − u)2 exp

−α2
0(n + 1)2

a2(v − u)


×

∫
∞

−∞

exp

− 4α2
0n

a2(v − u)
z2

 [(n + 1)
√

1 + z2 − (n − 1)z
] dz
√

1 + z2
.

Since ∫
∞

−∞

exp

− 4α2
0n

a2(v − u)
z2

 [(n − 1)z]
dz

√

1 + z2
= 0

the integrand function is odd, we get

K̂n+1(t, τ) =
2(n + 1)

√
nα2

0v
3
2
√

u
a2π(v − u)2 exp

−α2
0(n + 1)2

a2(v − u)

 ∫ ∞

−∞

exp

− 4α2
0n

a2(v − u)
z2

 dz.

Taking into account that ∫
∞

−∞

exp

− 4α2
0n

a2(v − u)
z2

 dz =
a
√

v − u
2α0
√

n

√
π,

and recovery t and τ we obtain the expression

K̂n+1(t, τ) =
(n + 1)α0t

a
√
π(t − τ)

3
2

exp

− (n + 1)2α2
0tτ

a2(t − τ)

 ,
which is similar to (33).
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10. Evaluation of the Expression Nn+1(t, τ)

We show that integral (32) is an operator of Volterra type. We write (32) as the sum of three terms

Nn+1(t, τ) = NA
n (t, τ) + NB

n (t, τ) + NC
n (t, τ), (34)

where

NA
n (t, τ) =

∫ t

τ
K̃1(t, s)Nn(s, τ)ds,

NB
n (t, τ) =

∫ t

τ
N1(t, s)K̃n(s, τ)ds,

NC
n (t, τ) =

∫ t

τ
N1(t, s)Nn(s, τ)ds

and find their estimation. Considering the positive K̃n(t, τ) and using inequality (27), we obtain

∣∣∣NA
n

∣∣∣ ≤ Dn

∫ t

τ

α0t

a
√
π(t − s)

3
2

exp

− α2
0ts

a2(t − s)

 ds
√

s − τ
.

Performing the change of variable of integration s = tz2+τ
1+z2 , ds =

2(t−τ)z
(1+z2)2 dz, 0 < z < ∞, after simple calculation

we can write the inequality ∣∣∣NA
n (t, τ)

∣∣∣ ≤ Dn
√

t − τ
.

For the second integral in (34) we have

∣∣∣NB
n (t, τ)

∣∣∣ ≤ ∫ t

τ

D1
√

t − s

nα0s

a
√
π(s − τ)

3
2

exp

− n2α2
0τs

a2(s − τ)

 ds.

Changing the variable of integration s = t+τz2

1+z2 , ds = −
2(t−τ)z
(1+z2)2 dz, 0 < z < ∞, we get

∣∣∣NB
n (t, τ)

∣∣∣ ≤ D1
2nα0

a
√
π(t − τ)

exp

− n2α2
0tτ

a2(t − τ)

 ∫ ∞

0
exp

−n2α2
0τ

2z2

a2(t − τ)

 (τ +
t − τ
1 + z2

)
dz,

and after simple calculations we obtain the inequality

∣∣∣NB
n (t, τ)

∣∣∣ ≤ D1
√

t − τ
+

D1α0
√
π

a
.

The third term in (34) is bounded by the constant

NC
n (t, τ) ≤ D1Dn

∫ t

τ

1
√

t − s

1
√

s − τ
ds = πD1Dn.

Thus, all components of sum (34) are the Volterra type and in general they can be represented by the
expression

Nn(t, τ) =
Dn
√

t − τ
+ Fn(t, τ), (35)

where Fn(t, τ) is a bounded continuous function.
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11. Convergence of Iterative Process (18)

Theorem 11.1. If 1(t) ∈ M 1
2
(0,T), then there exists a unique solution θ(t) ∈ M0(0,T) of integral equation (15),

which can be calculated by the method of the Picard successive approximations.

Proof. The considered iterative process forms a functional series

R̂(t, τ) =

∞∑
n=1

K̂n(t, τ) =

∞∑
n=1

nα0t

a
√
π(t − τ)

3
2

exp

− n2α2
0tτ

a2(t − τ)

 , (36)

Q(t, τ) =

∞∑
n=1

Nn(t, τ). (37)

Let us consider the properties of series (36) and find its evaluation. Functional series (36) converges for all
0 < τ < t < ∞, but at the point τ = 0 convergence is not uniform, because

R̂(t, 0) =

∞∑
n=1

nα0

a
√
πt

= ∞.

To estimate (36) consider the numerical series

S(ξ) =

∞∑
n=1

ne−ξn2
, ξ > 0.

A number S(ξ) represents the numerical approximation of the integral

I(ξ) =

∫
∞

0
xe−ξx2

dx

according to the formula of partition of rectangles with the length of the subintervals equal to one. Given
that all terms of the series S(ξ) are positive, we can show that there is a constant CR such that

∞∑
n=1

ne−ξn2
< CR

∫
∞

0
xe−ξx2

dx =
CR

2ξ
.

Applying this estimate to (36) with ξ =
α2

0tτ
a2(t−τ) we get

R̂(t, τ) <
Cα0t

2a
√
π(t − τ)

3
2

a2(t − τ)
α2

0tτ
=

C
2
√
π

1

τ
√

t − τ
. (38)

It follows from inequality (38) that if 1(t) ∈M 1
2
(0,T), then the integral converges:∫ t

0
R̂(t, τ)1(τ)dτ ∈M0(0,T).

Every finite sum of functional series (37) based on the evaluation of (35) is the kernel of the Volterra
type. A detailed study of the convergence of this series was not conducted, due to excessive complexity
of the expressions for N(t, τ). However, a large number of numerical test calculations performed by the
formula (18), confirm the convergence of the iterative process to the function θ(t) ∈M0(0,T).
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The result is that for the function

R(t, τ) =

∞∑
n=1

Kn(t, τ)

and any function 1(t) ∈M 1
2
(0,T) the integral∫ t

0
R(t, τ)1(τ)dτ =

∫ t

0

 ∞∑
n=1

Kn(t, τ)

 1(τ)dτ

exists. Thus, in expression (19) it is acceptable to change the order of summation and integration, after
passing to the limit with n → ∞, resulting in the assertion of Theorem 11.1. The solution of the integral
equation (15) can be written in the standard Volterra equation

θ(t) = 1(t) +

∫ t

0

 ∞∑
i=1

Ki(t, τ)

 1(τ)dτ = 1(t) +

∫ t

0
R(t, τ)1(τ)dτ.

12. The Sufficiency of Conditions (4)–(6) for 1(t) ∈ M 1
2
(T)

Theorem 12.1. The function 1(t) ∈M 1
2
(0,T) under constraints (4)–(6) for the boundary functions ϕ(t) and ψ(t).

Proof. Let us write expression (17) for the function as a sum

1(t) =
[
u1(α0t, t) − ϕ(t)Y(t)

]
+

[
ϕ(t)(1 − Y(t)

]
+

[
ϕ(t) − ψ(t)

]
, (39)

where

Y(t) =

∫ t

0

α0t

2a
√
π(t − τ)

3
2

exp

− α2
0t2

4a2(t − τ)

 dτ. (40)

We will show that each term in (39) belongs to the class of M 1
2
(0,T).

Firstly, we shall evalute the first term of sum (39). We have

∣∣∣u1(α0t, t) − ϕ(t)Y(t)
∣∣∣ ≤ ∫ t

0

α0t
∣∣∣ϕ(τ) − ϕ(t)

∣∣∣
2a
√
π(t − τ)

3
2

exp

− α2
0t2

4a2(t − τ)

 dτ

<

∫ t

0

Aα0t(t − τ)σ

2a
√
π(t − τ)

3
2

exp

− α2
0t2

4a2(t − τ)

 dτ =
Aα0t
2a
√
π

∫ t

0
(t − τ)σ−

3
2 exp

− α2
0t2

4a2(t − τ)

 dτ.

After replacing the integration variable τ = t − tz we get∣∣∣u1(α0t, t) − ϕ(t)Y(t)
∣∣∣ < Aα0tσ+ 1

2

2a
√
π

∫ 1

0
zσ−

3
2 exp

− α2
0t

4a2z

 dz ≤
Aα0tσ+ 1

2

(2σ − 1)a
√
π
. (41)

Secondly, we shall evaluate the second term of sum (39). Applying to (40) the substitution of the integration
variable z = α0t

2a
√

t−τ
, dz = α0t

4a(t−τ)
3
2

, we get

1 − Y(t) =
2
√
π

∫ α0
√

t
2a

0
exp

(
−z2

)
dz ≤

α0
√

t
a
√
π
.

In this case ∣∣∣ϕ(t)(1 − Y(t)
∣∣∣ < Aα0

a
√
π

t
1
2 +σ. (42)

Thirdly, we shall evaluate the third term of sum (39). Using the condition (6), we find∣∣∣ϕ(t) − ψ(t)
∣∣∣ ≤ ∣∣∣ϕ(t) − ϕ(0)

∣∣∣ +
∣∣∣ψ(t) − ψ(0)

∣∣∣ < 2Atσ. (43)

Taking into account (41), (42) and (43) we conclude that each term in (39) belongs to the class M 1
2
(0,T),

which implies the assertion of Theorem 12.1.
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13. An Example of a Numerical Calculation

We consider an example of constructing a numerical solution u(x, t) of problem (1) - (3) for boundary
values ϕ(t) = 0 and ψ(t) = sin(α0t) exp(−a2t), 0 ≤ t ≤ T, and compare it with the exact analytic solution of
the same problem U(x, t) = sin(x) exp(−a2t) where (x, t) ∈ Ω.

The solution u(x, t) is computed in two stages. At the first stage, the solution θ(t) of integral equation
(15) is found by the iteration procedure (18); in the second stage, u(x, t) is calculated by the formula (7). The
iterative process (18) is completed when the following inequality is satisfied:∫ T

0

|θn(t) − θn−1(t)|
√

t
dt < ε, n = 1, 2, . . . , (44)

where ε is the accuracy of calculating θ(t). We emphasize that, because of θn(t) ∈M 1
2
(T), the relations

|θn(t) − θn−1(t)|
√

t
∈M0(T) and lim

t→0

|θn(t) − θn−1(t)|
√

t
= 0

for the integral expression in (44) are valid.
The results of the three calculation options performed in the MATLAB environment for T = 10, a = 0.3

and for three values of α0 = 0.5, 1.5, 2.5 are presented in Table 1. The Niter values indicate the number of
iterations required to achieve an accuracy of ε = 0.001 in each variant. The maximum deviations of the
numerical solution u(x, t) from the exact U(x, t) are attained at a finite boundary point x = α0T in all three
cases.

Table 1. The results of the calculations, depending on the velocity of the boundary α0

T a α0 Niter max(x,t)∈Ω |u(x, t) −U(x, t)|
10 0.3 0.5 31 0.0013
10 0.3 1.5 162 0.0051
10 0.3 2.5 402 0.0078

The calculation results for α0 = 1.5 are also presented graphically in Figures 1 and 2.

It is evident from Figure 1 that the changes in θ(t) follow with some delay from the changes in 1(t), but
they have a large amplitude.
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14. Conclusion

The main reason to consider the solution of integral equation (15) is the non-uniform convergence of
the approximation by iteration in a neighborhood t = 0 for the partial sums Kn(t, τ).

If the boundary concordance condition (6) ϕ(0) = ψ(0) = v0 , 0 holds, then the boundary value problem
can be reduced to problem (1)–(6) by replacing u(x, t) = v(x, t) + v0.

The condition 1(t) ∈ M 1
2
(0,T) is too rigid, as it directly follows from conditions (4)–(6) typical for the

most practical problems of the heat conduction.
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