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Abstract. In this paper we prove that the circular cylinder is a maximizer of the Schatten p-norm of heat
potential operator among all Euclidean cylindric domains of a given measure. We also give analogues of a
Rayleigh-Faber-Krahn and a Hong-Krahn-Szegö type inequalities.

1. Introduction

Specral geometric extremum problems of compact operators is one of most popular research areas of
modern mathematics and history of its scientific literature goes back to Rayleighs famous book The Theory
of Sound (see e.g. [3]), in which it was stated that a disk minimizes (among all domains of the same area)
the first eigenvalue of the Dirichlet Laplacian. This conjecture was proved after about a half century later,
simultaneously (and independently) by G. Faber and E. Krahn. Nowadays, the Rayleigh-Faber-Krahn
inequality has been generalised to many different operators; see e.g. [5–8] for further references. In the
present paper we present an analogue of the Rayleigh-Faber-Krahn theorem for the heat potential operator
H, i.e. it is showed that the first s-number of the integral operator H is maximized in a ball among all
cylindric domains of a given measure in Rd and corresponding Hong-Krahn-Szeg?o type inequality, that
is, the maximum of the second s-number of the heat operator among all cylindric domains with a given
measure is approached by the union of two identical circular cylinders with mutual distance going to infinity.
Moreover, it is proved that the p-Schatten norm of the heat operator is maximized on the circular cylinder
among all domains of a fixed measure. This paper is mainly inspired by recent works of Rozenblum,
Ruzhansky and Suragan (see e.g. [5–8] ) in which analogues of Rayleigh-Faber-Krahn type inequalities
were studied for self-adjoint convolution type integral operators. Thus, in this paper we proved:

• Rayleigh-Faber-Krahn type inequality: the first s-number ofHΩ is maximized on the circular cylinder
among all Euclidean cylindric domains of a given measure;
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• Hong-Krahn-Szegö type inequality: the maximum of the second s-number of HΩ among cylindric
bounded open sets with a given measure is achieved by the union of two identical circular cylinders
with mutual distance going to infinity;

• the p-Schatten norm of HΩ is maximized on the circular cylinder among all domains of a given
measure;

In Section 2 we discuss some necessary tools. In Section 3 we present main results of this paper and
their proofs.

2. Preliminaries

Let D = Ω × (0,T) be a cylindrical domain, where Ω ⊂ Rd is a simply-connected set with smooth
boundary ∂Ω. We consider the heat potential operator (see, for example, [9])H : L2(D)→ L2(D) in the form

H f (x, t) :=
∫ t

0

∫
Ω

K(|x − ξ|, t − τ) f (ξ, τ)dξdτ, ∀ f ∈ L2(D), t ∈ (0,T), (1)

where K(|x|, t) =
θ(t)

(2
√
πt)d e

−|x|2
4t , here θ(t) is the Heaviside’s function and K(|x|, t) is the fundamental solution of

the Cauchy problem for the heat equation, that is(
∂
∂t
− ∆x

)
K(|x − ξ|, t − τ) = 0,

its adjoint (
−
∂
∂τ
− ∆ξ

)
K(|x − ξ|, t − τ) = 0

and
lim
t→τ

K(|x − ξ|, t − τ) = δ(|x − ξ|),

for all x, ξ ∈ Rd, where δ is the Dirac delta ’function’.
The operatorH is a non-selfadjoint operator in L2(D). We introduce P : L2(D)→ L2(D) by the following

formula
Pu = u(x,T − t), t ∈ (0,T).

This is also called ′′involution′′ operator and it has the properties

P2 = E, P = P∗, P = P−1,

where E is the unit operator, P∗ is the adjoint operator to the operator P and P−1 is the inverse operator to
the operator P.

Definition 2.1. Let A be a compact operator. s-numbers are the eigenvalues of the operator (A∗A)1/2, where
A∗ is the adjoint operator to A.

Definition 2.2. A Schatten p-norm of a compact operator A in Schatten class Sp is defined as

‖A‖p =

 ∞∑
i=1

sp
i (A)


1
p

< ∞, 1 ≤ p < ∞, (2)

for s1 ≥ s2 ≥ ... > 0 being the s-numbers of A. For p = ∞, we understand

‖A‖∞ := ‖A‖,

i.e. the operator norm of A in L2(D).
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The operator P acts to the operatorH in L2(D) by the formula

PHu =

∫ T−t

0

∫
Ω

K(|x − ξ|,T − t − τ)u(ξ, τ)dξdτ. (3)

Lemma 2.3. The operator PH is a self-adjoint operator in L2(D).

Proof. A direct computation shows 〈
PHu, v

〉
L2(D) =∫ T

0

∫
Ω

(∫ T−t

0

∫
Ω

K(|x − ξ|,T − t − τ)u(ξ, τ)dξdτ
)

v(x, t)dxdt

=

∫ T

0

∫ T−t

0

∫
Ω

∫
Ω

K(|x − ξ|,T − t − τ)u(ξ, τ)v(x, t)dξdxdτdt

=

∫ T

0

∫ T−τ

0

∫
Ω

∫
Ω

K(|x − ξ|,T − t − τ)u(ξ, τ)v(x, t)dξdxdtdτ

=

∫ T

0

∫
Ω

(∫ T−τ

0

∫
Ω

K(|x − ξ|,T − t − τ)v(x, t)dxdt
)

u(ξ, τ)dξdτ

=

∫ T

0

∫
Ω

(∫ T−τ

0

∫
Ω

K(|ξ − x|,T − τ − t)v(x, t)dxdt
)

u(ξ, τ)dξdτ

=
〈
u,PHv

〉
L2(D) .

Thus, we arrive at PH = (PH)∗ in L2(D), i.e., PH is a self-adjoint operator.

Lemma 2.4. s-numbers of the operatorH coincide with eigenvalues of the operator PH .

Proof. We have (PH)∗ = H ∗P∗ and
(PH)∗(PH) = H ∗P∗PH .

By the properties of the operator P, we obtain

(PH)∗(PH) = H ∗P∗PH = H ∗P2
H = H ∗H .

Remark 2.5. As a consequence of Lemma 2.4 we obtain ‖H‖p = ‖PH‖p, forH ∈ Sp.

3. Main Results and Their Proofs

We consider a (circular) cylinder C = B×(0,T) where B ⊂ Rd is an open ball. Let Ω be a simply-connected
set with smooth boundary ∂Ω with |B| = |Ω|, where |Ω| is the Lebesgue measure of the domain Ω.

Theorem 3.1. The first eigenvalue of the operator PH is maximized in the circular cylinder C, that is,

0 < λ1(D) ≤ λ1(C),

with |Ω| = |B|.
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Proof. Recall that D = Ω × (0,T) is a bounded measurable set in Rd+1. Its symmetric rearrangement
C = B × (0,T) is the circular cylinder with the measure equals to the measure of D, i.e. |D| = |C|. Let u be
a nonnegative measurable function in D, such that all its positive level sets have finite measure. With the
definition of the symmetric-decreasing rearrangement of u we can use the layer-cake decomposition [4],
which expresses a nonnegative function u in terms of its level sets with respect to the variable x for each
t ∈ (0,T) as

u(x, t) =

∫
∞

0
χ{u(x,t)>z}dz, ∀t ∈ (0,T), (4)

where χ is the characteristic function of the domain. The function

u∗(x, t) =

∫
∞

0
χ{u(x,t)>z}∗dz, ∀t ∈ (0,T), (5)

is called the (radially) symmetric-decreasing rearrangement of a nonnegative measurable function u.
Consider the following spectral problem

PHu = λu.

By the variational principle for the operator PH , we have

λ1(D) =

∫ T

0

∫ T−t

0

∫
Ω

∫
Ω

K(|x − ξ|,T − t − τ)u1(ξ, τ)u1(x, t)dξdxdτdt

||u1||
2
L2(D)

,

where u1(x, t) is the first eigenfunction of the operator PH . For each non-negative function u ∈ L2(D), we
obtain

||u||L2(D) = ||u∗||L2(C). (6)

By the Riesz inequality [4], we establish∫ T

0

∫ T−t

0

∫
Ω

∫
Ω

K(|x − ξ|,T − t − τ)u1(ξ, τ)u1(x, t)dξdxdτdt

≤

∫ T

0

∫ T−t

0

∫
B

∫
B

K(|x − ξ|,T − t − τ)u∗1(ξ, τ)u∗1(x, t)dξdxdτdt. (7)

Applying (6) and (7), we get

λ1(D) =

∫ T

0

∫ T−t

0

∫
Ω

∫
Ω

K(|x − ξ|,T − t − τ)u1(ξ, τ)u1(x, t)dξdxdτdt

||u1||
2
L2(D)

≤

∫ T

0

∫ T−t

0

∫
B

∫
B K(|x − ξ|,T − t − τ)u∗1(ξ, τ)u∗1(x, t)dξdxdτdt

||u1||
2
L2(C)

≤ sup
v∈L2(C),v,0

∫ T

0

∫ T−t

0

∫
B

∫
B K(|x − ξ|,T − t − τ)v(ξ, τ)v(x, t)dξdxdτdt

||v||2L2(C)

= λ1(C).

The proof is complete.

Corollary 3.2. According to Lemma 2.4 we have the eigenvalues of the operator PH coincide with the s-numbers of
the operator H , in particular, λ1(PH) = s1(H). This means ‖H‖ = ‖PH‖, that is, the norm of the operator PH is
maximized in the cylinder C, i.e. ‖HΩ‖ ≤ ‖HB‖.
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Theorem 3.3. Let PH ∈ Sp0 . For each integer p, p0 ≤ p < ∞, we have

‖PHD‖p ≤ ‖PHC‖p,

for all Ω such that |Ω| = |B|.

Proof. For all p0 ≤ p < ∞, we have
∞∑
j=1

λp
j (PH) =

∫ T

0

∫ T−τ1

0
...

∫ T−τp−1
∫

Ω

...

∫
Ω

p∏
k=1

K(|ξk − ξk+1|,T − τk − τk+1)dτ1...dτpdξ1...dξp. (8)

where ξ1 = ξp+1 and τ1 = τp+1. Using the Brascamp-Lieb-Luttinger inequality [1], we obtain that

∞∑
i=1

λp
i (D) =

∫ T

0

∫ T−τ1

0
...

∫ T−τp−1
∫

Ω

...

∫
Ω

p∏
k=1

K(|ξk − ξk+1|,T − τk − τk+1)dz

≤

∫ T

0

∫ T−τ1

0
...

∫ T−τp−1
∫

B
...

∫
B

p∏
k=1

K∗(|ξk − ξk+1|,T − τk − τk+1)dz

=

∞∑
i=1

λp
i (C),

where ξ1 = ξp+1, τ1 = τp+1 and dz = dτ1...dτpdξ1...dξp. Here we have used that

K(|x − y|,T − t − τ) = K∗(|x − y|,T − t − τ).

Thus
∞∑

i=1

λp
i (D) ≤

∞∑
i=1

λp
i (C), p0 ≤ p < ∞.

Therefore,
‖PHD‖p ≤ ‖PHC‖p, p0 ≤ p < ∞,

completes the proof.

Theorem 3.4. The maximum of the second eigenvalue λ2 of PH among all cylindric domains D with a given measure
is approached by the union of two identical circular cylinders with mutual distance going to infinity.

Proof. Let D+ = {(x, t) : u(x, t) > 0}, D− = {(x, t) : u(x, t) < 0}, Thus

u2(x, t) > 0, t ∈ (0,T),∀x ∈ Ω+
⊂ Ω, Ω+ , {∅},

u2(x, t) < 0, t ∈ (0,T),∀x ∈ Ω− ⊂ Ω, Ω− , {∅}.

Using the notations

u+
2 (x, t) :=

u2(x, t), (x, t) ∈ D+,

0, otherwise,

and

u−2 (x, t) :=

u2(x, t), (x, t) ∈ D−,
0, otherwise.
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We have
λ2(D)u2(x, t) =∫ T−t

0

∫
Ω+

K(|x − ξ|,T − t − τ)u2(ξ, τ)dξdτ

+

∫ T−t

0

∫
Ω−

K(|x − ξ|,T − t − τ)u2(ξ, τ)dξdτ.

Multiplying by u+
2 (x, t) and integrating over Ω+

× (0,T), we get

λ2(D)‖u+
2 ‖

2
L2(D+) =

∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω+

K(|x − ξ|,T − t − τ)u+
2 (x, t)u+

2 (ξ, τ)dz

+

∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω−

K(|x − ξ|,T − t − τ)u−2 (x, t)u+
2 (ξ, τ)dz, (9)

where dz = dξdxdτdt.
We have

∫ T−t

0

∫
Ω−

K(|x − ξ|,T − t − τ)u−2 (ξ, τ)dξdτ < 0. Thus,

λ2(D)‖u+
2 ‖

2
L2(D+) =∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω+

K(|x − ξ|,T − t − τ)u+
2 (x, t)u+

2 (ξ, τ)dz

+

∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω−

K(|x − ξ|,T − t − τ)u−2 (x, t)u+
2 (ξ, τ)dz

6

∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω+

K(|x − ξ|,T − t − τ)u+
2 (x, t)u+

2 (ξ, τ)dz.

From the latter, we get

λ2(D) 6

∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω+ K(|x − ξ|,T − t − τ)u+

2 (x, t)u+
2 (ξ, τ)dz

‖u+
2 ‖

2
L2(D+)

.

Applying Theorem 3.1, we get

λ2(D) 6

∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω+ K(|x − ξ|,T − t − τ)u+

2 (x, t)u+
2 (ξ, τ)dz

‖u+
2 ‖

2
L2(D+)

6 sup
v∈L2(D+)

∫ T

0

∫ T−t

0

∫
Ω+

∫
Ω+ K(|x − ξ|,T − t − τ)v+(x, t)v+(ξ, τ)dz

||v||2L2(D+)

= λ1(D+).

Similarly, we get
λ2(D) 6 λ1(D−).

Finally, we have

λ2(D) 6 λ1(D−), λ2(D) 6 λ1(D+). (10)

Due to Theorem 3.1, we establish that

λ1(D+) < λ1(C+), λ1(D−) < λ1(C−). (11)
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Applying (10) and (11), we obtain
λ2(D) 6 min{λ1(C+), λ1(C−)}.

We now introduce C+ and C−, the circular cylinders of the same measure as D+ and D−, respectively.
Let l be distance between C+ and C−, i.e. l = dist(C+,C−).

Define the first (normalized) eigenfunction u~1 (x, t) of the operator PHC+∪C− and take u+ u− being the first
(normalized) eigenfunctions of each circular cylinder, i.e., of operators PHC+∪C− . The first eigenfunction of
the corresponding operators PH±. Let f~ ∈ L2 (C+

∪ C−) be a function such that

f~ =

u+(x, t), (x, t) ∈ C+,

γu−(x, t), (x, t) ∈ C−,

where γ is real number, so that f~ orthogonal to u~1 . u+,u−,u~ are positive functions.
Noticing that∫ T

0

∫ T−t

0

∫
B+∪B−

∫
B+∪B−

K(|x − ξ|,T − t − τ) f~(ξ, τ) f~(x, t)dξdxdτdt =

4∑
i=1

Ui,

where

U1 =

∫ T

0

∫ T−t

0

∫
B+

∫
B+

K(|x − ξ|,T − t − τ)u+(ξ, τ)u+(x, t)dξdxdτdt,

U2 =

∫ T

0

∫ T−t

0

∫
B+

∫
B−

K(|x − ξ|,T − t − τ)u−(ξ, τ)u+(x, t)dξdxdτdt,

U3 = γ

∫ T

0

∫ T−t

0

∫
B−

∫
B+

K(|x − ξ|,T − t − τ)u+(ξ, τ)u−(x, t)dξdxdτdt,

U4 = γ2
∫ T

0

∫ T−t

0

∫
B−

∫
B−

K(|x − ξ|,T − t − τ)u−(ξ, τ)u−(x, t)dξdxdτdt.

By the variational principle, we take
λ2

(
C+
∪ C−

)
=

sup
v∈L2(C+∪C−),v⊥u1

∫ T

0

∫ T−t

0

∫
B+∪B−

∫
B+∪B−

K(|x − ξ|,T − t − τ)v(ξ, τ)v(x, t)dξdxdτdt

≥

∫ T

0

∫ T−t

0

∫
B+∪B−

∫
B+∪B−

K(|x − ξ|,T − t − τ) f~(ξ, τ) f~(x, t)dξdxdτdt =

4∑
i=1

Ui.

On other hand, u+ and u− are the first (normalized) eigenfunctions of each circular cylinder C+ and C−,
we have

λ1
(
C±

)
=

∫ T

0

∫ T−t

0

∫
B±

∫
B±

u±(x, t)u±(ξ, τ)K(|x − ξ|,T − t − τ)dξdxdτdt.

Summarizing the above facts, we obtain

λ2
(
C+
∪ C−

)
≥

U1 + U2 + U3 + U4

(λ1(D+))−1U1 + (λ1(D−))−1U2
.

Since the kernel K(|x − ξ|,T − t − τ) tends to zero as x ∈ B±, ξ ∈ B∓ and l→∞, we observe that

lim
l→0

U2 = lim
l→0

U3 = 0.
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Therefore,

λ2(C+
⋃

C−) > max{λ1(C+), λ1(C−)}, (12)

where l = dist(C+,C−). From inequalities (10) and (12), we get

lim
l→∞

λ2

(
C+

⋃
C−

)
≥ min{λ1(C+), λ1(C−)} = λ1(C+) = λ1(C−)

≥ lim
l→∞

λ2
(
C+
∪ C−

)
,

and this implies that the maximising sequence for λ2 is given by a disjoint union of two identical circular
cylinders with mutual distance going to∞.
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