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bInstitute of Mathematics and Mechanics, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
cDepartment of Mathematics, Faculty of Art and Science, Amasya University, 05100 Amasya, Turkey

Abstract. We investigate a discontinuous boundary value problem which consists of a Sturm-Liouville
equation with piecewise continuous potential together with eigenparameter dependent boundary condi-
tions and supplementary transmission conditions. We establish some spectral properties of the considered
problem. In particular, it is shown that the problem under consideration has precisely denumerable many
eigenvalues λ1, λ2, ...,which are real and tends to +∞. Moreover, it is proven that the generalized eigenvec-
tors form a Riesz basis of the adequate Hilbert space.

1. Introduction

Sturm-Liouville problems with eigenparameter appearing in the boundary conditions have been studied
by many authors (see, [4–6, 10, 20, 27] and corresponding references cited therein). The main goal of those
papers is the analysis of the spectrum and justification of the eigenfunction expansion. The considerations
of [10, 26] are based on the operator-theoretic formulation of such type Sturm-Liouville problems. In [6, 7],
the residue calculus in a manner similar to [24] is employed.

In recent years, there has been increasing interest of Sturm-Liouville type problems together with
eigenparameter dependent boundary conditions and supplementary transmission conditions (see, [2–
4, 11–14, 18–22]). Such properties as isomorphism, coerciveness with respect to the spectral parameter,
completeness and Abel basis property of a system of root functions, asymptotics of eigenvalues of some
boundary value problems with transmission conditions and its applications to the corresponding initial
boundary value problems for parabolic equations have been investigated in [11, 20–22]. The various physics
applications of this kind of problems arise in heat and mass transfer problems [16, 17, 23], in vibrating string
problems when the string loaded additionally with point masses [23], in diffraction problems [25], etc.

Basis properties and eigenfunction expansions for Sturm-Liouville problems involving eigenparameter
in the boundary conditions have been considered in [1, 5, 9, 10, 14, 27–29]. Aliyev and Kerimov [1] studied
basisness of root functions of Sturm-Liouville problems with a boundary condition depending quadratically
on the spectral parameter. In [5], it is shown that the problem of eigenoscillations of various mechanical
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systems is formulated as the Sturm-Liouville problem with the eigenvalue parameter appearing in the
boundary conditions. It is proven that the eigenfunctions form a Riesz basis of suitable Hilbert space. In
[9], such properties as completeness, minimality and basis property for the eigenfunctions are investigated.
In [29], for a non-linear eigenvalue problem similar to a linear Sturm-Liouville problem the properties of
the eigenvalues and corresponding eigenfunctions are analysed and the system of eigenfunctions is shown
to be a Riesz basis in L2.

In this paper we shall investigate the Sturm-Liouville equation on two disjoint intervals [−1, 0) and (0, 1]
given by

− f ′′(x) + q(x) f (x) = λ f (x) x ∈ [−1, 0) ∪ (0, 1], (1)

together with boundary conditions at the end-points x = −1, and x = 1 given by

f ′(−1) = 0, (2)

(ln f )′(1) =
aλ

bλ + c
, (3)

and two supplementary transmission conditions at the point of discontinuity x = 0 given by

f (0+) − f (0−) = 0 , f ′(0+) − f ′(0−) = δ f (0). (4)

Here a, b, c, δ ∈ R, δ > 0, θ = ac > 0, λ ∈ C, the function q(x) is positively definite, measurable and bounded
on [a, c) ∪ (c, b].

The purpose of this paper is to reduce the Sturm-Liouville problem to the operator polynomial equation
in an appropriate Hilbert space and to prove that the corresponding eigenfunctions form a Riesz basis of
this space.

At first, we shall define some new Hilbert spaces and give some inequalities which is needed for further
investigation. It is well-known that the standard Sobolev spaces play a fundamental role in studying
various spectral properties of differential operators.

Recall that the Sobolev space Wk
2(Ω), (k = 0, 1, 2, ...) is the Hilbert space consisting of all functions

f ∈ L2(Ω) that have generalized derivatives f (n)
∈ L2(Ω) for n = 1, 2, ..., k with the inner product

〈 f , 1〉Wk
2(Ω) :=

∫
Ω

( f (x)1(x) + f ′(x)1′(x) + f ′′1′′ + ... + f (k)(x)1(k)(x))dx,

where Ω ⊂ R is any bounded interval.
Let Ω1 := [−1, 0),Ω2 := (0, 1], Ω = Ω1 ∪Ω2 and let f be any function defined on Ω = Ω1 ∪Ω2. Then by

f(i)(x) we shall denote the restriction of f (x) on the interval Ωi. Below, byH0(Ω1) ⊕H0(Ω2) we denote the
Hilbert space L2(Ω) ≡ L2(Ω1) ⊕ L2(Ω2) with the inner product

〈 f , 1〉0 :=
∫

Ω1

f(1)(x) 1(1)(x) dx +

∫
Ω2

f(2)(x) 1(2)(x) dx.

Since the embedding operators J : W1
2(Ωi) ↪→ C(Ωi) (i = 1, 2) are compact, we can show that the linear

space

H
1(Ω1) ⊕H1(Ω2) =

{
f ∈ H0(Ω1) ⊕H0(Ω2) | f(i) ∈W1

2(Ωi) (i = 1, 2), f(1)(0−) = f(2)(0+)
}

forms a Hilbert space with respect to the inner-product

〈 f , 1〉1 :=
∫

Ω1

(
f(1)(x) 1(1)(x) + f ′(1)(x) 1(1)

′(x)
)

dx +

∫
Ω2

(
f(2)(x) 1(2)(x) + f ′(2)(x) 1(2)

′(x)
)

dx.
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In the same linear spaceH1(Ω1) ⊕H1(Ω2), we shall introduce another inner-product as

< f , 1 >2:= 〈 f , q1〉0 + 〈 f ′, 1′〉0, (5)

with corresponding norm

‖ f ‖22 := 〈 f , 1〉2. (6)

The function q(x) is positively definite and bounded, hence there exist positive constants m, M, independent
of f , such that

m || f ||1 < || f ||2 < M || f ||1.

Consequently, the inner product space
{
H

1
q (Ω1) ⊕H1

q (Ω2), 〈., .〉2
}

is also Hilbert space.
It is clear that the functions in H1(Ω1) ⊕ H1(Ω2) are continuous on each [−1, 0) and (0, 1], but their

generalized derivatives can only be assumed to be elements of L2(Ω). From the well-known embedding
theorems for Sobolev spaces (see [16]) we can derive easily following inequalities

| f(2)(1)|2 ≤ γ1 || f
′

||
2
0 +

2
γ1
|| f ||20, (7)

| f(2)(0+)|2 ≤ γ2 || f
′

||
2
0 +

2
γ2
|| f ||20, (8)

| f(1)(0−)|2 ≤ γ3 || f
′

||
2
0 +

2
γ3
|| f ||20, (9)

| f (ξ)| ≤ C(ξ) || f ||2 for any ξ ∈ Ω, (10)

whereγ j ( j = 1, 2, 3) are any positive real numbers that are small enough and the constant C(ξ) is independent
of the function f , i.e. the constant C(ξ) is dependent only of ξ. Moreover, the inequality

‖ f ‖0 ≤ C1 || f ||2 (11)

follows directly from the definition of the norms (5)-(6).
Let us introduce to the consideration the Hilbert space H :=

(
H

1(Ω1) ⊕ H1(Ω2)
)
⊕ C, with the inner

product

〈F,G〉H := 〈 f , 1〉2 + z w

for F :=
(

f
z

)
,G :=

(
1

w

)
∈Hwhich is the main space for this study.

2. The Generalized Eigenvectors of the Problem

The concept of generalized eigenfunction for our problem (1)− (4) is the main object of this study. Note
that this concept is based on the weak solutions of problem (1)− (4), which we shall define by the following
procedure.
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Multiplying both side of equation (1) by the complex conjugate of an arbitrary function µ ∈ H1
q (Ω1) ⊕

H
1
q (Ω2) integrate by parts over the intervals [−1, 0) and (0, 1] and applying the boundary and transmission

conditions (2) − (4) produce the following.∫
Ω1

(
f ′(1)(x) µ(1)

′(x) + q1(x) f(1)(x) µ(1)(x)
)

dx +

∫
Ω2

(
f ′(2)(x) µ(2)

′(x) + q2(x) f(2)(x) µ(2)(x)
)

dx

−
a
b

f(2)(1)µ(2)(1) + δ f (0−)µ(0−) +
κ
b
µ(2)(1)

= λ

∫
Ω1

f(1)(x) µ(1)(x) dx + λ

∫
Ω2

f(2)(x) µ(2)(x) dx. (12)

By defining a new unknown parameter κ by κ := a f2(1) − b f ′2(1) and using the boundary condition (2)
we have

1
b

f(2)(1) −
κ
ab

= λ
κ
θ
. (13)

Thus, the following theorem is proven.

Theorem 2.1. Let q(i) ∈ C(Ωi) (i = 1, 2) and suppose that there exists a finite one-hand limits q(0±) := limx→0± q(x).
If the function f = f0(x) is the classical eigenfunction of problem (1)-(4), then two-component vector function(

f0(x)
κ

)
satisfies equation (12) and equation (13) for any µ ∈ H1

q (Ω1) ⊕H1
q (Ω2).

By applying the standard procedure [16], we have the following definition of a generalized solution of
boundary value transmission problem (BVTP) (1) − (4).

Definition 2.2. The two-component element F =

(
f (x)
κ

)
of the Hilbert spaceH is said to be a generalized

eigenvector of BVTP (1) − (4), if this element satisfies equation (12) and equation (13) for any µ ∈ H1(Ω1) ⊕
H

1(Ω2).

It is easy to see that the next theorem is true.

Theorem 2.3. Let F =

(
f (x)
κ

)
∈ H be generalized eigenvector of BVTP (1) − (4). If f(i) ∈ C2(Ωi), q(i) ∈ C(Ωi)

with the finite one-hand limits f (0±), f ′(0±), f ′′(0±), then the first component f (x) becomes a classical eigenfunction
of BVTP (1) − (4).

Proof. Let F =

(
f (x)
κ

)
be generalized eigenvector of BVTP (1)−(4). Then for arbitraryµ ∈ H1

q (Ω1)⊕H1
q (Ω2)

the function f(i) ∈ C2(Ωi) satisfy equalities (12)-(13). Integrating by parts over the interval Ωi we have from
(12) that the equality∫

Ω1

(
− f ′′(1)(x) + q1(x) f(1)(x)

)
µ(1)(x)dx +

∫
Ω2

(
− f ′′(2)(x) + q2(x) f(2)(x)

)
µ(2)(x)dx

= λ

∫
Ω1

f(1)(x)µ(1)(x)dx + λ

∫
Ω2

f(2)(x)µ(2)(x)dx

is hold for arbitrary µ ∈ H1
q (Ω1) ⊕H1

q (Ω2).
The arbitrariness of the function µ shows that the function f satisfies equation (1). From the equalities

(12)-(13) it follows immediately that the solution of (12)-(13) satisfies conditions (2)-(4). The proof is
complete.

Remark 2.4. If q(x) is only measurable and bounded on Ω (i.e. are not necessarily continuous functions on
Ω), then it is not possible to define the classical eigenfunction. Nevertheless, even in this situation all terms
of integral equation (12) and equation (13) are defined in the spaceH1

q (Ω1) ⊕H1
q (Ω2).
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3. Main Results

Now we are ready to establish some important results. Particularly, based on the definitions and results
of the previous section we shall reduce BVTP (1) − (4) into an operator-pencil equation with self-adjoint
compact operators and then it will be proved that the generalized eigenvectors of BVTP (1) − (4) form a
Riesz basis of the Hilbert spaceH.

Let us introduce to consideration the following bilinear forms.

`0( f , µ) :=
−a
b

f(2)(1)µ(2)(1) + δ f (0−)µ(0−), for all f , µ ∈ H1(Ω1) ⊕H1(Ω2), (14)

`1( f , µ) := 〈 f , µ〉⊕H0 =

∫
Ω1

f(1)(x) µ(1)(x)dx +

∫
Ω2

f(2)(x) µ(2)(x)dx, for all f , µ ∈ H1(Ω1) ⊕H1(Ω2), (15)

`2(κ, µ) :=
κ µ(2)(1)

b
, for all κ ∈ C, µ ∈ H1(Ω1) ⊕H1(Ω2). (16)

Theorem 3.1. There are bounded linear operators T0,T1 : H1(Ω1) ⊕H1(Ω2)→H1(Ω1) ⊕H1(Ω2) and T2 : C→
H

1(Ω1) ⊕H1(Ω2) satisfying the following representations.

` j( f , µ) = < T j f , µ >2 ( j = 0, 1) and `2(κ, µ) = < T2κ, µ >2 . (17)

Proof. We prove firstly that the bilinear forms ` j ( j = 0, 1) are continuous in µ ∈ H1(Ω1) ⊕H1(Ω2) for any
given f ∈ H1(Ω1) ⊕H1(Ω2). The proof is based on the following inequalities

|`0( f , µ)| ≤ C2 ‖ f ‖2 ‖µ‖2,

and

|`1( f , µ)| ≤ C3 ‖ f ‖2 ‖µ‖2. (18)

Note that here, and below, the symbols Cn for n = 1, 2, ..., are used to denote different constants which do
not depend on the functions under consideration and whose exact values are not important for the proof.

By using the well-known Schwarz inequality and (9), we get

|`0( f , µ)| ≤ C4 ‖ f ‖0 ‖µ‖0 ≤ C4C1 ‖ f ‖0 ‖µ‖2 ≤ C4C2
1 ‖ f ‖2 ‖µ‖2.

The proof of inequality (18) is completely similar. Further, from (16), it follows immediately that

|`2(κ, µ)| ≤ C5|κ| |µ(2)(1)|.

By using interpolation inequalities (7)-(11), we have the following inequality

|`2(κ, µ)| ≤ C6|κ| |µ(2)(1)| ≤ C7|κ| ‖µ‖2.

To complete the proof it is enough to apply familiar Riesz Representation Theorem (see, for example
[15]).

Theorem 3.2. We have the following assertions:

i. The operators T0,T1 : H1(Ω1) ⊕H1(Ω2)→H1(Ω1) ⊕H1(Ω2) are self-adjoint and compact,

ii. The operator T1 is positive,
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iii. The operator T2 : C→H1(Ω1) ⊕H1(Ω2) is compact.

Proof. i. Firstly, let us show that the operator T0 is self-adjoint. Let f , µ ∈ H1(Ω1) ⊕ H1(Ω2) be arbitrary
functions. By (14) and (17), we have that

〈 f ,T0µ〉2 = 〈T0µ, f 〉2

= −
a
b

f(2)(1)µ(2)(1) + δ f (0−)µ(0−)

= `0(µ, f ) = `0( f , µ)
= 〈T0 f , µ〉2.

So the operator T0 is self-adjoint in the Hilbert spaceH1(Ω1)⊕H1(Ω2). The proof of the self-adjointness
of the operator T1 is completely similar.
Now, we shall prove that the operators T0 and T1 are compact operators in the Hilbert spaceH1(Ω1)⊕
H

1(Ω2). For this it is sufficient to show that any weakly convergent sequence { fk}(k = 1, 2, ...) in
H

1(Ω1) ⊕ H1(Ω2) is transformed by T j( j = 0, 1) into a strongly convergent sequence {T j fk}( j = 0, 1).
The boundedness of T j( j = 0, 1) implies the weak convergence of {T j fk}( j = 0, 1) to {T j f }( j = 0, 1) in
H

1(Ω1) ⊕H1(Ω2), where f (x) is the weak limit of { fk}. Moreover, the compactness of the embedding
operator from H1(Ω1) ⊕ H1(Ω2) into L2(Ω1) ⊕ L2(Ω2) [16] implies the strong convergence of the
sequences { fk} and {T j fk} ( j = 0, 1) in L2(Ω1) ⊕ L2(Ω2) to f and T j f ( j = 0, 1), respectively. Further, the
compactness of the embedding operator from H1(Ω1) ⊕ H1(Ω2) into C(Ω1) ⊕ C(Ω2) [16] implies the
strong convergence of the sequences { fk(d)} and {T j fk(d)} ( j = 0, 1) in C to f (d) and T j f (d) ( j = 0, 1),
respectively with d1 = −1 or d2 = 0∓ or d3 = +1. If we use definition (17) of the operators T j ( j = 0, 1),
inequalities (7)-(11) and representations (14)-(17), then we have

‖ T0 fk − T0 fm‖22 = 〈T0( fk − fm),T0( fk − fm)〉2

= `0( fk − fm , T0( fk − fm)) ≤ c8

3∑
α=1

∣∣∣( fk − fm)(dα)
∣∣∣ · ∣∣∣(T0( fk − fm))(dα)

∣∣∣
≤ C9

{ ∣∣∣( fk(+1) − fm(+1))
∣∣∣ · ∣∣∣(T0( fk − fm))(+1)

∣∣∣ +
∣∣∣( fk(0−) − fm(0−))

∣∣∣ · ∣∣∣(T0( fk − fm))(0−)
∣∣∣ },

‖ T1 fk − T1 fm‖22 = 〈T1( fk − fm),T1( fk − fm)〉2
= `1( fk − fm , T1( fk − fm))

≤ C10

2∑
i=1

∣∣∣∣∣∣
∫

Ωi

ri( fk(x) − fm(x)) · T1( fk − fm)dx

∣∣∣∣∣∣
≤ C11 ‖ fk − fm‖0 · ‖T1( fk − fm)‖2.

Consequently, ‖T j( fk − fm)‖2 → 0 as k,m → ∞. Hence, the sequence {T j fk} ( j = 0, 1) converges
strongly in the Hilbert space H1(Ω1) ⊕ H1(Ω2), so the compactness of the operators T j ( j = 0, 1) are
proven.

ii. Since r1(x) and r2(x) are positive definite functions, the positivity of the operator T1 is obvious.

iii. It is easy to verify that the adjoint operator of T2 is defined on wholeH1(Ω1) ⊕H1(Ω2) with action law
T∗2( f ) = 1

b f2(1). From this representation it follows that, the operator T∗2 fromH1(Ω1) ⊕H1(Ω2) to C
is bounded, i.e there exists C12 > 0 such that, for all f ∈ H1(Ω1) ⊕H1(Ω2)

|T∗2 f | ≤ C12 ‖ f ‖2.

Consequently, the operator T∗2 is bounded linear operator with finite dimensional range and therefore
is compact. The proof is complete.
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Let us define two new operators R and S in the Hilbert spaceH by the equalities

R
(

f (x)
κ

)
=

(
f + T0 f (x) + T2κ

T∗2 f (x) − c
bθ κ

)
and

S
(

f (x)
κ

)
=

(
T1 f (x)

κ
θ

)
respectively, in terms of which we shall define a linear operator-pencilA(λ) by the equality

A(λ) = R + λ S.

By using (12), (13), (14), (15) and (16) we have the following result.

Lemma 3.3. The generalized eigenfunctions of the BVTP (1)-(4) satisfy the operator-polynomial equation

A(λ)
(

f (x)
κ

)
= 0 (19)

in the Hilbert spaceH.

The following result is very important for further consideration.

Lemma 3.4. There exists c > 0, such that for all real λ0 > c the operator polynomialA(λ0) is positive definite.

Proof. Equations (14)-(17) and (19) give the formula〈
A(λ0)

(
f (x)
κ

)
,

(
f (x)
κ

)〉
H

= ‖ f ‖22 −
a
b
| f(2)(1)|2 + δ| f (0)|2 −

c
bθ
|κ|2 +

λ0

θ
|κ|2 +

2
b

Re
(
κ f(2)(1)

)
+ λ0

(∫
Ω1

r1(x)
∣∣∣ f(1)(x)

∣∣∣2dx +

∫
Ω2

r2(x)
∣∣∣ f(2)(x)

∣∣∣2dx
)
.

Applying the obvious inequality

2
b

Re
(
κ f(2)(1)

)
≥ −

1
|b|

(
ε |κ|2 +

1
ε
| f(2)(1)|2

)
with an arbitrary parameter ε > 0 yields〈

A(λ0)
(

f (x)
κ

)
,

(
f (x)
κ

)〉
H

≥ ‖ f ‖22 −
(∣∣∣a

b

∣∣∣ +
1
ε |b|

)
| f(2)(1)|2 +

(
−
ε
|b|
−

c
|b|θ

+
λ0

θ

)
|κ|2

+ δ| f (0)|2 + λ0

(∫
Ω1

r1(x)
∣∣∣ f(1)(x)

∣∣∣2dx +

∫
Ω2

r2(x)
∣∣∣ f(2)(x)

∣∣∣2dx
)
. (20)

Let use define the following functionals

P( f ) := 〈 f
′

, f
′

〉0 =

∫
Ω1

∣∣∣ f ′(1)(x)
∣∣∣2dx +

∫
Ω2

∣∣∣ f ′(2)(x)
∣∣∣2dx,

Q( f ) := 〈q f , f 〉0 =

∫
Ω1

q1(x)
∣∣∣ f(1)(x)

∣∣∣2dx +

∫
Ω2

q2(x)
∣∣∣ f(2)(x)

∣∣∣2dx,

R( f ) := 〈r f , f 〉0 =

∫
Ω1

r1(x)
∣∣∣ f(1)(x)

∣∣∣2dx +

∫
Ω2

r2(x)
∣∣∣ f(2)(x)

∣∣∣2dx.
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Then we have

‖ f ‖22 = P( f ) + Q( f ) for all f ∈ H1(Ω1) ⊕H1(Ω2). (21)

Since the functions q(x) and r(x) are positive and bounded, we have

‖ f
′

‖
2
0 ≤ C13P( f ) , || f ||20 ≤ C14Q( f ) , 〈r f , f 〉0 = R( f ) ≥ C15Q( f ). (22)

By using inequalities (7)-(11), (20), (22) and equality (21) we can show easily that〈
A(λ0)

(
f (x)
κ

)
,

(
f (x)
κ

)〉
H

≥ z1P( f ) + z2(λ0)Q( f ) + z3(λ0)|κ|2,

where

z1 := 1 −
( ∣∣∣a

b

∣∣∣ +
1
ε |b|

)
γ1C13 + δγ2C13,

z2(λ0) := 1 −
( ∣∣∣a

b

∣∣∣ +
1
ε |b|

) 2
γ1

C14 + δ
2
γ2

C14 + λ0C15,

z3(λ0) := −
ε
|b|
−

c
bθ

+
λ0

θ
.

Since θ > 0, it is possible to choose the arbitrary positive parameters γ1, γ2 and ε so small and the
positive parameter λ0 so large that the inequalities z1 > 0, z2(λ0) > 0 and z3(λ0) > 0 hold.

Thus, we have that〈
A(λ0)

(
f (x)
κ

)
,

(
f (x)
κ

)〉
H

≥ min ( z1 , z2(λ0) , z3(λ0) ) ‖Φ‖2H

for all
(

f (x)
κ

)
:= Φ ∈ H and hence the quadratic form

〈
A(λ0)

(
f (x)
κ

)
,

(
f (x)
κ

)〉
H

is positive definite

for sufficiently large positive values of λ0. Thus the operator pencilA(λ0) is positive definite for sufficiently
large λ0 > 0. The proof is complete.

By virtue of the Lemma 3.4 there exists c > 0, such that for all real λ0 > c the operator polynomial
A(λ0) is positive definite. Moreover, we know that the operatorA(λ0) is also self-adjoint. Therefore there
exists positive square root

√
A(λ0) which is invertible. Consequently, we can introduce to consideration a

new operator χ(λ0) defined by

χ(λ0) :=
(√
A(λ0)

)−1
S

(√
A(λ0)

)−1

in the Hilbert spaceH.
Hence we have the following result.

Theorem 3.5. The operator χ(λ0) is positive, self-adjoint and compact in the Hilbert space H for sufficiently large
positive λ0.

Theorem 3.6. Let λ0 be any real positive number, such that A(λ0) is positive defined operator in the Hilbert space

H. Then the operator χ(λ0) :=
(√
A(λ0)

)−1
S

(√
A(λ0)

)−1
has precisely denumerable many positive eigenvalues

{ηn} which tends to +∞. The corresponding eigenvectors form an orthogonal basis of H.

Proof. The proof of this Theorem follows from the well-known Fredholm theorems for compact self-adjoint
operators in a Hilbert spaces (see, for example, [15]).

Now, by using the well-known fact, that every bounded invertible operator transforms any orthonormal
basis of a Hilbert spaceH into Riesz basis ofH (see, for example, [8] ) we get the following main result.

Theorem 3.7. Let q(x) be positive defined, bounded and measurable function on Ω = Ω1 ∪ Ω2 and suppose that
ab > 0 and δ > 0. Then, BVTP (1)-(4) has precisely denumerable many eigenvalues λ1, λ2, ..., which are real and
tends to +∞. Moreover, the corresponding system of generalized eigenvectors forms a Riesz basis ofH.
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4. Conclusion

The following important conclusions can be really drawn:

i. There exist a real λ0 such that the operator χ(λ0) is positive, self-adjoint and compact in the Hilbert space
H,

ii. BVTP (1)-(4) has only point spectrum,

iii. The eigenvalues form a real sequences with the only point of accumulation at +∞,

iv. The generalized eigenvectors of BVTP (1)-(4) forms a Riesz basis ofH.
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