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Abstract. In the paper we study questions about solvability of some boundary value problems with
periodic conditions for an inhomogeneous biharmonic equation. The exact conditions for solvability of the
problems are found.

1. Introduction

For biharmonic equation the Dirichlet problem [8, 10, 12, 14] is well known. Recently other types of
boundary value problems for the biharmonic equation such as the Neumann problem [3-5, 9, 13, 16, 17, 23?
, 24], the spectral Steklov problem [6], the Robin problem [7], generalized Robin boundary value problem
[15], as well as fractional analogous of Neumann problem [1, 2, 21, 22] are begun to investigate actively. In
the paper, a new class of boundary value problems with periodic conditions is studied in the unit ball for
an inhomogeneous biharmonic equation.

Let Q = {x € R" : |x| < 1} be a unit ball, where n > 2 and let JQ = {x € R" : |x| = 1} be a unit sphere. For
any point x € () we consider its “opposite” point x+ = (=x1, —xp, ..., —X;) € Q and denote

00, =00N{xeR:x,>0},d0_=0QN{xeR":x, <0}, [ =0QN{xeR":x, =0}.

Let D}y = (93;:',1, m > 1, where v is the unit vector of outer normal to the boundary of Q. Consider the

following problem in the domain Q:

Au(x) = flx), x€Q, (1)
Di'u(x) = g(x), x € 9Q, 2)
D' u(x) = (<1)Dju(xx) = g1 (x), x € 9Q,, 3)
D2u(x) + (=1)¥D2u(x+) = g2(x), x € Q2 (4)
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wherek=1,2,1<m<3,1<{; <, <3,{; # m, j =1,2. We call the problem (1)-(4) homogeneous problem
if f =g = g1 = g2 = 0. Solutions of the problem (1)-(4) are functions u(x) € C*Q) N C3(QY), satisfying the
conditions (1)-(4) in the classical sense.

Let B = (B1,.-.,Bx), B; = 0 be a multi-index with || = B1 + ... + By, # = —2—, Pu(x) = u(x) if || = 0.

(9xf1..4(9x/f,"
Necessary existence conditions of a solution to the problem (1)-(4) from the class C3(Q) are the following
conditions:
9g1(0,%) + (-1)0°01(0,a%) =0, (0, %) € L, B < 3, (5)
and
2(0,%) — (1) 92(0,a%) = 0, (0,%) € I, Bl < 2. (6)
Furthermore, we assume that these conditions hold.
Note that analogous problems for elliptic equations of the second order were studied in [18-20].

2. Neumann Type Problems

In this section we study the following Neumann type problem:

Au(x) = f(x), x € Q, @)
D) u(x) = p1(x), x € 0Q, (8)
D}?u(x) = pa(x), x € 0Q, )

where 1 <my <my < 3.

Note that exact conditions on solvability of these problems in the case m; = 1,m, = 2 were established
in [16], in the case m1 = 2, my = 3 in [24], and in the case m; = 1, my = 3 in [13]. These conditions can be
formulated in the form of the following theorems:

Theorem 2.1. Let my = 1, my = 2, f(x) € CHQ), p1(x) € CHIQ), pa(x) € C2(IQ). Then for solvability of the
problem (7)-(9) the following condition is necessary and sufficient.

% f (1-IP) fx)dx = f [@2(x) — @1(x)] dS,. (10)

Q 9Q

If a solution of the problem exists, then it is unique up to an arbitrary constant.

Theorem 2.2. Let my = 2, my = 3, f(x) € CM2(Q), p1(x) € CM**(9Q) and y(x) € CM3(9Q). Then for solvability
of the problem (7)-(9) the following condition is necessary and sufficient:

1

5| [ =Dl = (1 =2)] ) dx = | pax)dS,, (11)

) /

% f xj [0 = D = (n = 2)] fx) dx = f X [2(x) = p1(%)] dS,. (12)
Q 0Q

If a solution of the problem exists, then it is unique up to an arbitrary first order polynomial.

Theorem 2.3. Let m; = 1, my = 3, f(x) € CHQ), p1(x) € CXIQ), pa(x) € C(IQ). Then for solvability of the
problem (7)-(9) the condition (11) is necessary and sufficient. If a solution of the problem exists, then it is unique up
to an arbitrary constant.
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3. About Some Integrals over the Sphere and Ball

Denote

fi(x) _ f(x) 'Zf(x*)’ xeQ, g*(x) —

g(x), x € 9Q,
+g(x+), x € 9Q_

g(x) izg(x*), x€dQ, gi(x) :{

Consider the following statements, related to the study of some integrals over ball and sphere, without
proof.

Lemma 3.1. Let f(x) € C(Q), g(x) € C(Q). Then the following equalities hold:

ff+(x)dx:ff(x)dx, ff‘(x)dx =0, (13)
Q Q Q

fg+(x)d5x:fg(x)d5x, fg_(x)dsx =0, (14)
oQ oQ oQ

f gr(x)dS, = f g(x) dSy, f g (x)dS, =0. (15)
oQ Q. oQ

Lemma 3.2. Let f(x) € C(Q), g(x) € C(Q). Then the following equalities hold:

fx]-f+(x)dx =0, ijf‘(x)dx=fx,-f(x)dx, i=12,...,n, (16)
Q Q Q

ijg+(x)d5x =0, ijg‘(x)dsx :ijg(x)dsx, i=12,...,n, (17)
9Q 9Q Q

ij57+(x*)d5x =0, ijg_(x*)dsx = ijg(x)dx, ji=12,...,n (18)
9Q 9Q Q.

4. Uniqueness of a Solution of the Main Problem

In this section we consider the theorem on uniqueness of a solution of the problem with periodical
conditions.

Theorem 4.1. Let a solution of the problem (1)-(4) exist. Then
Difm=1,40, =2, € =3, then for k = 1,2 the solution is unique up to an arbitrary constant;
2)inthecasem =2,41 =1,€, =3 orm =3, {1 =1, £, = 2 solution of the homogeneous problem for k = 1 is the

n
function u(x) = co + '21 cjxj, and for k = 2 is the function u(x) = co.
]:

Proof. Let u1(x) and uy(x) be two solutions of the problem (1)-(4) then u(x) = u1(x) — u(x) is a solution
of the corresponding homogeneous problem (1)-(4). So, to investigate the uniqueness of solutions of the
nonhomogeneous problem, we investigate the solvability of the corresponding homogeneous problem. Let
u(x) be a solution of the homogeneous problem (1)-(4). Then u(x) is a bi-harmonic function, satisfying the
homogeneous conditions (2)-(4), i.e. D¥'u(x) = 0, x € dQ and

Do u(x) = (-1*Dru(xs), D2u(x) = —(=1)*D2u(x+), x € 9. (19)
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If x € dQ)_, then x* € JQ, and therefore, the condition (19) implies:
Do u(xx) = (-1)'DYu(x), x € 9Q_, Du(x+) = —(=1)*D2u(x), x € 9Q_.

Then
Diu(x) = (-1)*DSu(xx), D2u(x) = —(=1)*D%u(xx), ¥x € 9Q.

On the other side, from the equality Dflu(x) = (=1)¥D{u(x+) it follows that
D2u(x) = (~1)¥D%u(x+), Vx € 0Q.
Then we have D‘{ZM(X)L;Q = 0. Thus, the function u(x) is a solution of the homogeneous problem
Au(x)=0,xeQ, (20)

D!'u(x)|,, =0, Du()|,, =0. (21)

Hence, if m = 1, £, = 3, then by Theorem 2.3 the function u(x) = cy is solution of the problem (20)-(21). It
is obvious, that the function satisfies conditions of the problem (1) - (4) for k = 1,2. Consequently, u(x) = c.

If m = 2, £, = 3, then by Theorem 2.2 the function u(x) = co + ). c;x; is a solution of the problem (20)-(21).
j=1
Moreover, in this case {; = 1 and

5 Ju(x)
D},M(X*).ao = ZXia—JC[

i=1

Then
Dlues) - (1) Dluten)],, = 1+ (<15 Y e
i=1

The last expression vanishes when k = 1 for any ¢;, j = 1,2,...,n, and when k = 2 only in the case
cj=0,j=1,2,...,n Therefore, solution of the homogeneous problem (1)-(4) (f = g = 91 = g2 = 0) when
k = 1 is the function u(x) = cg + i cjxj, and when k = 2 it is the function u(x) = co. Similarly, we can show
that in the case m = 3, {, = 2 slz)llution of the homogeneous problem (1)-(4) when k = 1 is the function
u(x) =co + il cjxj, and when k = 2 it is the function u(x) = cp. [

j=

5. Existence of Solution of the Main Problem
Concerning to the problem (1)-(4) the following statement is true:

Theorem 5.1. Letk =1, f(x), gj(x), j = 1,2,3 be smooth enough functions, and let the conditions (5) and (6) hold.
Then the necessary and sufficiency conditions on solvability of the problem (1)-(4) have the form:
Difm=1,6 =2, =3, then

3 [a-wprwa= [ aeds. - [ gwas, @
Q

0, 2Q

2)ifm=2,6,=1,0, =3, then

3 [ o= 0P = -9 s = [ e, 23)
Q

Q)
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1 .
3 ij [(n —Dxf> = (n - 3)] flx)dx = ijgzdsx - ijg(x)dsx, i=12,...,n (24)
Q 20, Ple)
3ifm=3,{1=1,0 =2, then

1

= [ [ =D = (- 3)] fr)ydx = | g(x)dSy, (25)
] /

1

= | x [(n —Dxf* = (n - 3)] fx)dx = | xjg(x)dS, - Xjg2dSy, j=1,2,..., 1. (26)
-/ Jroows-]

Proof. Consider the auxiliary functions:

1 1
o) = 5 () + (), () = 3 (W) = u(es).
It is easy to show that functions v(x) and w(x) are solutions of the following Neumann type problems:
A%v(x) = fH(x),x € Q; DTZJ(X)L)Q = g*(x), D v(x)|y0 = G7 (%), (27)

A’w(x) = f(x),x € Q; D"w(x)|0 = g (%), Dﬁzw(x)(aQ =g, (x). (28)

Note that if the function f(x) in the domain () and the function g(x) on the sphere JQ are smooth enough,
then it is obvious, that the functions f*(x), g*(x) have these properties. Moreover, if functions g;(x) and
g2(x) are smooth on d(,, then when the matching conditions (5) and (6) hold the functions 77 (x) and g (x)
will have the same properties.

To study solvability of the problem (27) and (28) we use Theorem 2.1- Theorem 2.3.

1) Ifm=1, 6 =2, € = 3, then necessity and sufficiency conditions on solvability of the problems (27)
and (28) are:

1
S [ Q=P fr@de= | (50 -g"(x))ds,, (29)
- /

and
1
5 [ [6=DiP = (1 =3)] f(x)dx = | 7;()dS. (30)
4l /

respectively. Due to (13)-(15), it follows that

J (1= WP)F* (x) dx = ! (1 - WP Fx)x, f gt ds, = f 01 dS,, f 4" (x)dS, = f 900 dS,,

0Q 00, 0Q 0Q

and
f [(1=Dix? = (= 3)| f()dx =0, | Fo(x)dS, =0.
Q 0Q

Then the condition (31) always holds, and it is possible to rewrite (30) as (22).
2)Ifm=2,{; =1, £, = 3, then necessity and sufficiency condition on solvability of the problem (27) has
the form:

3 [ @=mP) rwan= [ (- giw) as. @

Q 0Q
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and for the problem (28) we get the condition (30) and

% f xj [0 = D = (n = 3)] () dx = f %[0 - g @] dSy, j=1,2,...,n, (32)
Q Ple)
In this case, due to (16)-(18), we obtain

ijg”z‘(x)dsxz ijgz(x)dsx, ijg‘(x)dsx :fx]-g(x)dsx,,j: 1,2,...,n.

Q Q) Q Q

Therefore, we can rewrite (31) and (32) as follows:

% f (1- 1) flx) dx = f g(x)dSy - f 914dSy,

Q Q 9,

1 .

7 ij [(n - 1)|x|2 —(n- 3)] f(x)dx = ijgz ds, — ijg(x) dS., j=1,2,...,n.
Q Q. 9Q

3)If m = 3,64 = 1,6, = 2, then in this case necessity and sufficiency condition on solvability of the
problem (27) has the form

1
> [lo=vsp - -3 rwac= [ was, 33)
Q oQ
and for the problem (28) has the form
1
> [ L=k - 0o-3)r@ax= [ @was, (34)
Q oQ
1 _ — .
3 ij [(n — x> = (n - 3)] f(x)dx :fx]- [g () -4, (x)] Sy, j=1,2,...,n. (35)
Q Fle)
In this case condition (34) on solvability of the problem always holds, and we can rewrite (33) and (35)
as follows: .
3 f [(n = Dlx? = (n - 3)] f(x)dx = f g(x) dSy,
Q oQ
1 .
2 ij [(n - 1)|x|2 -(n- 3)] f(x)dx = ijg(x) ds, — ijgz dS., j=1,2,...,n.
Q oQ 2Q,
O

Similarly we can prove the following statement.

Theorem 5.2. Let k = 2, f(x), g(x), gj(x), j = 1,2 be smooth enough functions, and let the conditions (5) and (6)
hold. Then necessity and sufficiency conditions on solvability of the problems (1) - (4) have the form:
Difm=1,0=2,6 =3, then

3 [ o=k - 0-3)wdr = [ pwas.,
Q

9Q,
2ifm=2,61=1,6=30rm=3,6,=1,0, =2, then

% f (1 - 1) flx) dx = f g(x) dS,.

Q Q.



B.Turmetov , V. Karachik / Filomat 32:3 (2018), 947-953 953

References

(1]
[2]

[3]
[4]

(5]
(6]
[7]
(8]

1]
[10]

[11]
[12]

[13]
[14]

[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]

A. Bekaeva, V.V. Karachik, B.Kh. Turmetov, Solvability of some boundary-value problems for polyharmonic equation with
Hadamard-Marchaud boundary operator, Russian Math. 58 (2014) 11-24.

AS. Berdyshev, A. Cabada, B.Kh. Turmetov, On solvability of a boundary value problem for a nonhomogeneous biharmonic
equation with a boundary operator of a fractional order , Acta Math. Scientia 34B (2014) 1695-1706.

A.V. Bitsadze, Some properties of polyharmonic functions, Differential Eq. 24 (1988) 825-831.

Q.A. Dang, Iterative method for solving the Neumann boundary problem for biharmonic type equation, J]. Comput. Appl. Math.
196 (2006) 634-643.

A.A. Dezin, The second boundary problem for the polyharmonic equation in the space W', Doklady Akad. Nauk SSSR 96 (1954)
901-903.

F. Gazzola, G. Sweers, On positivity for the biharmonic operator under Steklov boundary conditions, Archive Rational Mech.
Anal. 188 (2008) 399-427.

A.Gomez-Polanco, ].M. Guevara-Jordan, B. Molina, A mimetic iterative scheme for solving biharmonic equations, Math. Comput.
Modelling 57 (2013) 2132-2139.

T.Sh. Kal'menov, B.D. Koshanov, M. Yu. Nemchenko, Green function representation for the Dirichlet problem of the polyharmonic
equation in a sphere, Complex Variab. Elliptic Eq. 53 (2008) 177-183.

V.V. Karachik, A problem for the polyharmonic equation in the sphere, Siberian Math. J. 32 (1991) 767-774

V.V. Karachik, Construction of polynomial solutions to the Dirichlet problem for the polyharmonic equation in a ball, Comput.
Math. Math. Physics 54 (2014) 1122-1143.

V.V. Karachik, Solvability conditions for the Neumann problem for the homogeneous polyharmonic equation, Differential Eq. 50
(2014) 1449-1456.

V.V. Karachik, Solution of the Dirichlet problem with polynomial data for the polyharmonic equation in a ball, Differential Eq.
51 (2015) 1033-1042.

V.V. Karachik, A problem of Neumann type for the biharmonic equation, Mat. Trudy 19 (2016) 86-108.

V.V. Karachik, N.A. Antropova, Polynomial solutions of the Dirichlet problem for the biharmonic equation in the bal, Differential
Eq. 49 (2013) 251-256.

V.V. Karachik, M. A. Sadybekov, B.T. Torebek, Uniqueness of solutions to boundary-value problems for the biharmonic equation
in a ball, Electronic J. Differential Eq. 244 (2015) 1-9.

V.V. Karachik, B.Kh. Turmetov, A.E. Bekaeva, Solvability conditions of the Neumann boundary value problem for the biharmonic
equation in the unit ball, Internat. J. Pure Appl. Math. 81 (2012) 487—495.

N.A. Malakhova, A.P. Soldatov, On a boundary value problem for a higher-order elliptic equation, Differential Eq. 44 (2008)
1111-1118.

M.A. Sadybekov, B.Kh.Turmetov, On analogues of periodic boundary value problems for the Laplace operator in a ball, Differential
Eq. 50 (2014) 268-273.

M.A. Sadybekov, B.Kh.Turmetov, M.A. Muratbekova, On solvability of some nonlocal boundary value problems with the
Hadamard boundary operator, AIP Conference Proceedings 1611 (2014) doi: 10.1063/1.4893845.

M.A. Sadybekov, B.Kh. Turmetov, B.T. Torebek, Solvability of nonlocal boundary-value problems for the Laplace equation in the
ball, Electronic J. Differential Eq. 157 (2014) 1-14.

B.Kh. Turmetov, Solvability of fractional analogues of the Neumann problem for a nonhomogeneous biharmonic equation,
Electronic J. Differential Eq. 82 (2015) 1-21.

B.Kh.Turmetov, On some boundary value problems for nonhomogenous polyharmonic equation with boundary operators of
fractional order, Acta Math. Scientia 36 (2016) 831-846.

B.Kh. Turmetov, R.R. Ashurov, On solvability of the Neumann boundary value problem for a non-homogeneous polyharmonic
equation in a ball, Boundary Value Problems 162 (2013) doi: 10.1186/1687-2770-2013-162.

B.Kh. Turmetov, R.R. Ashurov, On solvability of the Neumann boundary value problem for non-homogeneous biharmonic
equation, British J. Math. Comput. Sci. 4 (2014) 557-571.



